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Abstract: Due to heterogenetic-specific nature of the available biomarkers, the incidence of lung adenocarcinoma 
(LUAD) is on the rise worldwide. Previously reported LUAD-related hub genes were searched from the medical litera-
ture via literature mining and were processed to identify few top genes via degree method. Later, a comprehensive 
in silico methodology was applied on the selected real hub genes to identify their tumor driving, diagnostic, and 
prognostic roles in LUAD patients with divers clinicopathological variables. Out of total 145 extracted hub genes, 
six genes including CDC6, PBK, AURKA, KIF2C, OIP5, and PRC1 were identified as real hub genes. The expression 
analysis showed that all these genes were significantly up-regulated across LUAD samples of different clinicopatho-
logical variables. In addition, a variety of unique correlations among the expression and of real hub genes and some 
other parameters including promoter methylation status, overall survival (OS), genetic changes, tumor purity, and 
immune cell infiltration have also been explored in the present study. Moreover, via TFS-miRNA-mRNA regulatory 
network, one important TF (E2F1) and one important miRNAs (hsa-mir-34a-5p) that targeted all the real hub genes 
were also identified. Finally, a variety of drugs also predicted to be very useful in treating LUAD. The discovery of 
the real hub genes, TFS-miRNA-mRNA network, and chemotherapeutic drugs associated with LUAD provides new 
insights into underlying mechanisms and treatment of LUAD overcoming heterogeneity barriers.
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Introduction

Lung cancer is the second most abundantly 
diagnosed cancer worldwide [1]. It is estimated 
that more than 2.2 million new lung cancer 
cases and 1.7 million lung cancer-associated 
deaths occur per annum around the world [2]. 
In Pakistan, lung cancer is the third most preva-
lent cancer accounting for 5.9% new cases of 
all the cancers [2]. Although LUAD initial growth 
occurs in the early stage, the progression of 
this disease is much slower than other cancer 
subtypes. Moreover, the overall survival of 
LUAD is also reported to be lower than other 
cancer subtypes [2]. Recent studies highlight-
ed that an exposure to asbestos, smoking ciga-
rette and exposure to many other types of 
chemical can enhance the risk of LUAD devel-

opment [3]. LUAD is a complicated and one of 
the most deadliest malignancies of the lung 
periphery where glandular cells secrete mucus 
and help in breathing [3]. This subtype accounts 
for more than 40% of lung cancer cases its rate 
is on the rise currently [5]. 

A significant improvement has been achieved in 
LUAD therapy recently, its prognosis is still very 
low with 18% of 5-year survival rates [6]. We all 
know that the accurate diagnosis of LUAD is a 
huge challenge, as it is often detected at the 
advanced stages [7]. Therefore, an accurate 
diagnosis of LUAD requires the discovery of new 
biomarkers that can detect LUAD precisely, 
increase survival rates, reduce the incidence of 
tumor invasions, and also enhance the chances 
of successful therapy [8]. 
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During the last 10 years, researchers around 
the globe have used next-generation sequenc-
ing (NGS) as well as microarray methods to 
identify novel biomarkers and therapeutic tar-
gets in LUAD [9], small sample count however 
resulted in the significant inter-study inconsis-
tency. In order to address this issue, Gene 
Expression Omnibus (GEO) database [10] pro-
vided the facility to researchers for archiving 
their expression datasets in GEO database to 
make it publically available for further integra-
tion with other similar datasets via in silico 
approaches to uncover molecular biomarkers 
more precisely. Previously, such GEO-based 
expression datasets of LUAD have been utilized 
by the earlier studies to discover biomarkers of 
LUAD [9], but as we know that biomarkers are 
highly specific biomolecules, and GEO-based 
LUAD expression datasets consist of cancer 
patients with different clinical variables, it is 
clinically impossible to use already identified 
GEO-based biomarkers in LUAD patients over 
heterogeneity-barrier. 

In the current research, therefore, using  
a novel integrated approach, we utilized already 
identified biomarkers (hub genes) from GEO-
based expression datasets of LUAD to priori- 
tize a new system of six biomarkers over 
heterogeneity-barrier.

Materials and methods

Hub genes extraction

PubMed database was effectively searched in 
our study to find all studies dealing with GEO-
expression datasets of LUAD for the identifica-
tion of hub genes up to December 2021. 
Following keywords were used in a combination 
to search the relevant literature: “Hub genes 
AND Lung adenocarcinoma” or “Hub genes 
AND Lung neoplasia”. In total, 23 studies out of 
total 356 appeared studies were selected col-
lectively analyzing 31 GEO expression datasets 
of LUAD to identify numerous hub genes. Later, 
all the selected studies were further subjected 
to extract and combined the reported hub 
genes for getting a consolidated pool.

Protein-protein interaction (PPI) network, mod-
ule, and enrichment analysis

For interpreting molecular mechanisms behind 
LUAD, we used STRING, was used STRING data-
base [11] to construct the information of PPIs 

network with of not < 0.7. Then, the relation-
ships between hub genes were explored via 
Cytoscape software (3.8.2) by calculating net-
work properties including the distribution of 
network node degree, distribution of the short-
est path, and proximity to the center [12]. Later, 
molecular Complex Detection (MCODE) analy-
sis has helped us to find clusters of genes in 
the constructed PPI network with default cutoff 
criterions parameters such as “Degree cutoff = 
2”, “node score cutoff = 0.2”, “k-core = 2” and 
“max. depth = 100”. Finally, the real hub genes 
were chosen via degree method and their 
enrichment analysis were performed using 
DAVID tool. A P-value of < 0.05 was selected to 
show the statistical differences.

Real hub genes expression profiling via 
UALCAN

The expression analysis of real hub genes were 
carried out via UALCAN (http://ualcan.path.
uab.edu/) [13]. The UALCAN is The Cancer 
Genome Atlas (TCGA) data set analysis tool. In 
this study, for expression analysis of real hub 
genes we used TCGA LUAD dataset consisting 
of 515 cancerous and 59 normal samples. For 
statistics, UALCAN used a student t-test and 
normalized the obtained expression as tran-
script per million (TPM) reads.

Expression validation of real hub genes

The TIMER [14], GENT2 [15], GEPIA, DriverDBV3 
[16], and UALCAN [13] are TCG multi-omics 
data analysis tools. In this study, we utilized 
these databases for the expression validation 
of the real hub genes using new independent 
LUAD patients’ cohorts. 

DriverDBV3 analysis 

DriverDBV3 [16] was conducted in this to  
analyze the promoter methylation levels of  
real hub genes across LAUD samples paired 
with normal controls using Pearson correlation 
analysis. 

Prognostic potentials of real hub genes

Kaplan-Meier Plotter and GEPIA tools are wide-
ly used for prognostic potentials evaluation of 
any gene(s) of interest [17]. In the current study, 
via using these tool, we analyzed the effect of 
real hub genes expression on the Overall 
Survival (OS) of LUAD patients. A P-value < 0.05 
was chosen as statistically significant. 
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Genetic alterations in real hub genes

Via cBioPortal, we used TCGA LUAD datasets 
for analyzing genetic alterations of real hub 
genes [18]. This online resource is a hub of can-
cer omics data which includes genetic muta-
tions information, copy number variations, 
deep amplification, deep deletion, and mRNA 
expression level information. We used this 
database for conducting genetic alteration 
analysis in this study with default settings.

Tumor purity and immune cells analyses

TIMER [19] was conducted in this study to ana-
lyze the relationships between tumor purity, 
immune cells infiltration, and real hub genes 
expression across LUAD samples. A P-value < 
0.05 was chosen as statistically significant.

Constructing TF-miRNA-mRNA network

ENCORI is an openly available public platform 
developed for the identification of more than 
2.5 million TFS-miRNA-mRNA interactions [20, 
21]. All the target TFS and miRNAs of the real 
hub genes were screened in ENCORI using 
default settings. Finally, the TFS-miRNA-mRNA 
networks of real hub genes were visualized 
using Cytoscape (version 3.8.2).

Expression profiling of TFS and miRNAs

The expression profiling of real hub genes tar-
geting TFS and miRNAs were also carried out 
via UALCAN [13] in a LUAD cohort taken from 
TCGA datasets using default setting.

CancerSEA-based analysis

CancerSEA is an online resource foe exploring 
relationships among gene(s) of interest and 14 
different functional states at a single-cell level 
across several cancer types [22]. CancerSEA 
was conducted in this study to investigate rela-
tionships between real hub genes and these 
states at a single-cell level across LUAD. A 
P-value < 0.05 was chosen as statistically 
significant.

MuTarget-based analysis

MuTarget is an openly available platform that 
help the researcher to associate genetic muta-
tions with gene expression across several 
human cancer types [23]. We conducted 

MuTarget analysis in this study to identify the 
mutant genes associated with gene expression 
alteration of real hub genes in LUAD. A P-value 
< 0.05 was chosen as statistically significant.

Comparative Toxicogenomics database

Comparative Toxicogenomics database (CTD) 
[24] was conducted to draw the real hub gene-
drug interaction networks via Cytoscape, high-
lighting different potential drugs capable of 
decreasing or increasing the expression levels 
of real hub genes. In clinical application view 
point, the selected drugs will in the treatment 
of LUAD.

Results

Extraction of hub genes

In total, 23 studies were shortlisted for hub 
genes extraction. The selected studies were 
next subjected to hub genes extraction and 
finally, after normalizing overlapped genes, we 
were able to construct a get a brief pool of 145 
hub genes from 31 GEO LUAD datasets com-
prising of 1980 LUAD and 1230 normal sam-
ples (Table 1). Without normalization, the origi-
nal data can be seen in the Table S1.

A PPI network, module, and enrichment analy-
sis

STRING was conducted to get a PPI network of 
the pooled hub genes. The obtained PPI net-
work was consist of 145 nodes and 2341 
edges (Figure 1A). Then, by applying Cytosca- 
pe, the MCODE and Cytohubba applications 
has helped to identified one most significant 
module and 6 hub genes as the real hub genes 
(CDC6, PBK, AURKA, KIF2C, OIP5, and PRC1) 
based on the degree scores (Figure 1B, 1C and 
Table 2). Later, the enrichment analysis has 
revealed that real hub are involved in different 
GO and KEGG terms including Mitotic nuclear 
division etc. BP terms, Microtubule cytoskele-
ton etc. CC terms, ATP binding etc. MF terms 
(Figure 2 and Table 3), and Cell cycle etc. KEGG 
terms (Figure 2D and Table 4).

Expression analysis and cross validation of 
real hub genes expression

We initially measured real hub genes mRNA 
expression in 515 LUAD samples paired with 
59 normal controls via UALCAN. Results of the 
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analysis have shown the significant (P < 0.05) 
up-regulation of all the real hub genes (CDC6, 
PBK, AURKA, KIF2C, OIP5, and PRC1) in LUAD 
samples of various clinical variables (cancer 
stage, race, gender, age, and nodal metastasis 
status) relative to normal controls (Figures  
3 and 4). Later, TIMER, GENT2, GEPIA, and 
DriverDBV2 databases containing 515, 765, 
483, and 710 LUAD samples paired with 59, 
75, 59, and 111 normal controls, respectively 
were used to validate the mRNA expression of 
real hub genes on new independent cohorts. 

Our validation results showing significant (P < 
0.05) up-regulation of all the real hub genes 
using these addition databases were also in 
agreement with the expression analysis results 
of ULACAN (Figure 5A-C). At last, we also vali-
dated real hub genes translational expression 
in 111 LUAD tissues paired with 111 controls 
via UALCAN. In view of our results, all real hub 
genes (CDC6, PBK, AURKA, KIF2C, OIP5, and 
PRC1) were also found significantly (P < 0.05) 
up-regulated at protein level in LUAD patients 
relative to controls (Figure 5).

Table 1. List of the LUAD microarray expression datasets and the hub genes extracted selected  
studies

Dataset C/N Source of 
origin Extracted hub genes References

GSE118370 06/06 China ADCY4, S1PR1, FPR2, PPBP, NMU, PF4, GCG, 
CCNA2, CCNB1, CDC20, CDCA5, CDCA8, FEN1, 
KIF2C, KPNA2, MCM6, NUSAP1, RACGAP1, 
RRM2, SPAG5, TOP2A, TPX2, CA4, PECAM1, 
DNAJB4, AGER, GIMAP6, C10orf54, DOCK4, 
LRRK2, EPAS1, LDB2, HOXA11-AS, PHACTR2, 
MSRB3, GHR, PLSCR4, EPB41L2, NPNT, FBXO32, 
IL6, MMP9, EDN1, FOS, CDK1, CDH1, BIRC5, 
VWF, UBE2C, CDKN3, CDKN2A, CD34, AURKA, 
CCNB2, EGR1, UBE2T, PBK, MELK, TNNC1, 
TPPX2, INS, LPL, HPGDS, DGAT1, UGT1A6, 
CYP2C9, KIAA0101, BUB1B, PRC1, CEACAM5, 
NQO1, LCN2, KRT8, EPCAM, ELF3, KRT19, 
DCN, SERPING1, GNG11, CXCL12, CAV1, DCY8, 
ADRB2, CALCA, GNGT1, NPSR1, CLDN5, COL1A1, 
SPP1, UBB, RAC1, ITGB1, SRC, C3, EGFR, TIMP1, 
GAS6, P4HB, CXCR4, FPR1, LYZ, OCIAD2, ETV4, 
COL10A, PROM2, MMP11, ABCC3, BAIAP2L1, 
FABP4, STX11, FHL1, TEK, FMO2, CRYAB, GRK5, 
TMEM100, DLGAP5, KIF11, RAD51AP1, CDC6, 
OIP5, NCAPG, CENPF, KIF4A, CDC25A, CDH5, 
BDNF, SELE, KIF23, PLK1, CBFA2T3, CR2, 
SEL1L3, TM6SF1, TSPAN32, ITGA6, MAPK11, 
RASA3, TLR6, AURKB, HMGA2, ASPM, CKS1B, 
CHRDL1, SPARCL1

[155-177]
GSE68465 442/0 USA
GSE68571 96/0 USA
GSE69405 52/150 South Korea
GSE40791 94/100 USA
GSE18842 72/86 Spain
GSE74706 18/18 Germany
GSE10072 135/135 USA
GSE29013 55/0 USA
GSE13213 117/0 Japan
GSE7670 66/59 Taiwan
GSE31547 30/20 USA
GSE136043 5/5 China
GSE140797 7/7 China
GSE63459 32/33 USA
GSE85841 8/8 China
GSE116959 57/11 France
GSE75037 83/83 USA
GSE32863 60/60 USA
GSE19188 78/78 Netherlands
GSE33532 80/20 Germany
GSE85716 06/06 China
GSE119004 23/0 Canada
GSE43458 84/26 USA
GSE6044 42/05 Germany
GSE62949 56/0 USA
GSE115002 48/56 China
GSE40419 88/76 USA
GSE66727 23/0 USA
GSE86337 10/0 Australia
GSE57148 7/182 South Korea
Total = 31 Total = 1980/1230 Total = 145
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Figure 1. (A) A PPI network showing LUAD-related extracted hub genes from the selected studies. (B) A PPI network showing one significant module, (C) A PPI network 
of the hub genes identified in the significant module, and (D) Six real hub genes identified via degree method.
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Promoter methylation analysis

In this work, the levels of promoter methylation 
were assessed via DriverDBV3. In view of our 
results, all real hub genes (CDC6, PBK, AURKA, 
KIF2C, OIP5, and PRC1) were found significant-
ly (P < 0.05) hypomethylated relative to con-
trols in LUAD patients (Figure 6). 

Real hub genes expression and prognosis in 
LUAD

We next evaluated the prognostic values (OS 
duration) of real hub genes via Kaplan-Meier 
Plotter and GEPIA tool. In view of our results, 
the higher levels of CDC6, PBK, AURKA, KIF2C, 
OIP5, and PRC1 were found significantly (P < 

Table 2. List of the real hub genes identified from a PPI network of the extracted 124 LUAD related 
hub genes
Sr. No Name of the gene MCODE Node Status MCODE Score
1 CDC6 Clustered 38.90488
2 PBK Clustered 38.90488
3 AURKA Clustered 38.90488
4 KIF2C Clustered 38.90488
5 OIP5 Clustered 38.90488
6 PRC1 Clustered 38.90488

Figure 2. GO and KEGG enrichment analysis of real hub genes. (A) BF, (B) CC, (C) MF, and (D) KEGG analysis. A P-
value <0.05 was consider as significant.
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0.05) linked to the poor OS of the LUAD patients, 
hence, we speculate these six real hub genes 
as the good prognostic biomarkers for predict-
ing OS of LUAD patients (Figure 7A, 7B).

Genetic alterations information of real hub 
genes

Then, for enquiring genetic alterations in real 
hub genes, we conducted cBioPortal analysis. 
As shown in Figure 8A, PBK gene showed high-
est frequency (6%) of genomic alterations, 
while AURKA and KIF2C showed the second 
highest genomic alteration rate of 3%. Mean- 
while other genes, including OIP5, PRC1, and 
CDC6 have shown a genetic alteration frequen-
cies of 2%, 2%, and, 1.6%, respectively, in the 
analyzed LUAD samples. Furthermore, in PBK, 
and PRC1, the most frequently observed genet-
ic alterations were deep deletion and missense 
mutations (Figure 8A), while other remaining 
real hub genes were enriched in deep amplifi-
cation alterations only. In addition, we have 
also observed that most frequent mutation  
in CDC6 gene (M263I) was lied in AAA_22 
domain (Figure 8B), and in PBK and KIF2C, the 
most frequent mutations including E180Q, and 
R510L/S were present in their respective 
Pkinase, and Kinesin domains (Figure 8B), 

while no mutation was detected in AURKA. 
However, on the other hand, most frequently 
seen mutations (S107F and T370I) in OIP5 and 
PRC1 were found in Yipee-MIs18 and MAP65-
A3E1 functional domains, respectively (Figure 
8B).

Tumor purity and immune cells infiltration 
analysis of real hub genes

The correlations among CDC6, PBK, AURKA, 
KIF2C, OIP5, and PRC1 mRNA expressions and 
tumor purity, CD8+ T, and CD4+ T immune cells 
infiltration across LUAD have been analyzed via 
TIMER database. Our results have revealed  
the significant positive correlations between 
the expression of the real hub genes and tumor 
purity (Figure 9). While notable negative corre-
lations between real hub genes’ expression 
and CD4+ T and CD8+ T immune cells infiltra-
tion levels. 

TFS-miRNA-mRNA network

As shown in Figure 10, the TFS-miRNA-mRNA 
interaction network of real hub genes con-
structed via ENCORI and Cytoscape is consists 
of 10 TFS, 28 miRNAs, and 6 mRNAs. Via 
degree method, one TF (E2F1), and one miRNA 
(hsa-mir-34a-5p) were identified as top TF and 

Table 3. Details of the GO analysis of identified hub genes extracted from various GEO LUAD expres-
sion microarray datasets

GO Term GO ID Gene 
count P-value Gene name

BP
    GO:0007067 Mitotic nuclear division 6 2.29554618712754E-7 PBK, OIP5, KIF2C, CDC6, AURKA
    GO:0042787 Cell division 4 8.703225761335279E-5 OIP5, KIF2C, CDC6, AURKA
CC
    GO:0015630 Microtubule cytoskeleton 4 5.527753221351057E-4 PRC1, KIF2C, AURKA
    GO:0005634 Nucleus 5 0.0023131822778742635 PRC1, PBK, OIP5, KIF2C, CDC6, AURKA
    GO:0051233 Spindle midzone 2 0.005202617432597425 CDC6, AURKA
    GO:0005876 Spindle microtubule 2 0.012015152655811594 PRC1, AURKA
    GO:0030496 Midbody 2 0.03489913615678372 CDK1, AURKA
MF
    GO:0005524 ATP binding 4 0.006046362041106639 PBK, KIF2C, CDC6, AURKA
    GO:0005515 Protein binding 2 0.03814879524822187 PRC1, PBK, OIP5, KIF2C, CDC6, AURKA

Table 4. Details of the KEGG pathway analysis of identified hub genes extracted from various GEO 
LUAD expression microarray datasets
Pathway ID Pathway Name Gene count P-value Gene name
hsa04110 Cell cycle 2 1.616848175824832E-5 CDC6, AURKA
hsa04114 Oocyte meiosis 2 0.0018887038532489457 CDC6, AURKA



LUAD Biomarkers

734	 Am J Cancer Res 2023;13(3):727-757

Figure 3. mRNA expression analysis results of real hub genes in LUAD and normal controls via UALCAN. (A) CDC6, (B) PBK, (C) AURKA, (D), KIF2C, (E) OIP5, and (F) 
PRC1. 
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Figure 4. mRNA and protein expression level validations of the real hub genes in LUAD patients paired with controls 
via different online expression databases. (A) mRNA expression level validation of real hub genes via TIMER, (B) 
mRNA expression level validation of real hub genes via GENT2, (C) mRNA expression level validation of real hub 
genes via GEPIA, (D) mRNA expression level validation of real hub genes via DriverDBV3, and (E) Protein expression 
level validation of real hub genes via UALCAN. 

miRNA targeting all 6 real hub genes. Previously, 
has-mir-34a-5p in axis with LEF1 gene found to 
be involved in the pathogenesis of CESC [25], 
while, the role of has-mir-34a-5p miRNA is 
unclear in LUAD. Moreover, a previous study 
also revealed that E2F1 promotes EMT by regu-
lating ZEB2 as a transcription factor in lung 
cancer [26]. The TFS-miRNA-mRNA co-regula-
tory network here in the current research has 
highlighted that E2F1 and hsa-mir-34a-5p can 
also act as the potential inducer of LUAD by 

dysregulating the identified real hub genes as 
an E2F1-hsa-mir-124-3p/CDC6/PBK/AURKA/
KIF2C/OIP5/PRC1 axis. To further confirm the 
participation of identified TF and miRNA in 
LUAD development via dysregulating the real 
hub genes, we further checked the expression 
of E2F1 and has-mir-34a-5p in LUAD patients 
via UALCAN. As a result, a significant up-regula-
tion of E2F1 and has-mir-34a-5p was also 
observed in LUAD samples than normal sam-
ples (Figure 10). 
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Figure 5. Relative mRNA expression analysis results of real hub genes in LUAD patients stratified by different clinicopathological features. (A) Cancer stage (B) Pa-
tient’s race, (C) Patient’s gender, (D) Patient’s age, and (E) Nodal metastasis status. 
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Figure 6. Correlation of promoter methylation with mRNA expression of real hub genes in LUAD paired with controls. (A) CDC6, (B) PBK, (C) AURKA, (D), KIF2C, (E) 
OIP5, and (F) PRC1. 



LUAD Biomarkers

740	 Am J Cancer Res 2023;13(3):727-757

Figure 7. Association between OS and real hub genes expression in LUAD patients. (A) via KM plotter and (B) via GEPIA tool.  
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Figure 8. Frequency and distribution 
of genomic alterations associated 
with real hub genes in LUAD. ��������(A) Fre-
quency of genomic alteration, (B) 
distribution of mutations in protein 
domains of real hub genes, and (C) 
types of CNVs in LUAD samples.



LUAD Biomarkers

742	 Am J Cancer Res 2023;13(3):727-757

Figure 9. Correlation analysis of real hub genes expression with tumor purity, CD4+ T, and CD8+ T cells in LUAD. (A) CDC6, (B) PBK, (C) AURKA, (D) KIF2C, (E) OIP5, 
and (F) PRC1. 



LUAD Biomarkers

743	 Am J Cancer Res 2023;13(3):727-757

Figure 10. TF-miRNA-mRNA network analysis of real hub genes in LUAD. (A) miRNAs targeting real hub genes, (B) has-mir-34a-5p miRNA targeting real hub genes, 
(C) relative expression of has-mir-34a-5p in LUAD and normal controls, (D) TFS targeting real hub genes, (E) E2F1 targeting real hub genes, and (F) relative expres-
sion analysis of E2F1 in LUAD samples paired with controls. The pink and grey nodes represent the miRNA, red nodes represent the hub gene, while green node 
represent the TFS.
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Single-cell functional analysis

CDC6, PBK, AURKA, KIF2C, OIP5, and PRC1 
genes further involvement in LUAD at single cell 
level was explored via CancerSEA database. As 
a result, the CDC6, PBK, AURKA, KIF2C, OIP5, 
and PRC1 were revealed to be linked (positively 
or negatively) with fourteen different states at 
single cell level in LUAD (Figure 11A). However, 
real hub genes expression was notably nega-
tively correlated with “DNA repair state, while 
positively correlated with Cell cycle, DNA 
Damage, Proliferation, Stemness Invasion, 
EMT, and Apoptosis states” (Figure 11B).

Real hub genes and their correlated different 
other mutant genes

MuTarget database with default settings “(FC > 
1.4 and P < 0.05)” has helped us in this study 
to select us top 3 mutant genes for each real 
hub gene. As shown in Figure 12, top 3 mutant 
genes which positively correlated with the 
expression of each real hub gene are TP53, 
TTN, and OR4C15 with CDC6, TP53, KEAP1, 
and COL6A6 with PBK, TP53, CSMD3, and 
SORCS1 with AURKA, TP53, CSMD3, and XIR2P 
with KIF2C, TP53, SMARCA4, and SCN1A with 
OIP5, and TP53, TTN, and HERC2 with PRC1.

Drug-gene interaction analysis

Through CTD database, several drugs associ-
ated with 6 real hub genes were selected, and 
the relationships between them were visual-
ized via Cytoscape (Figure 13). Finally, the 
drawn drug-gene interaction network reveled 
that all real hub genes including CDC6, PBK, 
AURKA, KIF2C, OIP5, and PRC1 can potentially 
be regulated by several chemotherapeutic 
drugs. For instance, aflatoxin B1, and estradiol 
can elevate CDC6 expression while bisphenol A 
and cannabidiol can reduce CDC20 expression 
level (Figure 13).

Discussion

Previously, many studies have been carried out 
so far to explore molecular biomarkers and 
mechanisms behind LUAD for its accurate 
detection and treatment, the incidence of LUAD 
and mortality rate of LUAD patients is still 
increasing worldwide due to the heterogenetic-
specific nature of the available biomarkers. In 
this study, we explored 6 real hub genes includ-

ing CDC6, PBK, AURKA, KIF2C, OIP5, and PRC1 
that can overcome the heterogenetic-specific 
barrier and can apply as biomarkers in LUAD 
patients of different clinical variables. Moreover, 
GO and KEGG enrichment analysis revealed 
that identified real hub genes were significantly 
involved in diverse GO and KEGG terms (Figure 
2).

CDC6 gene is present on chromosome 17 and 
encodes the CDC6 protein, which is a member 
of AAA+ ATPases (ATPases associated with cel-
lular activities) family and play an important 
role in the initiation of DNA replication [27]. 
CDC6 usually found in the nucleus of cell, but is 
translocated to the cytoplasm during S-phase 
after its phosphorylation by CDKs [28]. When 
cell division begins, CDC6 mediates the assem-
bly of the pre-replicative complex and main-
tains it for the loading of minichromosomal 
maintenance (MCM) proteins on DNA [29]. 
After the formation of MCM-chromatin com-
plex, CDC6 is no longer needed and undergoes 
proteasome degradation [30]. Thus, the ab- 
normal expression of CDC6 affects the replica-
tion mechanism [31]. Previously, an aberrant 
expression of CDC6 is significantly associated 
with breast cancer [32], colorectal cancer pro-
gression [33], invasiveness of cervical cancer 
[34], prostate cancer metastasis [35, 36], pul-
monary cancer [37], inhibition of apoptotic cas-
pases 3 and 9 in pancreatic cancer [38], hepa-
tocellular carcinoma [39, 40], proliferation of 
esophageal squamous cell carcinoma [41], 
renal cell carcinoma [42], gastric cancer [43], 
bladder cancer [44], and osteosarcoma [45]. 

PBK gene is found on chromosome 8 and 
encodes a protein PBK of 322 amino acids. The 
encoded protein is a member of mitogen-acti-
vated serine/threonine-protein kinase (MAPKK) 
family [46, 47] and is hard to detect in nor- 
mal somatic tissues but is found frequently in 
cancerous tissues promoting cell survival, pro-
liferation, and metastasis [48, 49]. Abnormal 
expression of PBK is found to be associated 
with different cancers including thyroid carci-
noma [50], prostate cancer progression [51, 
52], ovarian cancer [53, 54], cervical cancer  
by ERK/c-Myc signaling [55], pathogenesis of 
breast cancer by EMT up-regulation [56] and 
invasion by TGFβ1-induced NFkB-dependent 
Snail/Slug [57], glioblastoma [58, 59], oxalipla-
tin resistance in liver cancer [60, 61], pancre-
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Figure 11. Real hub genes and different divers states association in LUAD. (A) Correlation analysis of real hub genes expression with 14 different states in LUAD, 
and (B) Correlation analysis of real hub genes expression only significant states in LUAD. 



LUAD Biomarkers

746	 Am J Cancer Res 2023;13(3):727-757

Figure 12. CDC6, PBK, AURKA, KIF2C, OIP5, and PRC1 genes positively correlated mutant genes in LUAD from MuTarget. (A) with CDC6, (B) with PBK, (C) with 
AURKA, (D) with KIF2C, (E) with OIP5, and (F) with PRC1.
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Figure 13. Screening of real hub genes-associated chemotherapeutic drugs. (A-F) indicates chemotherapeutic drugs that can decrease or increase the expression 
of the real hub genes. (A) CDC6-associated chemotherapeutic drugs, (B) PBK-associated chemotherapeutic drugs, (C) AURKA-associated chemotherapeutic drugs, 
(D) KIF2C-associated chemotherapeutic drugs, (E) OIP5-associated chemotherapeutic drugs, and (F) PRC1-associated chemotherapeutic drugs. Red arrows: drugs 
that increase the real hub genes expression, Green arrows: drug that decrease the real hub genes expression while the numbers of arrows represent the supported 
numbers of studies in literature.
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atic cancer [62], NSCLC proliferation by pacli-
taxel resistance and inhibition of autophagic 
cell death [63, 64], T‑cell leukemia or lympho-
ma [65], colorectal cancer [66, 67], oral squa-
mous cell carcinoma [68], nasopharyngeal car-
cinoma [69], human endometrial cancer [70], 
urinary bladder transitional cell cancer [62], 
multiple myeloma [71], esophageal squamous 
cell carcinoma [72, 73], and gastric cancer [74, 
75]. 

AURKA aids in controlling the cell cycle [76]. 
Various types of cancers have been linked with 
AURKA overexpression, such as prostate can-
cer [77], breast cancer [78] colon tumorigene-
sis [79], gastric cancer [80], head and neck 
cancer [81], liver metastasis [82], hepatocar-
cinogenesis [83], bladder cancer [84], NSCLC 
progression [85], ovarian cells [86], and esoph-
ageal cancer [87]. After that, many subsequent 
studies have been carried out to evaluate the 
AURKA expression level in LUAD, still, its role is 
poorly understood.

KIF2C gene encodes for a protein of 792 amino 
acids which belongs to a kinesin superfamily 
proteins (KIFs). This protein mainly found in the 
cell bodies and dendrites of the adult neurons 
in both the peripheral and central nervous sys-
tems [88]. KIF2C gene is consider very crucial 
for mitotic spindle dynamics, chromosomal 
segregation during anaphase, and separation 
of sister chromatids [89]. Dysregulation of 
KIF2C protein is reported to results in chromo-
some instability [90] and is also found to be 
significantly associated with bladder cancer 
invasion [91], Breast cancer [92, 93], media-
tion of Wnt/β-catenin/mTORC1 signaling [94, 
95] and MEK/ERK signaling in hepatocellular 
carcinoma [96], thyroid cancer metastasis via 
TGF-β1/Smad pathway [97], non-small cell lung 
cancer (NSCLC) [98, 99], colorectal cancer 
[100, 101], gastric cancer [102], endometrial 
carcinoma [103], regulation of AKT/mTOR path-
ways in nasopharyngeal carcinoma [104], tes-
ticular carcinoma [105], esophageal squamous 
cell carcinoma [72], platinum-resistant in ovar-
ian cancer [106], and regulation of Wnt/β-
catenin pathway in cervical cancer [107]. 

OIP5 gene is located on chromosome 15 and 
encodes for a 25 kDa protein belonging to can-
cer-testis antigens (CTA) family [108]. The mem-
bers of this family are crucial for the structure 

and function of kinetochore and centromeric 
region [109]. In the medical literature, an abnor-
mal expression of OIP5 was linked with prolif-
eration of colorectal and gastric cancer cells 
[110, 111], clear cell and peripheral renal cell 
carcinoma (CCRCC, PRCC) progression [112, 
113], acute myeloid leukemia [114], prolifera-
tion of lung and esophageal cancers by RAF1 
interaction [115], proliferation of thyroid cancer 
cell by Wnt/β-catenin signaling [116], pancre-
atic cancer via activation of AGR2/AKT/ERK 
[117] and miR-186-5p/NGFR signaling pathway 
[118], breast cancer by regulating GLO1 expres-
sion [119] and miR-139-5p/Notch1 pathway 
[120], NSCLC metastasis by mTOR signaling 
pathway [121] and miR‑140‑5p/HDAC7/VEGFA 
signaling [122], cervical cancer by regulating 
ROCK1 expression [123], ovarian cancer by 
mediating miR‑128‑3p/CCNG1 pathway [124, 
125], progression of osteosarcoma via miR-
137-3p/PTN axis [126], multiple myeloma pro-
gression [127], prostate cancer progression via 
miR-128-3p/SLC7A11 signaling [128], gallblad-
der cancer [129], head and neck squamous cell 
carcinoma [130], endometrial cancer by PTEN/
AKT pathway [131], Warburg effect in cervical 
cancer by miR-124-5p/IDH2/HIF-1α signaling 
[132], proliferation of bladder cancer via miR-
217/MTDH pathway [133, 134], NPC progres-
sion by modulating JAK2/STAT3 [135], and 
metastasis of glioblastoma [136]. 

PRC1 gene is mapped on chromosome 15 and 
encodes for PRC1 protein of 620 amino acids 
[137]. This gene highly express at early mitosis 
during S-G2/M phases and reduce when  
the cell enters into the G1 phase [137]. 
Expression variations in PRC1 is earlier associ-
ated with different human cancers including 
lung adenocarcinoma [138, 139], gastric carci-
noma [140], ovarian cancer [141], cholangio-
carcinoma [142], liver carcinoma [143, 144], 
prostate cancer [145], breast cancer [93, 146], 
bladder cancer [147], colon cancer [148], 
osteosarcoma progression [149], human endo-
metrial cancer [150], and nasopharyngeal car-
cinoma [151]. In this study, we found its signifi-
cant (P < 0.05) up-regulation in LUAD patients 
of different clinical characteristics as compared 
to the normal controls. Taken together the 
expression profiling of the real hub genes 
including CDC6, PBK, AURKA, KIF2C, OIP5, and 
PRC1, we have suggested that up-regulation of 
these six genes may serve as a potential bio-
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marker in LUAD patients regardless of different 
clinical characteristics relative to controls.

Moreover, the survival analysis further suggest-
ed the application of identified hub genes as 
the potential prognostic biomarkers in LUAD 
patients. Next, we observed that real hub genes 
genetically altered in a small number of LUAD 
samples and their promoter regions were 
hypomethylation.

Next, we observed that real hub genes geneti-
cally altered in a small number of LUAD sam-
ples. Further analysis also revealed that muta-
tions in the real hub genes (CDC6, PBK, KIF2C, 
OIP5, and PRC1) can change amino acids at 
distinct positions in the encoded proteins. The 
correlation analysis among real hub genes 
expression and promoter methylation levels 
has shown the expected significant (P < 0.05) 
negative correlations in LUAD. That is why, we 
speculated that promoter hypomethylation 
might be a key factor involved in the up-regula-
tion of real hub genes across LUAD samples.

In the current study, we observed that two 
immune cells infiltration levels in LUAD could 
induce differential expression of the CDC6, 
PBK, AURKA, KIF2C, OIP5, and PRC1 genes. Via 
TIMER, we found that real hub genes expres-
sion are significantly correlated with CD4+ T, 
CD8+ T immune cells, and tumor purity in LUAD. 
Some studies have earlier investigated the 
tumor-associated roles of T cells across LUAD. 
These studies explored that activated CD8+ T 
cells in LUAD often elicited type I immune 
responses, which indicate a favorable progno-
sis [152, 153], however, on the other hand, 
Th2, and Th17 cells were found to be linked 
with tumor progression and unfavorable  
prognosis [154]. The intriguing relationships 
between tumour purity, CD4+ T, CD8+ T immune 
cells, and real hub gene expression levels found 
in this study may inspire fresh approaches to 
the treatment of LUAD. 

We further elucidated that E2F1 TF and hsa-
mir-124-3p miRNA target all six real hub genes 
(CDC6, PBK, AURKA, KIF2C, OIP5, and PRC1). 
To our knowledge, this study is the first to 
describe the role of E2F1 and hsa-mir-124-3p 
in tumorigenesis when combined with CDC6, 
PBK, AURKA, KIF2C, OIP5, and PRC1 in LUAD. 
This important knowledge can be applied to the 
treatment of LUAD to control how real hub 
genes are expressed.

It was also noticed in the current study that real 
hub genes’ expressions were positively associ-
ated with “Cell cycle, DNA Damage, Proliferation, 
Stemness Invasion, EMT, and Apoptosis” in 
LUAD. The function of the identified hub genes 
in LUAD development is being collectively inves-
tigated for the first time in this study.

To find mutant genes that change the expres-
sion of real hub genes, we expanded the net-
work of real hub genes in this study using the 
muTarget platform. TP53, TTN, and OR4C15 
mutant genes were correlated with CDC6, 
TP53, KEAP1, and COL6A6 mutant genes were 
correlated with PBK, TP53, CSMD3, and 
SORCS1 mutant genes were correlated with 
AURKA, TP53, CSMD3, and XIR2P mutant 
genes were correlated with KIF2C, TP53, 
SMARCA4, and SCN1A mutant genes were cor-
related with OIP5, and TP53, TTN, and HERC2 
mutant genes were correlated with PRC1. This 
knowledge could be useful in developing multi-
gene and individualized therapeutic strategies 
for LUAD patients. 

Conclusion

Through integrated bioinformatics approach, 
our study has revealed the 6 real hub genes 
(hub genes of hub genes) which might play 
pathogenic roles in LUAD development and can 
also use as a novel diagnostic and prognostic 
biomarker for the LUAD patients regardless of 
heterogeneity barriers. However, more in-depth 
experimental studies are needed before clini-
cal applications.
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Table S1. Row list of the LUAD-associated hub genes extracted from the previous studies

Dataset Name of hub genes No. hub 
genes Reference

GSE118370 ADCY4, S1PR1, FPR2, PPBP, NMU, PF4, and GCG 07 [155]
GSE68465, GSE68571, 
GSE69405

CCNA2, CCNB1, CDC20, CDCA5, CDCA8, FEN1, KIF2C, KPNA2, 
MCM6, NUSAP1, RACGAP1, RRM2, SPAG5, TOP2A, and TPX2

15 [156]

GSE40791 CA4, PECAM1, DNAJB4, AGER, GIMAP6, C10orf54, and DOCK4 7 [157]
GSE18842 LRRK2, PECAM1, EPAS1, LDB2, and HOXA11-AS 5 [158]
GSE43458, GSE32863, 
GSE74706

PHACTR2, MSRB3, GHR, PLSCR4, EPB41L2, NPNT, and 
FBXO32

7 [159]

GSE10072 IL6, MMP9, EDN1, FOS, CDK1, CDH1, BIRC5, VWF, UBE2C, 
CDKN3, CDKN2A, CD34, AURKA, CCNB2, and EGR1

15 [160]

GSE33532, GSE29013 UBE2T, PBK, MELK, TNNC1, CCNB1, RRM2, CDK1, TOP2A, 
TPPX2, and UBE2C

10 [161]

GSE13213 INS, LPL, HPGDS, DGAT1, UGT1A6, and CYP2C9 6 [162]
GSE7670, GSE10072, 
GSE31547

UBE2C, TOP2A, RRM2, CDC20, CCNB2, KIAA0101, BUB1B, 
TPX2, PRC1, and CDK1

10 [163]

GSE7670, GSE10072, 
GSE32863

CEACAM5, NQO1, LCN2, CDH1, KRT8, EPCAM, ELF3, KRT19, 
DCN, SERPING1, GNG11, CXCL12 and CAV1

13 [164]

GSE118370, GSE136043, 
GSE140797

DCY8, ADRB2, CALCA, GCG, GNGT1, and NPSR1 06 [165]

GSE32863, GSE7670, 
GSE40791, GSE63459, 
GSE75037, GSE85841, 
GSE116959, GSE118370

CDH5, PECAM1, VWF, CLDN5, COL1A1, MMP9, SPP1, and IL6 08 [166]

GSE32863, GSE75037 UBB, RAC1, ITGB1, SRC, C3, IL6, CDC20, EGFR, UBE2C, 
TIMP1, GNG11, CXCL12, GAS6, P4HB, CXCR4, FPR1, ADRB2, 
LYZ, and MMP9

19 [167]

GSE118370, GSE85841, 
GSE43458, GSE32863

SPP1, OCIAD2, ETV4, TOP2A, COL10A, PROM2, MMP11, 
UBE2T, ABCC3, BAIAP2L1, FABP4, STX11, CAV1, FHL1, TEK, 
AGER, FMO2, CRYAB, GRK5, and TMEM100

20 [168]

GSE19188, GSE33532 DLGAP5, KIF11, RAD51AP1, CCNB1, AURKA, CDC6, OIP5, and 
NCAPG

08 [169]

GSE85716, GSE32863, 
GSE116959

BIRC5, DLGAP5, CENPF, KIF4A, TOP2A, AURKA, and CCNA2 07 [170]

GSE119004 DK1, CCNB2, and CDC25A 03 [171]
GSE43458 IL6, VWF, CDH5, PECAM1, EDN1, BDNF, CAV1, SPP1, TEK, and 

SELE
10 [172]

GSE116959, GSE68571, 
GSE40791

VWF, SPP1, PECAM1, TOP2A, CDK1, UBE2C, and KIF23 07 [173]

GSE6044, GSE118370 CDK1 and PLK1 02 [174]
GSE43458, GSE62949,
GSE68465, GSE115002, 
GSE116959, GSE118370

CBFA2T3, CR2, SEL1L3, TM6SF1, TSPAN32, ITGA6, MAPK11, 
RASA3, and TLR6

09 [175]

GSE40419, GSE66727, 
GSE86337, GSE57148

TPX2, CENPF, BUB1, PLK1, KIF2C, AURKB, CDKN3, BUB1B, 
HMGA2, CDK1, ASPM, and CKS1B

12 [176]

GSE75037 CHRDL1 and SPARCL1 02 [177]


