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Abstract
Modern aquaculture must be sustainable in terms of energy consumption, raw materials used, and environmental impact, 
so alternatives are needed to replace fish feed with other raw materials. Enzyme use in the agri-food industry is based 
on their efficiency, safety, and protection of the environment, which aligns with the requirements of a resource-saving pro-
duction system. Enzyme supplementation in fish feed can improve digestibility and absorption of both plant- and animal-
derived ingredients, increasing the growth parameters of aquacultural animals. Herein we summarized the recent literature 
that reported the use of digestive enzymes (amylases, lipases, proteases, cellulases, and hemicellulases) and non-digestive 
enzymes (phytases, glucose oxidase, and lysozyme) in fish feed. In addition, we analyzed how critical steps of the pelleting 
process, including microencapsulation and immobilization, can interfere with enzyme activity in the final fish feed product.
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Introduction

Intensive aquaculture requires effective and economical 
fish feed for growth of aquatic species in all life stages. The 
development of fish feed composed of all essential nutri-
ents balanced to allow profitable growth, survival, and 
reproduction is needed (Sampath et al. 2020). In many fish 
feed formulations, protein and lipids are obtained from ani-
mal or plant sources (often by-products of the food indus-
try) rather than through fish meal (FM) and fish oil (FO), 
which are being used in decreasingly smaller percentages 
in fish feed formulations. Even though some commercial 
fish feed uses alternative raw materials of non-marine origin 
that have good nutritional properties, they do not meet the 
unique nutritional value of feed formulated with only FM 
and FO. Hence, it is important to improve the availability 

and nutritional value of alternative raw materials through 
bioengineering technology specifically enzyme technology.

The use of enzymes is important for the development of a 
sustainable aquaculture industry (Son and Ravindran 2012). 
The global animal feed enzymes size reaches 1340.6 million 
USD in 2021, and it is expected a compound annual growth 
rate (CAGR) of 5.0% in the period 2022–2028, according 
to Global Animal Feed Enzymes Market Report (LP Infor-
mation, Inc., 2022). These statistics suggest enzymes are 
becoming an important ingredient in the fish feed industry.

Fish feed must be optimally digested by appropriate 
enzymes to provide the required amounts of calories and 
essential nutrients to farmed fish. Most ingredients added to 
fish feed, especially non-fish raw materials, are composed of 
high molecular weight organic matter, which leads to slow 
decomposition and digestion in the digestive tract in fish. 
Several studies have shown that the use of enzymes for the 
pretreatment of plant-derived raw materials improved the 
fish feed digestibility and fish growth rate (Ai et al. 2007; 
Cao et al. 2007; Kalhoro et al. 2018; Maas et al. 2018, 2019, 
2020; Ogunkoya et al. 2006). Most enzymes used in fish feed 
belong to a class of hydrolases, and, among these, proteases, 
glucosidases, and lipase have the highest number of appli-
cations (Ghosh et al. 2019). These enzymes can improve 
the digestion of antinutritional (ANT) factors present in 
fish feed, such as antigen proteins, indigestible oligosaccha-
rides like stachyose and raffinose, and phytic acid, which 
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cause slow digestion, malnutrition, and limited growth of 
fish. Dietary supplementation of phytases, essential for the 
digestion of plant-derived phytates, increases the bioavail-
ability of phosphorus and other minerals, and overall growth 
performance (Lemos and Tacon 2017). In addition, to reduce 
aquaculture diseases and promote the health of farmed fish, 
some enzyme preparations used to improve intestinal health 
and inhibit harmful bacteria have also received attention, 
which is of significance for the control and reduction of anti-
biotic use, improvement of the environment, and food safety 
in aquaculture. Wherein, glucose oxidase and lysozyme are 
the most commonly used exogenous enzyme feed additives.

In this review, the three types of exogenous enzyme 
preparations mentioned above have been summarized and 
their application progress elaborated. In Supplementary 
Table S1, the main exogenous enzymes exploitable for aqua-
culture feedstuff and their application effects are listed. By 

presenting examples of the enzymes used in fish feed (Fig. 1) 
and their effect on fish growth performance, we highlighted 
critical issues to be considered for the efficient addition of 
enzymes to fish feed. Stability and high catalytic activity 
of fish feed ingredients remains a critical issue when using 
exogenous enzymes efficiently in fish feed formulations. 
These are listed in Fig. 2.

Enzymes added in fish feed

Proteases

Proteases are specific to the hydrolysis of peptide bonds 
located in the middle (endopeptidases) or at C- or N-ter-
minus of the protein (exopeptidases). Also, some proteases 
are very selective by attacking only a particular amino acid 
sequence. Most protease applications in human food tech-
nology (Tavano et al. 2018) can also be useful to the fish 
feed industry. In particular, they can hydrolyze food proteins 
to peptides, enhancing their digestibility. Thus, exogenous 
proteases can supplement a low level of secretion in the fish 
digestive tract, assisting the endogenous enzymes to com-
pletely digest nutrients, improving their utilization.

Recent findings indicated that exogenous proteases have 
a significant effect on fish health including feed conversion 
ratio (FCR), weight gain (WG), and metabolic activity. The 
addition of exogenous protease into soybean meal has sig-
nificantly increased the apparent digestibility coefficients 
(ADC) of rainbow trout (Oncorhynchus mykiss), varying 
from 0.792 to 0.869 (P < 0.05) (Dalsgaard et al. 2012). 
Adding exogenous proteases into a fish meal-free diet to be 
fed to tilapia (Oreochromis niloticus × Oreochromis aureus) 

Fig. 1   Representation of the possible roles in the gastroenteric fish 
tract of exogenous enzymes administered by fish feed and of the 
homologous endogenous enzymes (if present) after the ingestion of 
the feed

Fig. 2   Origin, preparation, 
and possible points of the 
application of enzymes, in 
the pathways of fish feed 
production. Numbers 1, 2 
and 3 indicate possible points 
where enzymes can act to (1) 
pre-digest fish feed, (2) be 
mixed with the mash for pel-
leting after enzyme stabiliza-
tion toward temperature and 
operational conditions for 
pelleting or (3) be mixed with 
fish feed pellets to function in 
the gastroenteric fish tract
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increased WG from 1052.8% ± 24.4% to 1169.8% ± 11.4% 
(Li et al. 2019). A similar trend was reported when exog-
enous protease was added to an FM diet for Gibel carp 
(Carassius auratus gibelio), allowing an increase of WG 
from 188.4% ± 14.5 to 230.6% ± 6% (a pelleted diet) or from 
244.5% ± 11.3% to 273.4% ± 6.0% (an extruded diet) (Shi 
et al. 2016). Supplementing protease in a diet with reduced 
FM level and crude protein content by 10% and 5% did not 
negatively affect the growth of white shrimp (Li et al. 2016). 
In this case, WG was 247.9% ± 11.3% for the control dietary 
group and 275.1% ± 6.2% for the diet containing 0.175 g pro-
tease per kg of feed. Furthermore, using protease was also 
very useful to improve the metabolic activity of the fish. 
Hassaan et al. (2019) compared the growth of juvenile Nile 
tilapia fed for 12 weeks with feed containing different ratios 
of FM/cotton seed meal (CSM) with or without the inclu-
sion of exogenous protease (250 U/kg feed). In all cases, 
the supplementation of the protease in the diet led to the 
highest WG, protein efficiency, and feed efficiency. Enzyme 
addition also led to higher expression of insulin-like growth 
factor I gene in Nile tilapia brain and liver as compared to 
other fish groups fed with the same FM/CSM ratio but with 
no protease.

In the above-mentioned addition of exogenous protease to 
a fish diet, the effect varied according to the form in which 
the enzyme was added. A study by Dalsgaard et al. (2012) 
revealed that adding the same protease and β-glucanase 
to different feed had different effects, based on nitrogen 
mass-balance and energy retention data, with utilization of 
nutrients and energy better for the feed containing soybean. 
Furthermore, the use of proteases did not have a significant 
effect on growth parameters and FCR in rainbow trout when 
mixed and pelleted with a milled, sieved, dehulled, toasted, 
and solvent-extracted soybean meal fine powder (Yigit et al. 
2018). This may be due to the different composition of the 
basal diet and processing modes having an impact on the 
action of exogenous proteases.

The most widely used proteases are neutral and alka-
line, such as alkaline serine endopeptidase AG175TM from 
JEFO Nutrition Inc. of Saint-Hyacinthe, QC, Canada (Li 
et al. 2019; Shi et al. 2016). To date, acid proteases have also 
been shown to facilitate fish growth (Zheng et al. 2020). In 
addition, bromelain (an extract from the stems of pineapples 
containing proteases) could serve as a potent enzyme-based 
supplement to improve protein digestibility of spirulina-
based fish diets, an economical alternative protein source of 
fish feed (Sharma et al. 2021).

The combination of exogenous proteases and endogenous 
digestive enzymes can be beneficial for fish growth. Fish 
produce endogenous enzymes that originate from their gas-
trointestinal system or gut microbiota. The latter one pro-
duces numerous digestive enzymes (Ray et al. 2012), such 
as cellulases, collagenases, proteases, amylases, allowing the 

digestion of complex organic macromolecules usually pre-
sent in plant feedstuffs (Kar et al. 2008; Sinha et al. 2011). 
The fermentation of engineered microbial strains is the 
main route for producing exogenous enzymes at an indus-
trial scale. Also, by-products produced from the fish industry 
(e.g., fish viscera) could be a potential source of enzymes to 
be used as additives in aquafeed (González-Riopedre et al. 
2013).

Amylases

Starch is the main digestible polysaccharide in plant feed 
ingredients used in aquaculture (Francis et al. 2001). The 
digestibility of starch directly affects the growth of fish. 
Therefore, amylase, an enzyme that degrades starch (Upreti 
et al. 2019), plays a crucial role in the growth process of 
fish. Although amylase is an endogenous digestive enzyme 
of numerous fish species, some studies have shown that car-
nivorous fish could have a low expression of this enzyme, 
resulting in a reduced ability to digest starch for energy sup-
ply (Hemre et al. 2002; Stone 2003). Moreover, carnivo-
rous fish might suffer prolonged postprandial hyperglycemia 
(Bergot 1979; Moon 2001; Wilson 1994), low metabolic 
activity, reduced utilization rate of other nutrients in fish 
feed with a high content of dietary carbohydrates (e.g., 
starch, dextrin) (Hemre et al. 2002), and fish stress response 
(Petitjean et al. 2019).

In response to the afore-mentioned problems, studies have 
shown that adding exogenous amylase could increase meta-
bolic activity and regulate blood glucose levels. Kumar et al. 
(2006a, b) studied the addition of α-amylase to the feed of 
Labeo rohita (Hamilton). The authors reported that the addi-
tion of 50 mg α-amylase/kg feed led to an increase of liver 
glycogen (from 97.13 ± 1.29 mg to 171.36 ± 3.19 mg glyco-
gen g–1 wet tissue) (Kumar et al. 2006b) and blood glucose 
(about 80 to 102 mg glucose in 100 ml blood), meaning that 
under the effect of exogenous amylase, the starch utiliza-
tion and glucose metabolism in the fish was increased. In 
follow-up studies, Kumar et al. (2009) reported that glucose-
6-phosphate 1-dehydrogenase (G6PD) activity of the fish 
was also enhanced, suggesting amylase supplementation 
could enhance metabolism and regulate postprandial blood 
glucose. Interestingly, these authors also revealed a compli-
cated metabolic situation. After adding the same amylase 
to feed with different protein levels (gelatinized or non-
gelatinized corn containing optimum (35%) or sub-optimum 
(27%) protein levels), the non-gelatinized corn diet appreci-
ably enhanced gluconeogenetic and amino acid metabolic 
enzyme activity, whereas gelatinized corn induced increased 
lipogenic enzyme activity in the serum and liver of fish that 
can be correlated to the type of corn and protein level.

Some studies reported that adding exogenous amylase to 
fish feed also improved the protein content, health status, 
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and immunity of fish. Elevated fish muscle protein, muscle 
protein/DNA ratio, and DNA/muscle mass (wet weight) ratio 
were all used in studies exploring the effects of exogenous 
amylases on fish (Khalil et al. 2018; Kumar et al. 2006a, b, 
2009). Khalil et al. (2018) also reported that when adding 
a single amylase to the feed of striped catfish (Pangasiano-
don hypophthalmus), the red and white blood cells count, 
hematocrit, and numbers of lymphocytes along with other 
haematological parameters representing the immune activity 
of the fish, improved. In addition, a decreasing tendency of 
the total bacterial count in the intestinal content and fish skin 
was observed. These results proved that exogenous amylase 
could play a role in enhancing fish immunity and improving 
fish health.

At present, only a few studies examined the effects of 
exogenous amylase on fish, and most focused on diets sup-
plemented with mixed enzyme preparations containing 
amylase. Those studies showed that growth performance 
could be improved by the addition of exogenous enzymes. 
For example, the addition of pepsin, papain, and α-amylase 
into the feed for Nile tilapia (O. niloticus) fingerlings led 
to a significant increase of WG, and feed utilization (Goda 
et al. 2012). Similarly, Atlantic salmon, Salmo salar L. (a 
carnivorous fish) showed an enhanced feed utilization rate 
after receiving exogenous α-amylase through feed, and flesh 
quality was more appreciated by fish consumers (Carter et al. 
1992, 1994). Yildirim and Turan (2010) added a commer-
cial preparation containing β-amylase to the feed of Afri-
can catfish (Clarias gariepinus). The use of this enzyme, 
along with protease, fungal xylanase, β-glucanase, endo-β-
glucanase, pentosonase, α-amylase, and pectinase, improved 
fish growth and the specific growth rate (SGR). However, the 
authors did not provide details on the enzyme specific activ-
ity, making it difficult to establish which of these biocata-
lysts was responsible for the positive effect on fish growth.

Lipases

Lipases are carboxylic ester hydrolytic enzymes, which 
sequentially hydrolyze the ester bonds of triglycerides to 
form glycerol and fatty acids. Lipases and phospholipase 
A2 are the two types of lipolytic enzymes that have been 
mostly studied in fish metabolism (Iijima et al. 1998; Zam-
bonino and Cahu 2007). They have a crucial role in modu-
lating fish adipose tissues, ultimately affecting carcass yield 
and flesh quality of farmed fish species (Weil et al. 2013). 
The oral cavity of fish larvae often contains lipases (Murray 
et al. 2003; Srivastava et al. 2002), but bile salt-activation 
is usually required to activate their function (Iijima et al. 
1998; Murray et al. 2003). Because juvenile fish have a bet-
ter ability to digest phospholipids than triglycerides, and the 
pancreatic lipase of juveniles is non-linear in the digestive 
level of dietary triglycerides (Cahu et al. 2003), lipases have 

been added as a feed component to increase the level of 
lipid digestion. Studies on lipases as an exogenous enzyme 
added to fish feed and their effects on fish performance are 
still relatively few and primarily conducted using mixtures 
with other enzymes.

Some studies have demonstrated that the multienzyme 
commercial preparation containing lipase improved fish 
growth performance. Ghomi et al. (2012) added lipase to 
the feed of great sturgeon Huso huso fingerlings. As a result, 
their SGR (from 3.32 ± 0.19 to 3.68 ± 0.17) and final weight 
(from 46.13 ± 0.20 g to 53.03 ± 0.15 g) increased. Similarly, 
Zamini et al. (2014) added a multienzyme commercial mix-
ture containing lipases to the diet of Caspian salmon (Salmo 
trutta caspius). The survival rate and average body weight of 
fish were all higher than the control group, with an increased 
rate of 5.85% and 24.06%, respectively. These studies con-
firmed that exogenous lipase can contribute to increased fish 
growth by increasing the SGR.

Adding exogenous lipase to fish feed could also improve 
the quality of fish meat. After feeding fish with feed con-
taining exogenous lipase, the fat content in the carcass of 
great sturgeon H. huso fingerlings significantly increased 
(34.53% ± 0.06%, control 27.83% ± 1.75%) (Ghomi et al. 
2012). The same study also showed that the content of 
n-3 essential fatty acids of fingerlings fed with 500 mg/kg 
enzyme was higher (5.05% EPA and 5.89% DHA) than the 
control fish, which had 1.52% and 4.12% EPA and DHA 
content, respectively.

Some studies have also shown that adding lipase to feed 
can enhance fish metabolic activity. Liu et al. (2016) supple-
mented lipase into the diet of young grass carp (Ctenophar-
yngodon Idella) (average initial weight 255.02 ± 0.34 g) and 
reported an increase in intestinal weight (16.67 ± 1.55 g/
fish instead of 11.83 ± 1.33 g/fish measured in the controls), 
feed efficiency (varied from 57.67 ± 1.22 for the control 
to 63.74 ± 1.48), and intestinal immunity, indicating an 
improvement in the anti-inflammatory response. Further-
more, the addition of lipase led to an increase of interleukin 
10 and acid phosphatase mRNA copies in the intestinal tract 
(about 7–8%). Other positive effects were the up-regulation 
of the mRNA copies of genes encoding for the antimicro-
bial peptides, anti-inflammatory cytokines, and antioxidant 
enzymes (e.g., copper/zinc and manganese superoxide dis-
mutase, catalase, peroxidase, S-transferases, and glutathione 
reductase).

In addition to adding exogenous lipase to fish feed, the 
addition of a large amount of lipase produced by micro-
bial fermentation is also an effective way to promote lipid 
decomposition in fish feed. Yarrowia lipolytica is the most 
widely used microorganism at present, proven to play a role 
in promoting the growth of fish when added to fish feed. 
Y. lipolytica added to the diet significantly increased the 
growth rate and body weight of Russian sturgeon (Acipenser 
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gueldenstaedtii), and Atlantic salmon, as well as the con-
centration of EPA and DHA in their muscle, indicating the 
nutrient content and taste of farmed fish could be improved 
(Chen et al. 2021; Hatlen et al. 2012). The present results 
suggest that Y. lipolytica could be used as a potential diet 
additive for aquaculture.

According to these studies, lipases might have a series 
of beneficial effects when administered to fish via a low-
protein and high-lipid diet. More studies on the use of 
these enzymes, in combination with microbial products are 
needed.

Cellulases

Cellulases hydrolyze β-1,4 glycosidic bonds in the polymer 
to release glucose units allowing the use of cellulase as a 
source of carbohydrates that provides energy to the body 
(Barr et al. 1996). Cellulase activity has also been detected 
in the gastrointestinal tract of some fish (Stickney and 
Shumway 1974), and it has been demonstrated that the cel-
lulase activity is mainly contributed by the gastrointestinal 
microbial community of the fish rather than by the fish itself 
(Lindsay and Harris 1980; Saha and Ray 1998).

The level of cellulose in fish feed affects the utilization 
of other nutrients. The lack of cellulase and the absence of 
a stomach in some fish species can be responsible for the 
low digestibility of cellulose. Cellulose and other non-starch 
polysaccharides (e.g., pectins, galactans) might have adverse 
effects on nutrient absorption because of the binding to bile 
acids, the obstruction of digestive enzymes, and the move-
ment of substrates in the intestine (Francis et al. 2001).

European sea bass (Dicentrarchus labrax), rainbow trout 
(O. mykiss), rainbow trout (Salmo gairdneri), and Nile tila-
pia (O. niloticus L.) fed with high levels of cellulose in the 
feed have shown low intestinal absorption rates, low uti-
lization of nutrients, and decreased growth performance 
(Amirkolaie et al. 2005; Bromley and Adkins 1984; Buhler 
and Halver 1961; Davies 2019; Dias et al. 1998; Hansen 
and Storebakken 2007; Hilton et al. 1983). Depending on 
the fish species, the highest tolerable level of cellulose in 
the diet can vary from 10 to 30% w/w (Bromley and Adkins 
1984; Dias et al. 1998).

Zhou et al. (2013) have shown that the addition of exog-
enous cellulase to grass carp feed could promote growth rate 
after 60 days of feeding (the WG ratio was 164.61% ± 0.51% 
and 177.30% ± 0.43% for the control and the group fed with 
a diet supplemented with cellulose, respectively). The fish 
feed used in this study was a mixture of shredded Lemna 
minor Linn. mixed with wheat flour (L. minor Linn. / wheat 
flour 10/1, w/w). The supplemented cellulase was from 
Trichoderma longibrachiatum (SIGMAC9748, USA) with 
specific activity greater or equal to 1.0 U/mg. The cellulase 
was added at a ratio of 3 g/kg of duckweed (corresponding 

to 3000 U/kg) and mixed with wheat flour. Additionally, the 
activity of the grass carp digestive enzymes (e.g., protease 
and amylase) for the group fed with a diet enriched in cel-
lulase increased in comparison to the control group. In par-
ticular, the activity values were 2.10 ± 0.10 (control group 
1.65 ± 0.02), 99.43 ± 2.42 (control group 58.45 ± 2.19) U mg 
prot−1 for amylase, 29.57 ± 1.15 (control group 24.00 ± 1.12) 
U μg prot−1 for protease, and 27.12 ± 0.57 (control group 
25.54 ± 1.59) U g prot−1 for the lipase.

Some recent studies indicated that cellulases have a sig-
nificant effect on the gut microbiota of fish. The study of 
Zhou et al. (2013) highlighted that the increase of Bacillus 
and Sphingomonas in the gut microbiota of grass carp con-
tributed to the digestion of cellulose. The supplementation 
of cellulase increased the number and abundance of bacterial 
species of carp gut microbiota, which was beneficial for the 
digestion of nutrients and played a key role in the immune 
response and disease resistance of fish (Burr et al. 2005). In 
general, carnivorous fish might need more exogenous cel-
lulases in the feed (Zhou et al. 2013), as they have fewer 
bacteria involved in cellulose digestion in comparison to 
herbivorous fish. However, some researchers have isolated 
a bacterial strain with cellulase activity in the gut microbiota 
of grass carp (Li et al. 2009), but there were no reports on 
similar strains isolated from the intestinal tract of carnivo-
rous fish.

Although some studies have shown that the addition 
of exogenous cellulase to carnivorous or herbivorous fish 
could promote fish growth (about 15% increase of the final 
fish body weight and 5% of SGR) (Ai et al. 2007; Ghomi 
et al. 2012; Zhou et al. 2013), the effect of dietary cellulase 
on fish growth was not always positive (Carter et al. 1992; 
Ogunkoya et al. 2006). The absence of beneficial effects may 
be due to a variety of factors, such as fish species, type of 
fish feed, way of enzyme addition, and aquaculture environ-
ment. For instance, the addition of 20,000 U/kg cellulase 
to the diet containing canola meal (CM) fed to tilapia did 
not promote fish growth and nutrient digestibility at any 
of the CM concentrations tested (Yigit and Olmez 2011). 
Moreover, the addition of different proportions of cellulase 
to rapeseed diets did not affect the growth parameters and 
nutrient digestibility of Pterophyllum scalare (Erdogan 
and Olmez 2009). Most cellulases in fish are not produced 
endogenously but derived from bacteria and fungi present 
in the feedstuffs. The pH of the fish digestive environment 
(different from the optimal pH for enzyme activity) may 
affect the efficacy of dietary cellulases (Zhou et al. 2013). 
Furthermore, the high content of cellulose in the feed may 
also affect the digestive activity of proteases. For example, 
the high levels of fibre, either alone or together with phytate, 
had the greatest adverse effects on the digestibility of canola 
protein products in rainbow trout (Mwachireya et al. 1999).
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Cellulase catalytic activity is of great interest for the fish 
feed industry especially when plant-derived raw materials 
are used because many fish species lack the ability of cel-
lulose degradation (Opuszynski and Shireman 1995). How-
ever, to date, the use of this type of enzyme in fish feed has 
not been sufficiently studied, so further research in this area 
is needed.

Hemicellulases

Hemicellulases include a group of enzymes involved in the 
breakdown and hydrolysis of galactans, xylans, mannans, 
and arabans (Chadha et al. 2019). To reduce production 
costs, non-starch polysaccharides (NSP), such as wheat, 
grains, and bran, have been used as the main energy source 
for fish feed, affecting the absorption of nutrients by fish. 
Oligosaccharides, such as xylo-oligosaccharide, mannan 
oligosaccharide, fructo-oligosaccharide, and galacto-oli-
gosaccharide, produced by hemicellulose degradation of 
the above-mentioned raw materials have certain probiotic 
activities, which not only improve the nutrient absorption 
of cultured animals but also improve the intestinal health of 
animals. Therefore, supplementation of exogenous hemicel-
lulases in fish feed has become the main way to solve the 
problem of digestion of NSP and to facilitate the growth of 
fish. Currently, the hemicellulases used as an additive in the 
aquafeed industry mainly include xylanases and glucanases. 
Several studies have shown that the addition of β-xylanases 
and β-glucanases to fish feed can improve fish growth rate 
and feed utilization, enhancing the quality of fish. These 
observations were reported for Atlantic salmon (S. salar) 
(Jacobsen et al. 2018), silver perch (Bidyanus bidyanus) 
(Stone 2003), tilapia (O. niloticus × O. aureus) (Lin et al. 
2007; Maas et al. 2018, 2020), African catfish (C. gariepi-
nus) (Yildirim and Turan 2010), and shrimp (Litopenaeus 
vannamei) (Qiu and Davis 2017).

It has been reported that different methods of adding 
exogenous hemicellulases in fish feed can also affect fish 
growth rate. To promote the synthesis of xylanase, the addi-
tion of xylanase-expressing Bacillus amyloliquefaciens 
R8 to fish feed improved the growth performance of Nile 
tilapia (Saputra et al. 2016). After two months of the feed-
ing trial, the final weight of Nile tilapia was 17.7 ± 0.19 g, 
starting from an initial fish weight of 1.5 ± 0.0 g, with the 
control group reaching a final weight of 9.0 ± 0.33 g after 
the same feeding time. Xylanase addition also increased the 
metabolic activity of the tilapia liver, determined as the rela-
tive mRNA expression level of growth- and metabolism-
related genes of glucokinase (GK), glucose-6-phosphatase 
(G6Pase), G6PD, and insulin-like growth factor-1 (IGF-1). 
These enzymes increased about three- or fourfold, as com-
pared to the control tilapia fed on a diet without the addition 

of B. amyloliquefaciens R8. The evidence of an enhanced 
metabolic activity supports the increased growth rate in fish 
fed with B. amyloliquefaciens R8 added to the diet. Further-
more, lysozyme activity of B. amyloliquefaciens R8-fed Nile 
tilapia was noticeably higher (1.1 mg/ml) than in fish fed 
with the control diet (0.39 mg/ml), suggesting an enhance-
ment of the resistance of tilapia to Aeromonas hydrophila 
(Saputra et al. 2016).

Interestingly, the addition of mixed exogenous enzymes 
may affect the metabolites of fish without affecting the 
growth of the fish itself. Ogunkoya et al. (2006) added a 
commercial enzyme cocktail containing xylanase, amylase, 
cellulase, protease, and β-glucanase (Superzyme CS, Canada 
Bio-system Inc., Calgary, Alberta, Canada) at a ratio of 1 
or 2.5 g/kg feed in the diet of rainbow trout (O. mykiss). 
Although the enzyme cocktail supplementation (no indi-
cation of specific activity was reported) did not affect the 
growth of O. mykiss, it reduced faecal material cohesiveness 
and sinking speed, which can potentially minimize waste 
recovery on land-based fish aquaculture operations and the 
impacts of some cage culture plants.

Phytases

Phytate is an antinutritional factor widely found in plant-
based feed raw materials. It forms chemical complexes with 
mineral elements (e.g., calcium, iron, magnesium, and zinc), 
proteins, and other nutrients, decreasing the absorption and 
utilization of these substances (Humer et al. 2015). In par-
ticular, phytate-bound phosphorus has very low bioavail-
ability in monogastric terrestrial animals, such as pigs or 
fish, due to the absence of an intestinal phytase in these 
animals (Adeoye et al. 2016). Due to the increasing number 
of commercial phytases capable of effectively degrading the 
antinutritional factors, it is becoming common practice to 
add phytase to fish feed.

In recent years, phytase has been used more frequently 
in fish feed (Eyiwunmi et al. 2017; Lemos and Tacon 2017) 
showing an impact in different physiological processes. 
Some studies have shown that the addition of phytase has 
an impact on the bioavailability of phosphorus and environ-
mental safety. Phosphorus is an essential mineral for fish 
growth, but its release in the environment is increasing, and 
it may be responsible for pollution and eutrophication of 
watersheds and coastal seawater (Bohn et al. 2008). The 
use of exogenous phytase is substantially efficient in reduc-
ing phosphorus excretion by converting phytate phospho-
rus into bioavailable free inorganic. Morales et al. (2016) 
and Olugbenga et al. (2017) found that using plant-based 
diets supplemented with phytase led to a reduction of 50% 
and 31% of phosphorus loadings in rainbow trout and cat-
fish, respectively. Chen et al. (2019) have also reported 
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the positive effects of phytase in increasing WG (from 
772.27% ± 5.52% to 1027.25% ± 32.34%). These results indi-
cated that phytase might play an essential role in decreasing 
the dispersion of phosphorous in the surface waters or in the 
coastal environments and, consequently, in reducing the risk 
of eutrophication.

It has been pointed out that exogenous phytase in feed 
could improve the growth performance of fish. Indeed, 
several studies showed that dietary phytase could signifi-
cantly improve the growth performance and feed utilization 
in channel catfish (Ictalurus punctatus) (Chen et al. 2019), 
African catfish (C. gariepinus) (Kemigabo et al. 2018), Nile 
tilapia (O. niloticus) (Adeoye et al. 2016), and Pacific white 
shrimp (L. vannamei) (Pakravan et al. 2017). Different doses 
of phytase (150 to 2000 FTU (phytase units)/kg) added in 
the fish feed increased weight and growth rate to different 
levels (Debnath et al. 2005). It was found that the optimum 
dose of added phytase in the catfish was almost 300 FTU/
kg (Rachmawati and Samidjan 2018), with a similar result 
found in giant tiger prawns (Rachmawati and Samidjan 
2016). However, Shahzad et al. (2020) found that the mix-
ture of Moringa seed meal and Moringa leaf meal-based 
diet supplemented with exogenous phytase at 900 FTU/kg 
concentration was suitable to develop a cost-effective and 
eco-friendly fish feed with maximum absorption of impor-
tant nutrients and improvement of the overall performance 
of Catla catla fingerlings. The dose and concentration of 
phytase added to fish feed may be determined according 
to the type of fish feed and the species of fish to maximize 
the benefits of exogenous enzyme supplementation in fish 
aquaculture.

In addition, microbial phytase has been shown to play a 
critical role in the bioavailability of nutrients for different 
fish species. Using a plant-based diet, Morales et al. (2016) 
observed that apparent digestibility and utilization of P, Ca, 
Mg, and Zn in rainbow trout (O. mykiss) were improved 
by the use of phytase. The results reported by Akpoilih 
et al. (2016) showed that using phytase in plant-based diets 
resulted in a 13% and 50% reduction in N and P loadings, 
respectively. Moreover, in the presence of phytase, the per-
centage of N and P intake was 51.2 ± 0.8 and 68.5 ± 3.6, 
respectively, whereas, for the control, it was 48.8 ± 0.3 and 
37.2 ± 2.2, respectively. The addition of phytase and sodium 
diformate (NaDF) in the diet led to a higher final fish weight 
than in the control fish fed a diet without these exogenous 
enzymes. Moreover, those studies reported that ADC of pro-
tein and amino acids significantly increased when 500 and 
1,000 IU/kg of phytase was included in the feed of shrimp 
or giant tiger prawn (Bohn et al. 2008; Rachmawati and 
Samidjan 2016). Nevertheless, although numerous studies 
have demonstrated the great benefit of phytase as an additive 
for aquaculture feeds, further research needs to confirm the 
optimal dose, species specificity, and the role of phytase.

Glucose oxidases

Glucose oxidase (GOD; E.C.1.1.3.4.) is a flavoprotein that 
catalyzes the dehydrogenation of β-D-glucose to gluconic 
acid and hydrogen peroxide (H2O2) by utilizing oxygen (O2) 
as an electron acceptor (Hatzinikolaou et al. 1996). GOD is 
widely diffused, particularly in microorganisms, including 
Penicillium and Aspergillus niger species (Bhat et al. 2013; 
Eryomin et al. 2004; Todde et al. 2014), such as Penicillium 
pinophilum, P. amagasakienses, and P. funiculosum. Most 
GOD that is commercially available is produced by micro-
bial strains that have an optimum pH range of 5.0 to 7.0, a 
factor that must be considered when using this enzyme in 
fish feed formulations (Bankar et al. 2009). Microbial GOD 
is currently receiving significant attention due to its wide-
spread use in the chemical, food, beverage, feed, biotechnol-
ogy, and other industries.

GOD used as a feed additive has been shown to pro-
mote fish growth and enhance health. According to recent 
reports, a diet supplemented with GOD increased the lev-
els of growth and development-related hormones in pig-
lets (Biagi et al. 2006; Tang et al. 2016; Wang et al. 2018), 
improving the feed conversion rate and growth performance. 
GOD preparation can also quickly remove bacterial toxins 
and intracellular toxin poisoning in animals. GOD is a safe 
and pollution-free alternative to antibiotics. Jeong et al. 
(1992) reported that GOD added to a poultry compound feed 
enhanced egg production and inhibited various moulds, such 
as Aspergillus flavus, Rhizopus oryzae, and Penicillium.

Some studies have also showed that exogenous GOD 
can improve the intestinal acidic digestive environment and 
contribute to maintaining a balanced intestinal microbiota. 
This role can be attributed to the gluconic acid produced by 
glucose oxidase, resulting in a partial acid environment to 
enhance intestinal health (Biagi et al. 2006). Furthermore, by 
consuming oxygen in the intestine GOD creates an anaero-
bic environment for the proliferation of beneficial anaerobic 
bacteria (Bankar et al. 2009), whereas the hydrogen perox-
ide produced can inhibit the growth of Escherichia coli and 
Salmonella.

In addition, the most unique aspect of adding glucose 
oxidase to feed is that it can guarantee the quality of raw 
materials and feed. For instance, GOD addition to the feed 
consumed oxygen (Hatzinikolaou et al. 1996), inhibiting the 
growth of aerobic microorganisms and preventing spoilage.

Though the beneficial effects of GOD supplementation 
are evident in pigs (Tang et al. 2016), its use in fish feed is 
still in the early stages. From the perspective of avoiding the 
use of antibiotics in aquaculture, GOD may have a broad 
application in the feed industry.
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Lysozymes

Lysozyme can act on the β-1,4-glycosidic bond of bacterial 
cell walls and has certain bactericidal effects. It is ubiqui-
tously present in animal body fluids as a non-specific anti-
bacterial factor. Lysozyme was originally extracted from egg 
white by a complicated and expensive procedure. At present, 
lysozyme can be produced on an industrial scale by Pichia 
pastoris and other engineered strains, greatly reducing the 
cost of its application in feed.

The haematological indices including white blood cell, 
red blood cell, and hematocrit of rainbow trout (O. mykiss) 
fingerlings were significantly improved with the effect of 
dietary lysozyme in fish feed. Instead, there was no signifi-
cant increase in the growth performance in fish fed with 
different levels of dietary lysozyme (Shakoori et al. 2018). 
Furthermore, utilizing lysozyme conjugates with galacto-
mannan or palmitic acid as a therapeutic for infection in 
fish, the survival rate was increased after supplementing the 
dietary lysozyme to the Edwardsiella tarda-infected carp, 
Cyprinus carpio L. (Nakamura et al. 1996). Lysozyme-
galactomannan conjugate was prepared through a controlled 
Maillard reaction and lysozyme-palmitic acid conjugate 
was prepared through base-catalyzed ester exchange using 
N-hydroxysuccinimide ester of palmitic acid. The above 
results showed the possibility of utilizing lysozyme conju-
gates with galactomannan or palmitic acid as an infection 
therapeutic in fish. Therefore, the addition of lysozyme in 
fish feed and the effective production methods facilitate the 
development and application of this type of enzyme as a 
feed additive.

Enzyme addition procedures

One main issue when selecting an enzyme to be included 
in fish feed is its ability to transform complex feed compo-
nents into absorbable nutrients. For this reason, enzymes can 
be added even if the feed preparation includes a fermenta-
tion process. For example, lactic acid bacteria are the most 
commonly applied bacterial agent in the process of soybean 
meal fermentation, due to their ability to produce delightful 
flavour (Tsai et al. 2021). However, lactic acid bacteria are 
less capable of producing proteases that allow the hydrolysis 
of proteins into smaller peptides during fermentation. Fur-
thermore, the removal of the antigenic proteins present in 
soybean meal fermented by lactic bacteria is very difficult. 
To overcome this difficulty, exogenous proteases are usually 
added during soybean meal fermentation (Jiang et al. 2021).

Nutritional enzymes are generally added to feed, while 
antibacterial enzymes (e.g., glucose oxidase) may be added 
to animal protection products, not necessarily mixed into 
feed. The pretreatment of the feed components can improve 

nutrient utilization, reducing the excretion of nutrients into 
the environment. However, feed enzymatic pretreatment is 
rarely used as it increases feed cost and can have adverse 
effects on the feed properties (e.g., microbial contamination) 
and on the final pellet characteristics (e.g., loss of firmness 
and texture). Therefore, for the various type of exogenous 
enzymes considered in this review, the methods of addition 
should be selected according to their characteristics in the 
preparation of aquatic feed. Some studies indicated that the 
use of enzymes (e.g., carbohydrase or protease) did not show 
any improvement in nutrient digestibility or fish growth 
(Carter et al. 1992, 1994; Denstadli et al. 2011; Ogunkoya 
et al. 2006; Yigit and Keser 2016), but an opposite outcome 
was observed with the same enzymes employed in salmonid 
diets.

The incongruent effect of these enzymes used in the diet 
of different types of fish could originate from the use of dif-
ferent ingredients, types of enzymes, other procedures used 
for their addition in the feed, and rearing conditions, such 
as water temperature and stage of growth of the fish. Thus, 
the multiplicity of the parameters that might influence the 
results of using enzymes in fish feed requires a precise and 
accurate set-up of the experiments not only in terms of fish 
nutrition but also in the preparation of the fish feed itself.

Enzymes have optimal functionality with appropriate 
operational conditions. In the case of their use to digest 
fish feed ingredients (e.g., proteins and polysaccharides) or 
to improve absorption of nutrients, their catalytic activity 
can change according to the conditions of fish gastroenteric 
apparatus. It is worth noting that farmed fish species may 
not have a functional stomach that can digest nutrients dur-
ing larval stages. The digestive apparatus and its functional-
ity gradually develop as fish larva age (Govoni 1980), but 
some species do not develop a functional stomach at all. 
Fish stomach pH is one of the most significant changes that 
occur during the growth of the animal. At first, the pH of 
the fish stomach is neutral or slightly alkaline (6.7–7.1), but 
as fish grow, the pH value gradually decreases and 97 days 
post-hatching, it can be as low as 5.0 (Mahr et al. 1983). 
For this reason, the acid resistance of enzymes added to 
fish feed should be considered differently depending on the 
developmental stage of fish. Thus, it appears that exogenous 
enzymes for most adult fish feed, need to have some acid 
resistance.

Beyond pH, other factors, such as temperature applied 
during fish feed processing and moisture level, can have a 
significant impact on enzyme activity. It is crucial to use 
processing techniques that maintain enzyme activity dur-
ing the pelleting process. The procedure usually adopted 
for pelleting includes extrusion of conditioned hot mash 
through a suitable die of a defined length and diameter. 
Before being extruded, feed ingredients pass through the 
conditioner where they are treated with steam under pressure 
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and exposing the mash to high temperatures before entering 
the pellet die (Amerah et al. 2011). The conditioner tem-
peratures in feed mills may reach 95 °C, or even higher, to 
prevent growth of foodborne pathogens (Doyle and Erick-
son 2006; Jones and Richardson 2004). However, for this 
purpose, prolonged exposure to steam and increased steam 
pressure is required.

During feed processing, factors such as pressure, heat, 
time, and moisture level in the conditioner room might 
explain enzyme unfolding and inactivation (Silversides and 
Bedford 1999; Spring et al. 1996). Enzyme addition requires 
the development of specific procedures that protect enzymes 
in fish feed, especially if they have to be active in the gas-
troenteric tract of the fish. Thus, the pelleting process needs 
to ensure the retention of the enzymatic activities (Fig. 2, 
points 1–3).

Different procedures maintain a high level of enzyme 
activity in fish feed. Spring et al. (1996) reported that the 
catalytic activity of several enzymes can be maintained in 
pellets even if prepared at temperatures up to 80 °C or for 
bacterial amylase, up to 90 °C. Cellulase, pentosanase, and 
fungal amylase after pelleting showed a residual activity of 
about 80% at temperatures up to 80 °C, and at 90 °C the 
residual activity was 10%, 5% and 5% (compared to the 
control), respectively. In the same study, bacterial amylase 
maintained about 50% of its activity even when carrying out 
the pelleting at 100 °C. Moreover, the decrease of feed vis-
cosity even after cellulase pelleting at 100 °C suggested that 
the enzyme was stable in the operational conditions of the 
process. The endolytic activity reduced viscosity, whereas 
the release of sugars from a soluble substrate was the result 
of exolytic activity. Hence, the authors concluded that the 
observed loss in enzymatic activity caused by pelleting 
might be a consequence of the analytical method used to 
assay the activity (unable to monitor the endolytic activity) 
and not because of the enzyme inactivation.

An alternative way of administering exogenous enzymes 
in a fish diet could be preparing the enzyme in a separate 
formulation. This strategy might protect enzyme function 
during the industrial process of aquafeed production and also 
from the activity of endogenous proteases and other physico-
chemical factors (e.g., pH) in the fish digestive tract. Many 
lipids and natural polymers employed as protein or drug car-
riers can potentiate the efficiency of exogenous enzymes in 
both medical and feed industries. Also, there is an ample 
choice of micro-encapsulation methods to select the most 
appropriate one for a specific enzyme and a given appli-
cation (Ye and Chi 2018). Alginate, chitosan, and xylans 
have been successfully employed as gel matrices for effec-
tive enzyme immobilization by entrapment into particles 
(microencapsulation). The immobilized enzymes prepared 
in this way, often are more stable toward external inactivat-
ing factors (Sirisha et al. 2016).

Some examples of enzyme microencapsulation have been 
recently reported by Rodriguez et al. (2018). They prepared 
alginate and alginate-bentonite microcapsules for the intesti-
nal delivery of shrimp proteases in Nile tilapia. The addition 
of bentonite to the gelling solution improved the capsule 
performance under different storage methods leading to bet-
ter retention of the enzyme activity. Furthermore, the refer-
ence diet and alginate-bentonite capsules containing shrimp 
enzymes showed a 27% higher enzyme activity in the fish 
intestines than the reference diet. The authors concluded that 
this type of microencapsulation could represent a suitable 
carrier for delivering exogenous shrimp enzymes in farmed 
fish.

Yao et al. (2019) reported that micro-encapsulated pro-
tease and carbohydrase added into the feed for Pacific white 
shrimp did not improve hepatopancreatic lipase activity. Guo 
et al. (2020) observed that microencapsulation of exogenous 
enzymes led to a decrease in the amylase activity in shrimp 
hepatopancreas, which was in contrast with the upswing 
trend in trypsin at the pancreatic segment. Thus, microen-
capsulation may have adverse effects. A possible explanation 
is that the encapsulated enzymes were not able to act in the 
proximal intestine, where most of the digestion and absorp-
tion of nutrients occurs.

In a different study, the encapsulation of microbial 
phytase in chitosan/alginate-based microcapsules improved 
the apparent digestibility and bioavailability of nutrients 
from plant protein-based diets in rainbow trout, including 
a better growth performance and tissue mineralization. The 
study was performed with 300 FTU phytase/g microcap-
sules. However, encapsulation tended to diminish phytase 
ability to release phosphorous. After 42–56 days of feed-
ing, feed efficiency was 0.75, 1.25, 0.95 and thermal growth 
coefficients were 0.110, 0.162 and 0.148 for a diet with i) no 
supplemental phytase, ii) with 3000 FTU non-encapsulated 
phytase/kg (as-fed basis), and iii) 3000 FTU encapsulated 
phytase/kg (as-fed basis), respectively. For the same type of 
diet, the P retained was, in the order, 2.92, 3.03, 3.12, and 
P intake was 6.7, 4.6, and 5.80, respectively. The authors 
ascribed this effect to a reduced interaction between the 
enzyme and dietary phytate-P (Vandenberg et al. 2011).

The points already discussed indicate that not only the 
enzyme but also its preparation and the method of enzyme 
administration to the aquatic farmed animals is of fundamen-
tal importance for optimal bioprocessing of the aquafeed. 
Although different procedures have proved to be useful for 
enzyme incorporation in the fish feed, they can vary accord-
ing to the enzyme type, enzyme biochemical properties, and 
target aquatic species and their stage of growth. However, 
the vast number of enzymes and biocompatible materials 
commercially available, jointly with the numerous tech-
niques developed for the handling and inclusions of enzymes 
in fish feed as well as in human food and pharmaceutical 
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products, can certainly lead to the development of fish feed 
enriched with enzymes. At present, a conspicuous number of 
enzyme products are available in the market as additives for 
many types of applications, from food and detergent industry 
and aquaculture. In addition, the production of enzymes used 
in feed is usually conducted through large-scale manufac-
turing methods, such as engineered bacterial fermentation, 
which generally costs less, making them affordable for large-
scale animal feed production.

For aquaculture purposes, there is a need for specific 
enzymes more active toward the components of the fish feed 
(non-starch polysaccharides, vegetable protein) and stable 
to the conditions of fish feed manufacturing (e.g., pelleting 
temperature). To this end, Bedford (2000) explored the use 
of genetic engineering to improve exogenous enzyme ther-
mal stability and adaptation to the high temperatures of the 
process of feed preparation. Gordeeva et al. (2019) increased 
the thermal stability of enzymes used in feedstuffs by site-
directed saturation mutagenesis. Genetic engineering has 
been widely used to improve enzyme properties to promote 
their better application.

Conclusions

Modern aquaculture, underpinned in the principle of sus-
tainability, requires alternative sources to FM and FO, 
which need to be transformed to reproduce as closely as 
possible to the natural fish diet. In this view, exogenous 
enzymes can be an essential component of fish feed to 
compensate for the lack of endogenous biocatalysts for the 
alternative raw materials in the feed. Several factors, such 
as the choice of the enzyme activity and enzyme proper-
ties, type of preparation, or encapsulation for administer-
ing it, conditions employed to include the biocatalyst in 
the aquafeed might cause the absence of positive effects 
on fish growth. Adding enzymes to fish feed has to take 
into account the numerous variables that the fish feed itself 
might contain. Noteworthy is the improvement of the feed 
by enzymes appears more efficient when a cocktail of 
enzymes is used instead of a single enzymatic type. Isola-
tion of new enzymes, including those promoting diges-
tion and growth, antimicrobial activity, repairing intesti-
nal inflammation, or even improving the body's immunity, 
is the direction that needs to be considered in the future 
especially under the current trend of banning the use of 
antibiotics.

Secondly, enzymes still have problems that cannot be 
ignored, such as sensitivity to high temperature, stabil-
ity toward endogenous digestive enzymes, and pH value. 
Thus, genes engineering for the development of enzymes 
with improved required properties is an area that has to be 
applied to fish feed. In enzyme processing, the stability 

of the enzymes should be ensured and maintained, and 
well-known methodologies, such as formulation or the 
application of post-spraying, can successfully address this 
issue. In addition, although the amount of enzyme added 
is small, it is necessary to further reduce the enzyme cost, 
to promote the industrial application of enzymes in aquatic 
feed under the current situation of fierce competition in 
the feed industry.
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