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Nasogastric tube (NGT) feeding is an essential interven-
tion that delivers enteral nutrition and medications when 

the oral route is insufficient or unsafe. The tube is inserted 
through the nostril, along the nasopharynx, through the 
esophagus, and into the stomach, ideally 10 cm below the 
gastroesophageal junction. More than 1 million and 800 000 
NGTs per year are inserted in the United States and in the 
National Health Service population, respectively (1,2).

The rate of complications of bedside NGT insertions 
is 2%–36% (3,4), with inadvertent placement in the re-
spiratory tract as the primary risk. pH testing of gastric 
aspirate is the first-line method to confirm NGT place-
ment, but an aspirate may not always be immediately 
available in as many as 51.4% of patients because of 
factors such as adhesion of gastric mucosa to the tip of 
the NGT (5). Furthermore, gastric pH can be altered by 
commonly used medications, including proton-pump 
inhibitors and histamine-2 receptor blockers (6).

Chest radiography remains the reference standard 
method for confirmation of NGT placement (7). However, 

image interpretation may be challenging, especially for ju-
nior physicians, with misinterpretation of bronchial NGTs 
on chest radiographs linked to missed pneumothoraxes, 
bronchoaspiration, and death (1). Furthermore, because of 
increasing radiology backlog and a 33% rate of short staff-
ing among the radiologist workforce (8), expert reporting 
is not always available in fast-paced environments, such as 
the emergency department; thus, imaging interpretation is 
often left to the requesting physician.

Deep artificial neural networks have been applied ex-
tensively in radiograph analysis (9–12). They present at-
tractive clinical decision support tools, contributing to 
improved diagnostic accuracies among emergency med-
icine clinicians (13) and radiologists (12). Despite their 
general use, artificial neural network performance in 
dynamic real-world systems can be disrupted because of 
concept drift, caused by extrinsic factors such as changes 
in imaging workflows, instrument calibration, or soft-
ware updates (14). Furthermore, application of artificial 
neural networks to detection of NGT malposition has 
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Purpose:  To develop and validate a deep learning model for detection of nasogastric tube (NGT) malposition on chest radiographs and 
assess model impact as a clinical decision support tool for junior physicians to help determine whether feeding can be safely performed 
in patients (feed/do not feed).

Materials and Methods:  A neural network ensemble was pretrained on 1 132 142 retrospectively collected (June 2007–August 2019) fron-
tal chest radiographs and further fine-tuned on 7081 chest radiographs labeled by three radiologists. Clinical relevance was assessed 
on an independent set of 335 images. Five junior emergency medicine physicians assessed chest radiographs and made feed/do not 
feed decisions without and with artificial intelligence (AI)-generated NGT malposition probabilities placed above chest radiographs. 
Decisions from the radiologists served as ground truths. Model performance was evaluated using receiver operating characteristic analy-
sis. Agreement between junior physician and radiologist decision was determined using the Cohen κ coefficient.

Results:  In the testing set, the ensemble achieved area under the receiver operating characteristic curve values of 0.82 (95% CI: 0.78, 
0.86), 0.77 (95% CI: 0.71, 0.83), and 0.98 (95% CI: 0.96, 1.00) for satisfactory, malpositioned, and bronchial positions, respectively. 
In the clinical evaluation set, mean interreader agreement for feed/do not feed decisions among junior physicians was 0.65 ± 0.03 (SD) 
and 0.77 ± 0.13 without and with AI support, respectively. Mean agreement between junior physicians and radiologists was 0.53 ± 
0.05 (unaided) and 0.65 ± 0.09 (AI-aided).

Conclusion:  A simple classifier for NGT malposition may help junior physicians determine the safety of feeding in patients with NGTs.
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Data 
All chest radiographs (Fig 1) (n = 1 146 209) were obtained 
between June 2007 and August 2019 across 14 acute sites in 
NHS Greater Glasgow and Clyde. Images were produced in 
a Digital Imaging and Communications in Medicine (DI-
COM) format by 11 different radiography systems, including 
those used for portable studies. Image resolution ranged from 
253 × 902 to 4280 × 3520 pixels, with each pixel represented in 
gray scale with 16-bit precision. Identifiable patient data were 
removed from DICOM files and corresponding radiology re-
ports using Named Entity Recognition algorithms within the 
Canon Safe Haven Artificial Intelligence (AI) Platform. This 
platform is a trusted research environment constructed spe-
cifically for machine learning within the health board network 
and deployed in National Health Service Greater Glasgow and 
Clyde through the Industrial Centre for AI Research in Digital 
Diagnostics, or iCAIRD.

Before analysis, DICOM images underwent stringent quality 
control procedures (Fig 1). First, images with width and height 
less than 1024 pixels were excluded from the study. Second, DI-
COM Body Part Examined (0018, 0015) and View Position 
(0018, 5101) attributes were filtered by “chest” and anteropos-
terior (“AP”) or posteroanterior (“PA”), respectively. Pediatric 
(patients < 16 years) chest radiographs were excluded from this 
study. Next, imaging studies explicitly requesting radiology re-
view of NGT position confirmation (n = 33 730) were further 
filtered using regular expression matching any of the follow-
ing keywords: “nasogastric,” “tube,” “placement,” “insertion,” 
and “bronchus”; 13 758 images were retained as candidates for 
manual annotation. All chest radiographs containing the key-
word “bronchus” in the linked radiology report (n = 887) were 
manually reviewed to confirm a bronchial placement. Remain-
ing chest radiographs were manually annotated in chronologic 
order based on their StudyDate DICOM tag (0008, 0020).

Overall, 4100 correctly placed NGTs, 2500 malpositioned 
NGTs, and 481 chest radiographs with bronchial NGT insertions 
were used in model training and testing. An additional set of 335 
chest radiographs that contained correctly placed (n = 196), mal-
positioned (n = 114), and bronchial (n = 25) NGTs was identified 
from the remaining unlabeled images, composing the clinical eval-
uation set (Fig 1). Ground truth frequencies in the clinical evalu-
ation set matched those in the training set. Remaining DICOM 
images were used in neural network pretraining.

Ground Truths and Data Partitioning
All images were labeled by three board-certified radiologists (R.G., 
S.P., and M.H., who were 8 months to 5 years after fellowship of 
the Royal College of Radiologists Examinations; average experi-
ence of 3.2 years). A total of 7081 images used in model training 
and validation were labeled as “satisfactory position” (the tip of the 
tube is clearly visible in the stomach, at least 10 cm below the gas-
troesophageal junction, and is safe for feeding), “malpositioned” 
(not in the stomach and not in the lungs, trachea, or bronchus), or 
“bronchial insertion” (the tube has entered the trachea and right 
or left main bronchus). Three hundred thirty-five images used for 
clinical model evaluation were labeled by the three radiologists 

been limited to detection of bronchial placements (15) and 
NGT segmentation (16). To our knowledge, a formal assess-
ment of an artificial neural network model as a clinical deci-
sion support system to determine safety of feeding in patients 
with NGTs has not yet been undertaken.

This study had the following aims: (a) to develop a clas-
sification model for NGT malposition detection on chest 
radiographs, (b) to define a simple data-driven approach to 
assess model sensitivity to concept drift detection, and (c) 
to test the hypothesis that artificial intelligence (AI)-assisted 
NGT interpretation yields improved agreement (compared 
with  unassisted assessment) between junior emergency de-
partment physicians and board-certified radiologists with 
decisions regarding safety of NGT feeding in patients (feed/
do not feed).

Materials and Methods
This retrospective study was funded, in part, by Bering Limited 
in the form of salaries to three authors (I.D., R.D., and B.S.). 
Authors who were not employees of Bering Limited had con-
trol of inclusion of any data and information that might pres-
ent a conflict of interest for those authors who are employees of 
or consultants for that industry.

Delegated research ethics approval for this study (reference: 
104690/WP6/S1) was granted by the Local Privacy and Advi-
sory Committee at National Health Service Greater Glasgow 
and Clyde. Cohorts and de-identified linked data were prepared 
by the West of Scotland Safe Haven at National Health Service 
Greater Glasgow and Clyde. In Scotland, patient consent is not 
required when routinely collected patient data are used for re-
search purposes through an approved Safe Haven (17). For that 
reason, informed consent was not required and was not sought. 
All research was performed in accordance with relevant guide-
lines and/or regulations.

Abbreviations
AI = artificial intelligence, AUC = area under the receiver operating 
characteristic curve, DICOM = Digital Imaging and Communica-
tions in Medicine, NGT = nasogastric tube

Summary
An artificial intelligence tool for detection of nasogastric tube mal-
position on frontal chest radiographs helped junior physicians make 
feeding decisions for patients.

Key Points
	■ The nasogastric tube malposition detection tool achieved an area 

under the receiver operating characteristic curve of 0.90 (95% CI: 
0.88, 0.93) compared with a consensus of three radiologists.

	■ Mean agreement (Cohen κ) between five junior physicians and 
three radiologists regarding feeding decisions improved with artifi-
cial intelligence (AI) support (unaided vs AI-aided, 0.53 ± 0.05 vs 
0.65 ± 0.09, respectively).

Keywords
Neural Networks, Feature Detection, Supervised Learning, Machine 
Learning
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and a dropout layer. A softmax activation function was applied to 
the final dense layer. Model ensemble output probabilities were 
calculated by averaging probabilities of each constituent model.

The number of neurons in the penultimate dense layer and 
the dropout rate were tunable hyperparameters optimized dur-
ing training using the Hyperband algorithm (21), with the best 
set of parameters corresponding to the lowest categorical cross-
entropy loss on the validation set. The number of neurons was 
selected from the range of [32, 512], and the dropout rate took 
values from the range [0, 0.2].

Models were trained in two phases. In the first phase (pre-
training), networks were initialized with ImageNet weights 
(22) and trained to differentiate normal and abnormal chest 
radiographs using transformer-generated ground truths from 
1 132 142 DICOM images and linked radiology reports (Fig 1). 
In the second phase (classification), models were initialized with 
the pretrained weights and further fine-tuned on manually an-
notated NGT DICOM images.

Training was performed with 32 images per batch using an 
Adam optimizer with a learning rate of 1 × 10−3 while minimizing 

as “feed” (the tip of the tube is clearly visible in the stomach, at 
least 10 cm below the gastroesophageal junction) or “do not feed” 
(position is unclear or malpositioned, or the tube has entered the 
bronchial tree). Consensus radiologist labels were generated us-
ing majority voting. Images for neural network pretraining were 
labeled as “normal” or “abnormal” (defined as the presence of one 
or more radiologic signs; Table S1) by processing linked free-text 
radiology reports with a custom transformer neural network (Fig 
S1) (11,18).

Images were randomized into stratified training (90%), vali-
dation (5%), and testing (5%) sets with preserved frequencies of 
ground truth labels, sex, and view positions. To avoid data leakage, 
we ensured that patient identifiers did not overlap between splits.

Model Training
Classification ensemble constituents used a modified InceptionV3 
architecture (19). Input layers were adjusted to accept 764 × 
764-pixel and 1024 × 1024-pixel resolution DICOM files. The 
classification head consisted of a global average pooling layer, fol-
lowed by a dense layer with rectified linear unit (20) activation 

Figure 1:  Flowchart shows the dataset selection process. Age and resolution filtering was applied to 1 146 209 frontal chest radiographs 
(CXRs). Of these, 1 132 142 images were selected for neural network pretraining, and 33 730 images were manually retained for training nasogas-
tric tube positioning models. Nasogastric tube models were trained and tested on 7081 manually labeled chest radiographs (model training and 
testing set), and model efficacy as a feed/do not feed decision support tool was assessed on a separate set of 335 chest radiographs labeled by 
three radiologists and five junior physicians (clinical evaluation set).

http://radiology-ai.rsna.org
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performance was assessed using area under the receiver oper-
ating characteristic curve (AUC), overall accuracy, sensitivity, 
specificity, and positive predictive value. For AUC measures, 
95% CIs were calculated empirically using 2000 bootstrap 
samples. CIs for sensitivity, specificity, and accuracy are exact 
Clopper-Pearson CIs. Interobserver agreement was measured 
using Cohen κ. Differences in mean κ values between radi-
ologists and junior physicians with and without AI support 
were assessed using the two-tailed Student t test. Patient demo-
graphic characteristics, image characteristics, and data sources 
of the NGT positioning model were compared across the train-
ing and validation, internal testing, and clinical evaluation sets 
using analysis of variance for continuous variables and χ2 for 
categorical variables. P values less than .05 were considered to 
indicate a statistically significant difference. All statistical tests 
were performed using the SciPy module (version 1.7.3) for Py-
thon (version 3.9.14).

Results

Patient Characteristics
Patient age and sex distributions were similar between training, 
testing, and clinical evaluation sets, with a mean age range of 
66.3–67.4 years ± 14.9–18.9 (SD) and a male-to-female ratio 
of 1.4–1.5:1 (Table 1).

Detection of NGT Malposition
The low-resolution (764 × 764 pixels) and high-resolution (1024 
× 1024 pixels) models of our ensemble trained for 16 and 19 
epochs, respectively, before reaching early stopping criteria. Di-
mensionality reduction of the global average pooling layers and 

the categorical cross-entropy loss. Input images were resized to 
764 × 764 or 1024 × 1024 pixels using bilinear interpolation 
without preserving the aspect ratio. During training, images 
were subject to random augmentations, which included bright-
ness adjustments, angular rotation, and left-to-right flipping. 
Training was terminated early if validation loss did not improve 
after 10 consecutive epochs.

Details regarding the methods used for detection of captured 
features and concept drift detection are in Appendix S1.

Clinical Study Design
Model use as a clinical decision-support tool was assessed on 
additional 335 images. This was a three-phase study. In phase 
0 (ground truth), three radiologists, described above, reviewed 
all chest radiographs, making a feed/do not feed decision us-
ing their prior experience viewing NGT placement. In phase 1 
(baseline), five junior emergency department physicians (each 
with 2–5 years of clinical experience; average, 3.5 years) assessed 
NGT positions and made a feed/do not feed decision based on 
chest radiograph view only. In phase 2, images were random-
ized, and AI-generated NGT position probabilities (satisfactory, 
malpositioned, and bronchial) were positioned above the chest 
radiograph. Junior physicians were asked again to make a feed/
do not feed decision while considering model outputs and their 
own clinical judgment. There was a 1-month delay between 
phases 1 and 2. All images were reviewed using software (Label-
Studio version 1.4.1, Heartex; https://labelstud.io).

Statistical Analysis
Saliency maps were generated using gradient-weighted class ac-
tivation mapping (23) of the final convolutional layer. Model 

Table 1: Patient Demographic Characteristics, Image Characteristics, and Data Sources of Nasogastric Tube Positioning 
Model

Variable Training and Validation Dataset Internal Testing Set Clinical Evaluation Set P Value

Total image count (n) 6726 355 335
Label .98*
  Satisfactory position 3894 206 196
  Malpositioned 2375 125 114
  Bronchial position 457 24 25
Sex .73*
  Female 2668 145 127
  Male 4058 210 208
Age (y) 67.1 ± 15.8 67.4 ± 14.9 66.3 ±  18.9 .84†

Manufacturer .53*
  FUJIFilm 5415 274 271
  Samsung 1198 72 58
  Other 113 9 6

Note.—Unless otherwise noted, values represent numbers of chest radiographs. Values expressed with a plus/minus sign are the means ± 
SDs. χ2 P values reflect statistical significance of distribution differences among categorical variables across training, validation, testing, and 
clinical data strata. Labels are defined as “satisfactory position” (the tip of the tube is clearly visible in the stomach, at least 10 cm below 
the gastroesophageal junction and is safe for feeding), “malpositioned” (not in the stomach and not in the lungs, trachea, or bronchus), or 
“bronchial insertion.”
* χ2 test.
† Analysis of variance.

http://radiology-ai.rsna.org
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Figure 2:  Ensemble performance for nasogastric tube (NGT) malposition detection on the testing set (355 images). (A) Scatterplot shows two-dimensional twin neural 
network (Ivis) embedding of the combined global average pooling layer values in the NGT malposition ensemble. Each point represents a single chest radiograph in the 
testing set. Green, orange, and red points reflect satisfactory, malpositioned, and bronchial NGT ground truth values, respectively. (B) Heatmap shows gradient-weighted 
class activation mapping activation of the final convolutional layer in the 1024 × 1024 InceptionV3 model superimposed over a bronchial-positioned NGT. (C) Ensemble 
confusion matrix between ground truths and predicted image labels. Predicted labels reflect the class with the greatest classification probability. (D–F) Receiver operating 
characteristic curves for each class of interest. Shaded areas are 95% CIs, generated using 2000 bootstrapped samples. AP = anteroposterior, AUC = area under the re-
ceiver operating characteristic curve.

chest radiograph saliency maps confirmed model propensity to 
learn the target class (Fig 2A, 2B). The model ensemble achieved 
AUCs of 0.82 (95% CI: 0.78, 0.86), 0.77 (95% CI: 0.71, 0.83), 
and 0.98 (95% CI: 0.96, 1.00) for satisfactory, malpositioned, 
and bronchial positioned NGTs, respectively, in the testing set 
(n = 355 images) (Fig 2C–2F). The ensemble classifier exhibited 
improved class probability calibrations compared with its con-
stituents (Fig S2).

The best performance was observed in bronchial NGT clas-
sifications, achieving an accuracy of 97% (345 of 355; 95% CI: 
95%, 99%), positive predictive value of 79% (19 of 24; 95% CI: 
61%, 90%), sensitivity of 79% (19 of 24; 95% CI: 58%, 92%), 
and specificity of 98% (95% CI: 97%, 99%) (Table 2).

Salient chest radiograph metadata features captured by our 
model were identified by calculating the coefficient of determina-
tion (R2) between low-dimensional representations of the global 
average pooling layer and numerically encoded DICOM tags of 
interest (see Materials and Methods). Manufacturer (0008,0070), 
patient age (expressed as the number of days between study date 
[0008,0020] and birth date of the patient [0010,0030]), and in-
stitutional department name (0008,1040) cumulatively explained 
20% of variance in the global average pooling embeddings (Fig 
3A), whereas class label itself accounted for 58%.

Misclassifications made by the model ensemble were interpre-
table. For example, all five images incorrectly classified as bronchial 
NGTs were from patients who underwent gastric pull-up surgery, 
with NGT observed within the supradiaphragmatic stomach (Fig 
S3A). Similarly, 22 of 28 (79%) satisfactory NGTs classified as 
malpositioned were noted within the hiatus hernia (Fig S3B). 
Distinction between malpositioned and correctly placed NGTs 
was the source of most confusion for the model, with 47 of 121 
(38.8%) images incorrectly classified as satisfactory. Manual re-
view of the 47 false-negative radiographs identified that in all 
cases, NGTs required advancement by only 1–3 cm.

Concept Drift Awareness
We combined out-of-bag drift probabilities of a random forest 
classifier with a two-sample Kolmogorov-Smirnov test to mon-
itor concept drift in a series of out-of-sample testing sets (see 
Appendix S1). In all cases, out-of-sample AUCs were adversely 
affected (Table S2), and statistically significant drift was de-
tected when images with sudden changes in either radiograph 
system manufacturer, patient age, or institutional department 
name were introduced to the model (P < .001; Kolmogorov-
Smirnov test) (Fig 3E–3G). The model was most sensitive to 
images obtained using different equipment manufacturers (P = 

http://radiology-ai.rsna.org
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.41 [no drift] vs P < .001 [drift]; Kolmogorov-Smirnov test). 
Similarly, for models trained on patients who were aged 62–76 
years, a sudden shift to chest radiographs from younger pa-
tients (16–62 years) and older patients (≥76 years) resulted in 
statistically significant drift of class-probability estimates (P < 
.001; Kolmogorov-Smirnov test). The effect was also present, 
albeit to a lesser degree, in models trained on departmental im-
ages (P = .52; mean Kolmogorov-Smirnov test) with a sudden 
shift to inference on images acquired in the emergency depart-
ment (P = .05; mean Kolmogorov-Smirnov test).

Model as a Second Opinion for Junior Physicians
In an independent set (335 images), mean interradiologist Co-
hen κ and percentage agreement for feed/do not feed decision 
were 0.87 ± 0.11 and 90% ± 3.4, respectively (Fig 4A, Table 
S4). The model ensemble, compared with consensus of the 
three radiologists, achieved an AUC of 0.90 (95% CI: 0.88%, 
0.93%), with positive predictive value, sensitivity, and specific-
ity values of 73% (95% CI: 65%, 81%), 73% (95% CI: 68%, 
83%), and 83% (95% CI: 79%, 85%), respectively (Fig 4B).

Interreader agreement among junior physicians was 0.65 ± 0.03 
at baseline and 0.77 ± 0.13 following AI-assisted decision support. 
The mean agreement between junior physicians and radiologists at 
baseline was 0.53 ± 0.05. With AI decision support, performance 
improved (two-sided t-statistic, 2.24; P = .05), reaching mean 
agreement with radiologist consensus of 0.65 ± 0.09 (Fig 4C). 
Similarly, overall accuracy, positive predictive value, sensitivity, and 
specificity improved by 3.7%–12.3%, with the greatest percentage 
change in positive predictive value (12.3%) (Fig S4, Table 3).

Discussion
NGT feeding is an essential intervention. However, the pro-
cedure can be complicated by inadvertent tube placement in 
the respiratory tract (3,4). We demonstrate that a simple deep 
learning model for detection of NGT malposition on frontal 
chest radiographs increases the average agreement between ju-
nior emergency department physicians and radiologists from 
0.53 ± 0.05 (unaided) to 0.65 ± 0.09 (AI-aided) (two-sided 
t-statistic, 2.24; P = .05).

The NGT malposition classifier is an ensemble of Incep-
tionV3 artificial neural networks modified to accept 764 × 
764-pixel and 1024 × 1024-pixel images. Previous studies (9,11) 
showed that averaging the predictions from two artificial neural 
networks operating at different spatial resolutions yielded the 

best performance. It is likely that features learned by multiresolu-
tion networks are complementary, with each network capturing 
features missed by the other. In addition, although neural net-
work probabilities are known to be poorly calibrated (24), prob-
abilities obtained from NGT ensemble were better calibrated 
compared with individual models. This is likely because of a re-
duction in model variance following probability averaging (25).

Previous models have detected bronchial NGTs with an AUC 
of 0.87 (compared with an AUC of 0.98 for our ensemble) (15), 
whereas endotracheal tube malposition was detected with an AUC 
of 0.99 (26). Considering the relatively small training set sizes (n 
= 5475–16 000), our higher model performance is likely due to 
artificial neural network weight initialization. It is well understood 
that initialization with ImageNet weights compared with random 
weights results in higher performance on domain-specific tasks 
(15,27). In this work, we pretrained all ensemble constituents us-
ing a large dataset of 1 132 142 frontal chest radiographs, labeled 
as normal or abnormal by a natural language processing algo-
rithm. This approach has been demonstrated to improve transfer 
learning capacity and model robustness against imbalance (28). 
Interestingly, our classifier appeared to be specific for NGTs in the 
presence of endotracheal tubes, correctly labeling 57 chest radio-
graphs with both tube types, of which two were bronchial NGTs.

We developed a data-driven strategy to delineate the salient 
features captured by our models by computing the coefficient of 
determination (R2) between low-dimensional representations of 
the model global average pooling layer and numerically encoded 
DICOM tags of interest. Although a number of algorithms exist 
to explain black box models (29,30), they are limited to tabular 
data. Our approach attempts to explain features captured within 
the unstructured imaging data using DICOM tags. As expected, 
the class label itself accounted for the most variance (58%) in 
global average pooling embeddings. Surprisingly, imaging fea-
tures associated with manufacturer, patient age, and institutional 
department name accounted for over 20% of variance, suggest-
ing that this information may be encoded at the pixel level. Arti-
ficial neural networks have been used to predict patient age using 
frontal chest radiographs (31,32), but differences in device cali-
bration exist between manufacturers and hospital departments. 
It is unlikely that these features are confounders, given the low 
correlation between DICOM tags and NGT position labels (R2 

= 0.07); however, our results suggest that exposure to diverse da-
tasets, capturing a range of equipment, sites, and patient ages 
during training, is a critical requirement for model use.

Table 2: Model Performance on 355 Testing Set Images

Target Class Accuracy Positive Predictive Value Sensitivity Specificity

Satisfactory 78 (276/355) [73, 82] 78 (99/149) [74, 82] 86 (177/206) [80, 90] 66 (99/149) [58, 74]
Malpositioned 77 (274/355) [72, 81] 71 (74/104) [63, 78] 59 (74/125) [50, 68] 87 (200/230) [82, 91]
Bronchial 97 (345/355) [95, 99] 79 (19/24) [61, 90] 79 (19/24) [58, 92] 98 (326/331) [97, 99]

Note.—Metrics reflect target class versus rest comparison. Values are expressed as percentage; numerator/denominator are in parentheses, 
and 95% CIs are in brackets. Labels are defined as “satisfactory position” (the tip of the tube is clearly visible in the stomach, at least 10 
cm below the gastroesophageal junction and is safe for feeding), “malpositioned” (not in the stomach and not in the lungs, trachea, or 
bronchus), or “bronchial insertion.”

http://radiology-ai.rsna.org
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Of particular interest was assessment of how model perfor-
mance changes over the model’s life cycle. Although traditional 
performance drift approaches involve monitoring a metric (eg, 
AUC), this is not practical in a health care setting (14). We intro-
duced a simple real-time drift detector that uses low-dimensional 
embeddings of the latent model space and calculates an interpre-
table drift P value using the two-sample Kolmogorov-Smirnov test 
at an image level. Our method enables real-time monitoring of 

model performance in the absence of contemporaneous ground 
truths. It is conceptually similar to the method used by Soin et 
al (14); however, it does not use a variational autoencoder to de-
tect changes in input data, and instead uses a twin neural network 
(Ivis) to represent latent model information. As such, it can be eas-
ily adapted to nonimaging data. Through controlled experimenta-
tion, we have demonstrated that our model can be particularly 
sensitive to changes in chest radiography device manufacturer, 

Figure 3:  Captured model features and concept drift detection. (A) Bar chart shows Digital Imaging and Communications in Medicine (DICOM) tags and their 
respective R2 values. Values reflect variance within the global average pooling layer explained by each DICOM tag. (B–D) Contour plots represent two-dimensional 
embedding of global average pooling layer values in the testing set. Colors correspond to individual confounder values, and density centroids are shown as an X. (E–G) 
Box and whisker plots of two-sample Kolmogorov-Smirnov test P values show likelihood of concept drift in a testing set of interest. Green boxes are testing set samples with 
the same inclusion criteria as the training set, and blue and red boxes are testing set samples with known concept drift (red boxes very small due to tight P values). The box 
extends from the lower to upper quartile values of the data, with a line at the median. The whiskers extend from the box to show the range of the data, bounded by the fifth 
and 95th data percentile. Points represent values past the end of the whiskers. A&E = accidents & emergency.
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patient age, and department where chest radiographs were ac-
quired. The information provided by our drift statistics could in-
form model monitoring, auditing, retraining, and redeployment.

An important methodologic consideration in this article is the 
reliance on board-certified radiologists to provide the ground truth 
labels. Consequently, the trained model becomes a mechanism by 
which expertise can be conveyed to junior physicians. Use of our 
deep learning model as a decision support tool improved the feed/
do not feed agreement between junior physicians and radiologists 
from 0.53 ± 0.05 (unaided) to 0.65 ± 0.09 (aided). Poststudy in-
terviews revealed that junior physicians were more confident in 
making this decision with AI support. This was corroborated by 
an increase in an overall accuracy of a decision to feed from 69% 
(unaided) to 78% (aided). The decrease in false-positive findings 
(n = 65 [unaided], n = 46 [aided]) suggests that our model could 
reduce the number of complications associated with NGT reinser-
tions by as much as 29.2% (33). Of note, whereas five bronchial 
NGTs were incorrectly assessed by unaided junior physicians as 
safe for feeding, there were no incorrect feeding decisions with AI 
support. Overall, our results suggest that improvements in safety 
and performance can be achieved through synergistic decision 
support in fast-paced clinical environments (14).

Interreader agreement among junior physicians also im-
proved from 0.65 ± 0.03 (unaided) to 0.77 ± 0.13 (aided with 

AI). Use of the artificial neural network as a decision support 
tool probably reduces ambiguity in chest radiograph misinter-
pretation and may alleviate potential anchoring bias (34).

Our study had several limitations. First, it was limited to clas-
sification of NGT malposition and did not include segmenta-
tion analysis to allow for tube localization. Second, the clinical 
evaluation was not carried out on a typical radiologist worksta-
tion. Although the environment was the same for all radiologists 
and junior physicians, clinicians were unable to manipulate im-
ages to the extent that radiology software would allow. Third, 
the retrospective nature of this study resulted in a level of class 
balance that may not represent real-world prevalence. Finally, 
because lateral chest radiographs are not routinely obtained in 
Scotland, there were no lateral images in this study. Further work 
will need to be carried out to assess model generalizability in 
other countries and the effect of lateral views on sensitivity and 
specificity of NGT malposition classification.

In conclusion, the developed deep learning tool for detection 
of NGT misplacement on chest radiographs may aid junior physi-
cians in clinical decision-making regarding safety of feeding for pa-
tients with NGTs. Future work will include formal development 
and benchmarking of our drift detection system with tools such 
as CheXStray (14). In addition, we plan to introduce an NGT 
segmentation component to the ensemble. This would allow for 

Table 3: Junior Physician Performance Metrics Compared with Radiologist Consensus without and with Artificial Intel-
ligence Decision Support

Variable AUC Accuracy
Positive  
Predictive Value Sensitivity Specificity

Without AI 0.79 [0.77, 0.81] 266/335 (79) [74, 83] 121/186 (65) [60, 70] 121/126 (96) [91, 99] 145/210 (69) [62, 75]
With AI, 

Second 
Opinion

0.85 [0.83, 0.87] 275/335 (82) [81, 85] 126/172 (73) [68, 78] 126/126 (100) [97, 100] 163/209 (78) [72, 83]

Note.—Values represent junior physician (n = 5) consensus of binary feed/do not feed decisions; data in parentheses are percentages and 
data in brackets are 95% CIs. AUC = area under receiver operating characteristic curve.

Figure 4:  Effect of nasogastric tube malposition detection model on feed/do not feed decisions of junior physicians. (A) Heatmap shows feed/do not feed interradi-
ologist decision agreement as Cohen κ values. (B) Receiver operating characteristic curve of model performance compared with consensus radiologist feeding decision. 
Shaded region is 95% CI. (C) Box plots show agreement between junior physicians and consensus radiologist feeding decision without (orange) and with (blue) artificial 
intelligence (AI) decision support. The box extends from the lower to upper quartile values of the data with a line at the median. The whiskers extend from the box to show 
the range of the data, bounded by the fifth and 95th data percentile. Points are individual observations and dotted lines are the magnitude of change in κ values for indi-
vidual clinicians. AUC = area under the receiver operating characteristic curve.
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visual localization of the course of an NGT on a given chest ra-
diograph. This may lead to more rapid clinical image reviews, re-
ducing interpretation time per image. Second, integration with a 
radiologist environment such as the picture archiving and com-
munication system would enable clinicians to manipulate images 
as they do in routine practice and provide a more accurate ac-
count of the change in performance of junior physicians. Finally, 
a prospective study would allow for evaluation of the ensemble 
when exposed to real-world class distributions, assessing its effect 
on workflow safety and operational efficiency.
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