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Abstract
As the significance of the gut microbiota has become increasingly realized, a large number of related studies have emerged. 
With respect to the gut microbial composition of fish, the predominant gut microbes and core gut microbiota have been 
reported by many researchers. Our understanding of fish gut microbiota, especially its functional roles, has fallen far behind 
that of terrestrial vertebrates, although previous studies using gnotobiotic zebrafish models have revealed that the gut 
microbiota performs a significant role in gut development, nutrient metabolism and immune responses. Given that environ-
mental factors of marine habitats are very different from those of freshwater habitats, a distinct difference may exist in the 
gut microbiota between freshwater and marine fish. Therefore, this review aims to address the advances in marine fish gut 
microbiota in terms of methodologies, the gut microbial composition, and gnotobiotic models of marine fish, the important 
factors (host genotype and three environmental factors: temperature, salinity and diet) that drive marine fish gut microbiota, 
and significant roles of the gut microbiota in marine fish.
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Introduction

As an important part of digestion and absorption, the gut is 
also a significant immune and endocrine organ of the host. 
The gut microbiota is significant for the host as they are 
closely related to the normal operation of the intestinal func-
tions. Fish is one of the most species-rich, economically 
and ecologically important vertebrate groups, which is also 
important for the provision of quality food for human beings. 
Although much progress has been made in exploring and 
characterizing the gut microbiota in many fish species, there 
are still numerous issues to be resolved. Compared to the 
huge contribution of fish species to total vertebrate diversity, 

the gut microbiota of fish is still far from being fully under-
stood and exploited. So far, most of the studies on fish gut 
microbiota are still descriptive, and mainly concerned with 
the composition of microbial communities. Moreover, our 
understanding of the fish gut microbiota, especially its func-
tional roles, is still superficial. A large part of our insights 
into the complicated cross-talk between the gut microbiota 
and fish host is deduced from terrestrial vertebrates, and 
obtained from some studies using gnotobiotic zebrafish 
(Danio rerio). This is the most successful and mature model 
for delineating the functional roles of the gut microbiota in 
fish. Gnotobiotic animal models comprise one of the most 
significant in vivo experimental models for investigating 
the functions of the gut microbiota. Previous studies using 
gnotobiotic zebrafish have revealed that the gut microbiota 
performs significant roles in gut development, nutrient 
metabolism and immune responses (Bates et al. 2006; Koch 
et al. 2018; Semova et al. 2012). More recently, with the 
help of next generation sequencing (NGS), we have obtained 
a better understanding of composition and functional roles 
of the whole gut microbial community. Moreover, the new 
information on the gut microbiota revealed that positive and 
correct manipulation not only can considerably contribute to 
the continuous research of microbiota in animals, but may 
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also substantially benefit the aquaculture industry, which 
contributes greatly to the supply of fish consumption of the 
world.

The environmental factors of marine habitats are dra-
matically different from those of freshwater habitats, and 
include temperature, salinity, microbes and diets. Given 
that the gut microorganisms of fish mainly come from sur-
rounding water and diets, it could be expected that a dis-
tinct difference would exist in the gut microbiota between 
freshwater and marine fish, reflecting diverse environmental 
compositions (Dehler et al. 2017). In this review, we will 
focus on the advances in marine fish gut microbiota, includ-
ing methods used in investigating the gut microbiota, the 
microbial composition, gnotobiotic models, important fac-
tors that influence the gut microbiota, and significant roles 
of the gut microbiota. The comprehensive, detailed and pro-
found insights into marine fish gut microbiota will greatly 
contribute to the positive manipulation of the gut microbial 
communities of marine fish, leading to enhancement of 
marine fish health, promotion of seawater fish productivity 
and environmental improvement.

Methods used in investigating the gut 
microbiota of fish

In the process of exploring the fish gut microbiota, knowl-
edge of its composition is insufficient. Instead, the functions 
are deemed to be more important. Both culture-dependent 
and culture-independent methods are critical in this process. 
Additionally, because the host and the gut microbiota may be 
seen as an interconnected and coregulated system, we should 
explain the roles of the gut microbiota from two aspects, i.e., 
the gut microbiota and the host itself. For many years, most 
of the studies concerning the gut microbiota of fish were 
performed through traditional culture-dependent methods. 
Although less than 0.1% of the gut microbes of some fish 
could be cultured (Wang et al. 2018), the culture-dependent 
methods were beneficial in revealing intestinal microbial 
composition and functions. For example, there was ben-
efit in the assays targeting the determination of production 
and activities of enzymes and other bioactive substances 
from cultivable microorganisms. In addition, culturomics, 
which is a new methodology of culture-dependent omics, 
has been given more attention by researchers. Culturomics 
is an approach that extensively assesses microbial composi-
tion by high-throughput culture (Greub 2012) using multi-
ple culture conditions coupled with the rapid identification 
of microbial species (Lagier et al. 2018). Culturomics has 
allowed the culture of hundreds of new microbes related to 
humans, providing exciting new viewpoints on host–bacteria 
relationships (Lagier et al. 2018). However, to the best of our 

knowledge, culturomics has yet to be carried out in studies 
on the gut microbiota of fish.

Culture-independent molecular based approaches, such as 
denaturing gradient gel electrophoresis (DGGE), temporal 
temperature gradient electrophoresis (TTGE), quantitative 
real-time PCR (qPCR), fluorescence in situ hybridization 
(FISH), marker gene amplification and sequencing (e.g., 
16S rRNA for bacteria and archaea, as well as internal 
transcribed spacer (ITS) for fungi), and metagenomics 
have drastically improved our insights into the composi-
tion, structure and diversity of the gut microbiota of fish. 
Moreover, as for the roles of the gut microbiota of fish, the 
rapid development of culture-independent molecular based 
omics have provided new avenues to substantially reveal 
novel and holistic pictures of the gut microbiota functional-
ity and improve our understanding of health and pathogen-
esis. These omics involve many aspects of the host and the 
gut microbiota, such as genomics, epigenomics, transcrip-
tomics, proteomics, metabolomics in the host domain, while 
predicting functional profiling of 16S rRNA gene ampli-
con sequencing data, metagenomics, metatranscriptomics, 
metaproteomics and metametabolomics in the gut micro-
biota domain. However, some drawbacks of omics should 
not be ignored. For example, the host pollution in the gut 
microbiota metagenomics and metatranscriptomics is very 
high. In addition, there is a considerable overlap between 
the host metabolomics and the gut microbiota metametabo-
lomics. Hence, the sources of many gut metabolites are hard 
to be assigned, i.e., either to the host or the gut microbiota. 
Nonetheless, omics have really helped make great progress 
in the study of the gut microbiota, especially when using 
multi-omics approaches, which are integrative analyses of 
multiple kinds of omics data.

The gut microbial composition of marine fish

Various microbes, such as protozoa, fungi, viruses, 
archaea and bacteria, reside in the fish gut. However, bac-
teria comprise the predominant members (Merrifield and 
Rodiles 2015). The residents in the gut may be divided 
into allochthonous (free living, transient and associ-
ated with the digesta) and autochthonous (colonize the 
mucosal surface of the gut). Additionally, the density and 
composition of the microbiota varying among different 
parts of fish gastrointestinal tract have been well docu-
mented (Egerton et al. 2018; Wang et al. 2018). In their 
review, Wang et al. (2018) reported that the predominant 
intestinal microbes of marine fish are facultative anaer-
obes, comprising Vibrio, Pseudomonas, Acinetobacter, 
Corynebacterium, Alteromonas, Flavobacterium and 
Micrococcus. In general, considering the different trophic 
level of marine fish, Firmicutes usually dominate the gut 
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of marine herbivorous fish, whereas Proteobacteria are 
often predominant in the gut of marine non-herbivorous 
fish (Egerton et al. 2018). Some researchers expect that 
the entire microenvironment in the gut would be pow-
erfully affected by the predominant microbes (Romero 
et al. 2014). However, in the process of studying the gut 
microbiota, rare microorganisms may be the ignored criti-
cal players, which could regulate the diverse interactions 
within the gut. Rare species are increasingly considered 
to be significant drivers of microbiome functions (Jousset 
et al. 2017). An enlightening study of Rolig et al. (2015) 
showed that numerically minor component Shewanella 
significantly lowered zebrafish intestinal neutrophil 
response by secreting an anti-inflammatory factor, sug-
gesting that the host immune system could be potently 
affected by rarer species in the gut microbiota.

Indeed, the concept of “core gut microbiota” has also 
been proposed by many researchers (Ghanbari et  al. 
2015; Roeselers et al. 2011; Wong et al. 2013). Signifi-
cantly, the identification of the core microbiota shows 
a certain degree of plasticity by preserving microorgan-
isms required for minimum function of the gut environ-
ment (Dehler et al. 2017). However, to date, it is unclear 
whether a core gut microbiota presents in all kinds of 
fish or, if so, at what phylogenetic level. Moreover, the 
core microbiota cannot fully represent the health status 
of the host; there is still a tremendous gap in the clear 
understanding of the exact role of specific gut microbiota. 
This suggests that more attention should be paid to the 
functional contribution of the whole gut microbiota to the 
host. Furthermore, some resident members are opportun-
istic pathogens, e.g., Vibrio alginolyticus, which affects 
grouper (Epinephelus coioides) (Samad et  al. 2014), 
rockfish (Sebastes schlegeli) (Kim et al. 1999) and sil-
ver sea bream (Sparus sarba) (Li et al. 2016). However, 
the organism may exert beneficial effects, notably as a 
probiotic. In this role, V. alginolyticus was demonstrated 
to protect Atlantic salmon (Salmo salar) against some 
fish pathogenic bacteria (Austin et al. 1995). Hence, the 
boundary between a pathogen and a symbiont is often 
blurred. Moreover, comparisons between healthy and 
diseased fish may be used to characterize health-asso-
ciated microbes in the gut via determining which taxa 
are responsible for the changing health status, especially 
when including healthy wild fish in such comparisons. 
Though such comparisons may only find subtleties in the 
microbial communities, the influences of minor differ-
ences may be better delineated by studying the poten-
tial functions exerted by these subtle communities. Ulti-
mately, improved understanding of health-associated 
microbial communities in the gut will provide new 
avenues to restore the disease-associated microbiota to 
a healthy state.

Gnotobiotic models of marine fish

Gnotobiotic models, which are defined as animals reared 
under axenic conditions or with specific microbial species 
(Pham et al. 2008), have been used widely for determining 
the functions of the intestinal microbiota in a diverse range 
of animals. Actually, compared with other fish species, 
the most commonly used gnotobiotic model is zebrafish, 
which has attractive attributes, namely transparent body, 
high fecundity, large brood size, external fertilization, 
rapid external development, and abundant genomic infor-
mation (Leulier et al. 2017; Pham et al. 2008). The use of 
gnotobiotic models has greatly facilitated the determina-
tion of the interactions among the host, microbiota and 
environmental factors, and contributed to positive modula-
tion of the gut microbiota.

However, zebrafish is a freshwater fish, and it is dif-
ficult to reflect the characteristics of marine fish. There 
is a serious lack of representative species of marine fish, 
although some gnotobiotic models of marine fish have 
been developed, such as European sea bass (Dicentrarchus 
labrax) (Rekecki et al. 2009; Schaeck et al. 2016a) and 
Atlantic cod (Gadus morhua) (Forberg et al. 2011). It is 
notable that gnotobiotic models of several marine fish spe-
cies have unique advantages over the gnotobiotic zebrafish 
model. For example, European sea bass is an important 
economic fish species. Therefore, it is a very meaning-
ful model for determining the pathogenic mechanisms or 
screening effective probiotics for use in marine aquacul-
ture. Moreover, threespine stickleback (Gasterosteus acu-
leatus), which is another important model fish, possesses 
complex traits in the repeated evolution process from 
ancestral marine to derived freshwater forms (Milligan-
Myhre et al. 2016). Also, the fish inhabits many marine, 
estuarine and freshwater habitats (Hohenlohe et al. 2010), 
and has a great advantage in studying how natural genetic 
variation shapes the gut microbiota of fish. This allows 
researchers to sample a great deal of host genetic varia-
tions in an easily handled gnotobiotic experimental system 
(Small et al. 2017). Some of these gnotobiotic marine fish 
models have been used in studying the effects of microbes 
on host development (Rekecki et al. 2009), investigating 
the host natural genetic variation that leads to different 
innate immune responses to the gut microbiota (Milligan-
Myhre et al. 2016), testing probiotic candidates (Aerts 
et al. 2018; Schaeck et al. 2016b, 2017) and exploring 
host–pathogen interactions (Li et al. 2015; Rekecki et al. 
2012). However, the development and applications of gno-
tobiotic marine fish models are still in their infancy and lag 
far behind those for zebrafish. Unfortunately, there are still 
many limitations that are difficult to resolve in gnotobiotic 
models of marine fish. Firstly, using gnotobiotic marine 
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fish models is mainly dependent on the ability to easily 
breed and raise gnotobiotic marine fish; this is difficult. 
Secondly, it is hard to maintain the gnotobiotic status for 
a long time. Thirdly, the specific nutritional requirements 
of gnotobiotic marine fish are largely unknown. Therefore, 
providing gnotobiotic marine fish with adequate nutrition 
is a huge challenge. Lastly, considering the high diver-
sity of marine fish and their habitats, the existing kinds 
of gnotobiotic marine fish models are too limited to fully 
reflect the characteristics of each marine fish. Therefore, 
a great deal of effort should be put into finding the most 
representative marine fish species to establish gnotobiotic 
models, and further ensure that multigenerational lines 
may be maintained in these gnotobiotic models.

Factors influencing marine fish gut 
microbiota

A variety of factors can drive the gut microbiota of marine 
fish, including host factors (such as genotype, physiologi-
cal status and trophic level) and environmental factors (for 
example, diet, water temperature and salinity) (Egerton et al. 
2018; Gatesoupe et al. 2016; Guerreiro et al. 2016; Liu et al. 
2019a; Smith et al. 2015) (Fig. 1). Indeed, the composition 
and structure of marine fish gut microbiota are the result of 
the joint action of many factors. Consequently, it is difficult 
to be sure which factor plays a decisive role. Here, we will 
focus on the host genotype, water temperature and salinity, 
and diet.

Host genotype

Getting insights from animal models and human research, 
it is well established that the host exerts control in select-
ing and regulating its microbiota (Kostic et  al. 2013). 
This is the same for fish (Legrand et al. 2020). The fish 
genotype covaried with the gut microbiota composition 
and the populations with greater genetic divergences 
showed more divergences in the gut microbiota (Smith 
et al. 2015). Smith et al. (2015) demonstrated that internal 
sorting processes (host genotype) may contribute more to 
population level differences in the gut microbiota of three-
spine stickleback than colonization processes (transient 
environmental effects). Using the gnotobiotic threespine 
stickleback model, Milligan-Myhre et al. (2016) found that 
no matter that fish were exposed to complex communi-
ties of microbes or exposed to a gut isolate Pseudomonas 
KMM0021, the ancestral oceanic population generated a 
stronger innate immune response to the gut microbiota 
than the derived freshwater population. This revealed that 
different immune responses to the gut microorganisms can 
exist in closely related populations. Consistently, in Atlan-
tic salmon, Webster et al. (2018) found that population 
genetic variation was correlated with structure and diver-
sity of the gut microbiome. In addition to the intraspecific 
level, host genetics plays a role in shaping the gut micro-
biota at the interspecific level (Fietz et al. 2018). Intrigu-
ingly, the major histocompatibility complex (MHC) II 
was considered to be conserved among jawed vertebrates. 
However, Star et al. (2011) reported that Atlantic cod lacks 
the genes for MHC II. This system takes responsibility for 
the classical adaptive immune response against parasitic 
and bacterial infections by activating CD4+ T cells in other 
vertebrates (Star and Jentoft 2012). Hence, the absence of 
MHC II may influence the interactions between Atlantic 
cod and its microbial community (Star et al. 2013), which 

Fig. 1   Factors influencing the gut microbiota of marine fish. When 
various influence factors are at normal levels, the gut microbiota will 
remain homeostasis. However, if some influence factors are at abnor-
mal levels, the gut microbiota will be dysbiosis. The gut microbiota 
(whether it is the predominant, rare, core, or healthy gut microbiota) 
plays an important role in the host, such as nutrition, development 
and immunity
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to some extent indicates the host-specific selection of the 
gut microbiota. Also, Riiser et al. (2018) speculated that 
lacking differentiation in the intestinal microbiome of 
Atlantic cod may be related to the lack of MHC II.

Water temperature and salinity

Fish are poikilothermic organisms that are exposed to sea-
sonal or daily temperature fluctuations in natural environ-
ments. Temperature could influence the gut microbiota of 
poikilotherms through modulation of the host metabolic 
responses or a direct effect on the gut microbial commu-
nity (Soriano et al. 2018). Turbot (Scophthalmus maxi-
mus) reared at 15 °C had lower intestinal bacterial rich-
ness and diversity than those reared at 20 °C (Guerreiro 
et al. 2016). Water temperature corresponded to changes 
in Atlantic salmon gut microbiome both with α-diversity 
and β-diversity indices (Nguyen et al. 2020). Also, Horlick 
et al. (2020) and Soriano et al. (2018) found a temperature-
related change in the gut microbiota of yellowtail kingfish 
(Seriola lalandi). Through a seasonal study, Hatje et al. 
(2014) reported that the persistence and prevalence of 
Vibrio and Pseudomonas species in the gut of Atlantic 
salmon were caused mainly by water temperature. Sim-
ilarly, previous studies showed that lactic acid bacteria 
(LAB) count of hindgut feces of Atlantic salmon decreased 
in response to elevated water temperatures (Neuman et al. 
2016, 2018).

Salinity may also exert major impacts on the fish gut 
microbiota, particularly in the case of some euryhaline 
marine fish. Salinity is the major variable that determines 
environmental microbial community composition, world-
wide (Lozupone and Knight 2007). This means that fish may 
encounter different microbes in different salinity environ-
ments, which may influence the fish gut microbiota. Addi-
tionally, salinity change-associated shift in the intestinal 
microbiota is likely to have resulted from the host response 
to salinity stress and the effects of subsequent stress on the 
intestinal microbiota (Zhang et al. 2016). The fish intestine 
is an important osmoregulatory organ (Wong et al. 2014), 
and when the intestine exerts osmoregulatory functions, 
the intestinal habitat niches for microbes may change. This 
could contribute to altering the intestinal microbiota (Dehler 
et al. 2017). Liu et al. (2019a) reported that the intestinal 
microbiota of Golden pompano (Trachinotus ovatus) was 
very different in each salinity (5, 15, 25 and 35) group. The 
results of the study of Hamilton et al. (2019) on wild Arc-
tic charr (Salvelinus alpinus) populations showed salinity-
mediated turnover in the intestinal microbiota. Interesting 
insights may be acquired from two comparable studies inves-
tigating the effect of salinity stress on the gut microbiota of 
Atlantic salmon. Dehler et al. (2017) reported that compared 

with freshwater fish, seawater fish have a lower α-diversity 
and higher abundance of Firmicutes (55.6%). However, Rudi 
et al. (2018) found that the α-diversity is higher in seawater 
fish, which are dominated also by Firmicutes (> 80%). The 
exact mechanisms behind this distinctive difference deserve 
further investigations.

Diet

Diet composition – these include proteins (Gajardo et al. 
2017; Nyman et al. 2017; Parma et al. 2016; Schmidt et al. 
2016), lipids (Castro et al. 2019; You et al. 2019; Yu et al. 
2019), carbohydrates (Gatesoupe et al. 2014; Zhao et al. 
2020), vitamins (Huang et al. 2019; Xun et al. 2019), pro-
biotics (Jaramillo-Torres et al. 2019; Lauzon et al. 2010), 
prebiotics (Gupta et al. 2019; Li et al. 2019b; Su et al. 
2017), and many other additives (Dai et al. 2020; Luo et al. 
2020; Piazzon et al. 2017), and diet processing technolo-
gies (Barreto-Curiel et al. 2018)—may induce changes in 
the gut microbiota of marine fish. More detailed effects of 
diet on the gut microbiota of aquatic animals may be found 
in the review by Ringø et al. (2016). As it is well recog-
nized, many marine fish species are carnivorous that prefer 
fish meal more so than plant proteins. To reduce the use 
of expensive fishmeal, many studies have been conducted 
to investigate the effects of alternative protein sources for 
fish meal on marine fish. These include dietary plant pro-
tein sources for feeding to turbot (Chen et al. 2018; Li et al. 
2019a, 2020; Liu et al. 2019b), Atlantic salmon (Bakke-
McKellep et al. 2007; Green et al. 2013; Reveco et al. 2014), 
gilthead sea bream (Sparus aurata) (Estruch et al. 2015), 
yellow drum (Nibea albiflora) (Tan et al. 2020), and large 
yellow croaker (Larimichthys crocea) (Wang et al. 2019b). 
These studies showed that the gut microbiota and overall 
health of marine fish could be affected by plant proteins as 
substitutes for fish meal. It is noteworthy that our previous 
studies on turbot have demonstrated that adding moderate 
amounts of anti-nutritional factors (e.g., glycinin, daidzein, 
xylan and stachyose) to diet could positively shape the gut 
microbiota and promote the host’s health; however, too much 
is harmful (Hu et al. 2015a, b; Li et al. 2017; Ou et al. 2019; 
Yang et al. 2018, 2019). Therefore, replacing fish meal with 
plant protein sources and applying anti-nutritional factors in 
aquafeed must be more carefully considered.

Functions of marine fish gut microbiota

The gut microbes affect the host in many ways, including 
involvement in a variety of physiological activities. Moreo-
ver, the mechanisms governing the host-gut microbiota 
interactions and how these mechanisms exert effects on the 
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host phenotypes are very complicated. Therefore, the full 
and in-depth understanding of the functional contributions 
of the gut microbiota will provide tantalizing new prospects 
for optimizing and maintaining the host’s health through tar-
geted regulation of the gut microbiota. The following section 
will be focused on the roles of the gut microbiota in nutrition 
(Table 1), development (Table 2) and immunity (Table 3) of 
marine fish.

Nutritional function

Many residents in the gut have enzymes that contribute to 
utilizing some ingredients of diets, especially some other-
wise indigestible components. Many marine fish species are 
carnivorous, and enzymes contributing to protein digestion 

play a vital role in their digestive and absorptive process. 
Moreover in general, carbohydrate utilization varies in dif-
ferent fish species, with omnivores or herbivores tolerat-
ing higher levels of dietary carbohydrates than carnivores 
(Oliva‐Teles 2012). Therefore, microbes, which are capable 
of degrading cellulose, starch and other carbohydrates, could 
be used as potential probiotics for carnivorous fish. Many 
marine fish gut-derived bacterial strains possess enzymes 
that aid in digestion, and include amylases, proteases, cel-
lulases and lipases (Liu et al. 2020; Niu et al. 2019; Ramirez 
and Dixon 2003). The digestive enzyme-producing microbes 
isolated from fish guts have been comprehensively reviewed 
by Ray et al. (2012). In addition, the supplementation with 
probiotics could elevate intestinal digestive enzyme activi-
ties of marine fish. For example, compared with controls, 
i.e., without probiotics, juvenile olive flounder (Paralich-
thys olivaceus) fed with Bacillus sp. SJ-10 had significantly 

Table 1   Studies related to the nutritional functions of the gut microbiota of marine fish

Species Noteworthy results Reference

Southern flounder (Paralichthys lethostigma) Some intestinal isolates of Clostridium showed enzyme activities 
of alkaline and acid phosphatases, esterase lipase (C8), phos-
phohydrolase and leucine arylamidase

Ramirez and Dixon (2003)

Olive flounder (Paralichthys olivaceus) Bacillus licheniformis KCCM 43270 isolated from the intestine 
can secrete amylase, protease, cellulase and lipase

Niu et al. (2019)

Golden pompano (Trachinotus ovatus) Bacillus pumilus A97 derived from the intestine have protease 
activity and amylase activity

Liu et al. (2020)

Olive flounder Bacillus sp. SJ-10 significantly increased activities of intestinal 
amylase, trypsin and lipase, and Lactobacillus plantarum sig-
nificantly increased the activities of intestinal trypsin and lipase

Jang et al. (2019)

Yellowtail kingfish (Seriola lalandi) Pathways about amino acid metabolism were more abundant in 
the gut microbiota of wild fish while more abundant of carbohy-
drate metabolism in farmed fish

Ramírez and Romero (2017b)

Fine flounder (Paralichthys adspersus) The intestinal microbiota of cultured fish had significantly 
increased pathways related to the pentose phosphate pathway as 
well as the amino sugar and nucleotide sugar metabolism. While 
wild fish manifested more noteworthy functional pathways 
(unsaturated fatty acids, SCFAs, biotin)

Ramírez and Romero (2017a)

Rabbitfish (Siganus fuscescens) Levels of SCFAs (the index of microbial fermentation activity) 
within the hindgut were similar in both tropical and temperate 
populations

Jones et al. (2018)

Surgeonfishes Multi-omics methods detailed the importance of giant enteric 
symbionts belonging to members of “Epulopiscium” bacterial 
lineage with respect of their functional roles in digesting algal 
polysaccharides

Ngugi et al. (2017)

Maroon clownfish (Premnas biaculeatus) In predicted metagenome, unfed-state time points enriched in 
functions related to metabolism, degradation, or biosynthesis. In 
metatranscriptome, the unfed state was also dominated by func-
tions related to metabolism

Parris et al. (2019)

Olive flounder The metabolome results showed that intestinal isolate Lactococ-
cus lactis WFLU12 significantly elevated concentrations of 
some beneficial metabolites in the intestine. Also, it has genes 
encoding enzymes that contribute to the production of these 
metabolites

Nguyen et al. (2018)

Atlantic salmon (Salmo salar) The functions of oxidative phosphorylation and citrate cycle in 
the intestinal microbiota were increased in the freshwater stage

Dehler et al. (2017)
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higher activities of amylase, trypsin and lipase in the intes-
tine. In comparison, the activities of intestinal trypsin and 
lipase were significantly increased in fish fed with Lactoba-
cillus plantarum (Jang et al. 2019). Currently, formulated 
diets for farmed marine carnivorous fish contain numerous 
carbohydrates. Therefore, the nutritional functions of their 
gut microbiota shift to help the host better digest these high-
carbohydrate formulated diets. A previous study showed that 
pathways about amino acid metabolism were more abun-
dant in the gut microbiota of wild yellowtail kingfish but 
more abundant for carbohydrate metabolism in farmed fish. 
This apparent difference may be attributed to different diets, 
namely common protein-rich prey (e.g., squid, shrimp and 
fish) for wild fish and artificial carbohydrate-rich feed for 
farmed fish (Ramírez and Romero 2017b). Consistently as 
compared with wild fine flounder (Paralichthys adspersus) 
(commonly fed on anchovy (Engraulis ringens) and crusta-
ceans), predicted functions demonstrated that the intestinal 
microbiota of cultured flounder (fed with the artificial diet 
containing 11% carbohydrates) had significantly increased 

pathways related to the pentose phosphate pathway and 
amino sugar and nucleotide sugar metabolism (Ramírez and 
Romero 2017a).

In addition to marine carnivorous fish, piscine herbivores 
attract much attention in regard to their nutritional ecology, 
which has remained largely unknown. Clarification is needed 
to explain the roles of the gut microorganisms of marine 
herbivorous fish in the gut digestive processes. The work of 
Sullam et al. (2012) suggested that the gut bacterial com-
munities of marine herbivorous fish show close relationships 
to those of mammals. Through fermentation, the gastroin-
testinal microbes provide SCFAs for marine herbivorous 
fish (Clements and Choat 1995; Mountfort et al. 2002). For 
example, in rabbitfish (Siganus fuscescens), similar levels 
of SCFAs within the hindgut were observed from tropi-
cal to temperate populations (Jones et al. 2018). Interest-
ing insights may be gained from herbivorous surgeonfishes 
whose major food source is marine algae. Using multi-omics 
methods, Ngugi et al. (2017) detailed the importance of 
giant enteric symbionts belonging to the “Epulopiscium” 

Table 2   Studies related to the roles of the gut microbiota of marine fish in host development

Species Noteworthy results Reference

Senegalese sole (Solea senegalensis) Shewanella putrefaciens Pdp11 promoted early metamor-
phosis and enhanced growth performance

Lobo et al. (2014)

European sea bass (Dicentrarchus labrax) Lactobacillus delbrueckii delbrueckii significantly 
increased the gene expression of IGF-I (Insulin-like 
Growth Factor-I), and significantly inhibited the tran-
scription of myostatin (MSTN)

Carnevali et al. (2006)

Senegalese sole Shewanella putrefaciens Pdp11 up-regulated the transcrip-
tions of GH (growth hormone) and IGF-IR (insulin-like 
growth factor-I receptor)

Jurado et al. (2018)

European sea bass Pediococcus acidilactici can improve skeletal conforma-
tion

Lamari et al. (2013)

European sea bass Probiotic increased intestinal alkaline phosphatase activity Tovar-Ramırez et al. (2004)
Senegalese sole Probiotic increased intestinal alkaline phosphatase activity Sáenz de Rodrigáñez et al. (2009)
Threespine stickleback (Gasterosteus aculeatus) Oceanic population monoassociated with gut isolate 

Pseudomonas KMM0021 raised the odds of possessing a 
more developed gut compared with germ-free group

Milligan-Myhre et al. (2016)

Olive flounder (Paralichthys olivaceus) The length of intestinal villi and microvilli increased in the 
probiotic-supplemented groups

Jang et al. (2019)

Golden pompano (Trachinotus ovatus) Indigenous Bacillus pumilus A97 significantly increased 
intestinal villus lengths and villus widths

Liu et al. (2020)

Olive flounder Lactococcus lactis BFE920 significantly increased intes-
tinal gene expression level of occludin and significantly 
lowered gut permeability

Beck et al. (2016)

Pacific red snapper (Lutjanus peru) Lactobacillus sakei increased more mixed mucin (neu-
tral + acid) goblet cells in the intestine

Reyes-Becerril et al. (2014)

European sea bass Conventional static larvae were shorter, smaller and had a 
less developed gastrointestinal tract than germ-free static 
larvae, but the gastrointestinal tract morphology is not 
really qualitatively different between them

Rekecki et al. (2009)

Atlantic salmon (Salmo salar) Lactobacillus delbrueckii subsp. lactis maintained a 
healthy intestinal barrier, whereas Aeromonas salmoni-
cida subsp. salmonicida damaged intestinal integrity

Salinas et al. (2008)
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bacterial lineage colonizing these fish with respect of their 
functional roles in digesting algal polysaccharides. At last, 
they concluded that the acquisition of a specific enteric 
microbiota specialized to the host diets is a key niche-parti-
tioning driver in shaping the nutritional ecology of marine 
herbivorous fish.

Parris et  al. (2019) used a multi-omics approach to 
investigate functional differences of the intestinal micro-
biota between fed and unfed maroon clownfish (Premnas 
biaculeatus), which is a marine omnivorous fish. In the 
predicted metagenome, unfed-state time points enriched 
in functions related to metabolism, degradation, or biosyn-
thesis, e.g., amino acid metabolism, fatty acid metabolism, 
secondary bile acid production, sphingolipid biosynthesis, 
and the degradation of many organic compounds. Consist-
ently, metatranscriptome sequencing of the unfed state was 
dominated by functions related to metabolism, significantly 
amino acid metabolism and carbohydrate metabolism (pyru-
vate metabolism and the citric acid cycle, fermentation or 
the metabolism of fermentation intermediates, and the deg-
radation of cellulose or other complex organic molecules).

It is emphasized that gut microbes have enzymes which 
generate some beneficial metabolites (such as amino acids, 
unsaturated fatty acids, short chain fatty acids (SCFAs) and 
vitamins). Using metabolome technology, Nguyen et al. 
(2018) found that dietary administration of Lactococcus 
lactis WFLU12, which was isolated from the intestine of 
olive flounder, significantly elevated concentrations of some 
beneficial metabolites, for example, citrulline, taurine, tri-
carboxylic acid cycle (TCA) intermediates, vitamins and 
SCFAs in the intestine of olive flounder. Also, they found 
that this probiotic strain has genes encoding enzymes that 
contribute to the production of these metabolites. Hence, 
they speculated that these increased metabolites may result 
from administration of this probiotic strain. In addition, pre-
dicted functions indicated that compared with cultured fine 
flounder, the intestinal microbiota of wild flounder mani-
fested more noteworthy functional pathways (unsaturated 
fatty acids, SCFAs, biotin) (Ramírez and Romero 2017a). 
Furthermore, substantial differences in nutritional function 
of the gut microbiota occur in some specific conditions (for 
example, transfer from freshwater to seawater) that can help 
the host better adapt to the environment. In Atlantic salmon, 

Table 3   Studies related to the immunological roles of the gut microbiota of marine fish

Gut-associated lymphoid tissue: GALT; interleukin-6: IL-6; interleukin-8: IL-8; tumor necrosis factor α: TNF-α; toll-like receptor 8: TLR8; 
toll-like receptor 9: TLR9; proliferating cell nuclear antigen: PCNA; infectious pancreatic necrosis virus: IPNV; acid phosphatase: ACP; immu-
noglobulin M: IgM

Species Noteworthy results Reference

Olive flounder (Paralichthys olivaceus) Host-derived nisin Z- and colicin V-producing probiotic Lactococ-
cus lactis WFLU12 showed well competitive exclusion activities 
against Streptococcus parauberis in the intestine

Nguyen et al. (2017)

Fine flounder (Paralichthys adspersus) Compared with wild fish, predicted functions showed that the biosyn-
thesis of ansamycins is more abundant in the intestinal microbiota 
of cultured fish

Ramírez and Romero (2017a)

Gilthead sea bream (Sparus aurata) Dietary supplementation of probiotics at the early feeding state 
increased the number of Ig+ cells and acidophilic granulocytes in 
the GALT

Picchietti et al. (2007)

European sea bass (Dicentrarchus labrax) Developing fish fed with autochthonous intestinal Lactobacillus del-
brueckii ssp. delbrueckii (AS13B) had significantly higher density 
of intestinal T cells and acidophilic granulocytes

Picchietti et al. (2009)

Olive flounder Hindgut indigenous Lactobacillus plantarum FGL0001 significantly 
upregulated intestinal gene expressions of IL-6, IL-8, and TNF-α, 
and enhanced the survival rate after challenge with Streptococcus 
iniae

Beck et al. (2015)

Golden pompano (Trachinotus ovatus) Serum lysozyme activity and total protein, intestinal gene expression 
of TLR8 and kidney gene expression of TLR9, as well as disease 
resistance against Vibrio ponticus were all significantly increased 
by autochthonous intestinal strain Bacillus pumilus A97

Liu et al. (2020)

Atlantic salmon (Salmo salar) Pediococcus acidilactici MA18/5 M significantly elevated gene 
expressions of PCNA, TNF-α, and genes related to antiviral protec-
tion in the distal intestine during the seawater stage, and increase 
resistance against IPNV after seawater transfer

Jaramillo-Torres et al. (2019)

Atlantic salmon The levels of serum ACP and IgM, as well as resistance against 
Aeromonas salmonicida were up-regulated by a probiotic complex 
consisting of Bacillus velezensis V4 and Rhodotorula mucilaginosa

Wang et al. (2019a)
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the functions of oxidative phosphorylation and citrate cycle 
in the intestinal microbiota were increased in the freshwater 
stage, revealing that the host obtains more free energy that 
could be used for the requisite changes during smoltifica-
tion and energy needs during the subsequent osmoregulatory 
adaptation in the seawater stage (Dehler et al. 2017).

The roles in host development

The involvement of the gut microbiota in regulating the 
host development is an important physiological role of the 
gut microbiota. Lobo et al. (2014) showed that dietary sup-
plementation of probiotic Shewanella putrefaciens Pdp11 
promoted early metamorphosis and enhanced growth per-
formance of Senegalese sole (Solea senegalensis) larvae. 
Carnevali et al. (2006) reported that juvenile European sea 
bass fed with probiotic Lactobacillus delbrueckii delbrueckii 
significantly increased the gene expression of IGF-I (Insulin-
like Growth Factor-I) which is synthesized in all tissues and 
promotes growth and differentiation of muscle and cartilage 
in various systems, and significantly inhibited the transcrip-
tion of myostatin (MSTN) which can negatively regulate 
muscular growth. Moreover, IGF-I is an important factor in 
the somatotrophic axis, having a role as a mediator of the 
action of GH (growth hormone) on somatic growth regula-
tion. And the IGF-I binds to a membrane receptor IGF-IR 
(insulin-like growth factor-I receptor) to play its role (Jurado 
et al. 2018). Jurado et al. (2018) found that dietary supple-
mentation of probiotic Shewanella putrefaciens Pdp11 up-
regulated the transcriptions of GH and IGF-IR in Senega-
lese sole larvae, resulting in an increase in their growth. 
Moreover, through histological observations and osteocalcin 
gene expression analysis, Lamari et al. (2013) confirmed that 
dietary inclusion of allochthonous probiotic Pediococcus 
acidilactici could improve skeletal conformation in Euro-
pean sea bass larvae, although the mode of action needs 
further elucidation.

Delineating the functional roles of the gut microbiota 
in marine fish gut development are still in its infancy. Yet, 
some intestinal enzymes are good indicators of intestinal 
development. An example includes alkaline phosphatase, 
which mainly lies on the enterocyte brush border mem-
brane (Hauville et al. 2016). Increased intestinal alkaline 
phosphatase activity by dietary probiotic administration 
have been reported in European sea bass (Tovar-Ramırez 
et al. 2004) and Senegalese sole (Sáenz de Rodrigáñez et al. 
2009). Milligan-Myhre et al. (2016) reported that oceanic 
populations of threespine stickleback monoassociated with 
Pseudomonas KMM0021, which was isolated from stickle-
back gut, raised the odds of possessing a more developed gut 
by 2.017 times compared with a germ-free group. Besides, 
dietary supplementation of probiotics may increase the 

length and width of intestinal villi and the microvilli of juve-
nile marine fish (Jang et al. 2019; Liu et al. 2020). During 
gut development, the intestinal barrier integrity is gradually 
enhanced. Moreover, the intestinal tight junctions and mucus 
are important for intestinal barrier integrity. Olive floun-
der fed with Lactococcus lactis BFE920 had significantly 
higher intestinal gene expression of occludin, which is a 
significant member involved in tight junctions, and exhib-
ited significantly lower gut permeability (Beck et al. 2016). 
Pacific red snapper (Lutjanus peru) fed with Lactobacillus 
sakei had more mixed mucin (neutral + acid) goblet cells in 
the intestine (Reyes-Becerril et al. 2014). However, some 
studies showed inconsistent results. Morphometrical and ste-
reological approaches revealed that conventional static sea 
bass larvae were shorter, smaller and had a less developed 
gastrointestinal tract than germ-free static sea bass larvae. 
Yet, the gastrointestinal tract morphology of conventional 
larvae did not really qualitatively differ from those of germ-
free larvae by light microscopy (Rekecki et al. 2009). These 
authors speculated that the reason for this result might be 
that germ-free fish did not possess any microbes which could 
compete for nutrients or produce toxic products. Besides, 
some pathogenic bacteria are capable of damaging the intes-
tinal epithelium. Salinas et al. (2008) demonstrated that a 
healthy intestinal barrier was observed in Atlantic salmon 
foregut incubated with probiotic Lactobacillus delbrueckii 
subsp. Lactis. Conversely, a damaged intestinal integrity was 
found in the foregut incubated only with Aeromonas salmo-
nicida subsp. salmonicida; however, the damaging effects 
of Aeromonas was prevented by pre-incubation of the fore-
gut with L. delbrueckii subsp. lactis. Indeed, damage of fish 
intestinal mucosal barrier caused by imbalance of host-gut 
microbiota symbiosis and infection of enteric pathogen can 
hamper fish gut development.

The negative effects caused by plant-based protein 
sources on farmed marine fish notably the intense intestinal 
inflammatory response that can destroy the intestinal epithe-
lium results in poor intestinal development. Consequently, 
many studies have focused on exploring functional feed 
additives that counteract these adverse effects and positively 
shape the gut microbiota, as well as studying the causal rela-
tionship between the gut microbiota and enteritis (Bakke-
McKellep et al. 2007; Liu et al. 2018, 2019b). However, 
most of these studies provide only an apparent association 
between the gut microbiota and enteritis. The exact roles of 
the gut microbiota in repairment, renewal and development 
of the intestinal epithelium in enteritis are still poorly under-
stood and merit further investigations. Similarly, replacing 
fish oil with vegetable oils may lead to intestinal inflamma-
tion, gut microbiota dysbiosis and intestinal mucosal barrier 
damage in marine fish (You et al. 2019). Therefore, it is 
likely to be a long time before vegetable oils may be used 
safely and efficiently with marine fish.
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Immunological roles

The normal function of the gut microbiota is crucial to 
immunity and homeostasis. Dysbiosis of the gut microbiota 
could result in immune dysfunction and increased risk of 
disease. The abuse of antibiotics has caused many bacteria 
to develop drug resistance, the spread of which has devel-
oped into a serious problem threatening and restricting the 
development of aquaculture. Healthy aquaculture desires 
natural immune enhancers instead of antibiotics for help-
ing the host resist pathogens while keeping fish healthy and 
environment friendly. The beneficial microbes in the fish gut 
may provide the host with some direct and/or indirect immu-
nological benefits. The indirect immunological benefits are 
correlated with directly preventing the colonization, invasion 
and infection of pathogens. For example, these roles include 
competing for nutrients and niches, secreting antimicrobial 
substances (such as bacteriocins, toxins and siderophores), 
and modifying the host internal environment (for example, 
decreasing the intestinal pH). Numerous studies have proved 
that some strains isolated from the marine fish gut may exert 
inhibitory effects on pathogens in vitro (Askarian et al. 2012; 
Cai et al. 1998; Liu et al. 2020; Robertson et al. 2000; Sug-
ita et al. 1997; Westerdahl et al. 1991). Host-derived nisin 
Z- and colicin V-producing probiotic Lactococcus lactis 
WFLU12 showed profound competitive exclusion activities 
against Streptococcus parauberis in the intestine of olive 
flounder (Nguyen et al. 2017). As mentioned above, the gut 
microorganisms of marine fish can produce SCFAs, which 
decrease the intestinal pH that create a less favorable intesti-
nal environment for several pathogens. Compared with wild 
fine flounder, predicted functions showed that the biosynthe-
sis of ansamycins is more abundant in the intestinal micro-
biota of cultured flounder. These compounds may protect 
cultured fish against bacterial pathogens in the case of high-
density intensive aquaculture (Ramírez and Romero 2017a).

The direct immunological benefits are related to the gut 
microbe-mediated development and maturation of the gut-
associated lymphoid tissue (GALT) that not only protects 
against infections but also regulates immune function in 
the digestive tract (Rhee et al. 2004) and the gut microbe-
mediated enhancement of the host immune responses. The 
gut microbiota may directly influence the teleost immune 
system via exposing microbe-associated molecular patterns 
(MAMPs) and secreting factors. Besides, the gut microbiota 
and their secreted factors may act locally on the gut mucosal 
epithelium, or systemically by entering the host circulation, 
or activating immune cells. Then, these cells move from 
mucosal sites to systemic lymphoid tissues (Kelly and Sali-
nas 2017). However, the more detailed mechanisms remain 
greatly elusive and merit further investigations. Some pre-
vious studies have proved the promoting effects of marine 

fish gut microbiota on the development and maturation of 
the GALT. In gilthead sea bream, dietary supplementation 
of probiotics at the early feeding state increased the number 
of Ig+ cells and acidophilic granulocytes in the GALT (Pic-
chietti et al. 2007). Autochthonous intestinal Lactobacillus 
delbrueckii ssp. delbrueckii (AS13B), which was isolated 
from adult European sea bass, was administered to develop-
ing fish to determine its effects on development and differ-
entiation of the GALT. Here, the results revealed that treated 
fish had a significantly higher density of intestinal T cells 
and acidophilic granulocytes compared with controls (Pic-
chietti et al. 2009).

Marine fish gut microbe-mediated enhancement of the 
host immune responses has been well documented. Com-
pared with the control group, dietary supplementation of 
indigenous Lactobacillus plantarum FGL0001, which was 
isolated from the hindgut of olive flounder, significantly 
upregulated intestinal gene expressions of interleukin-6 
(IL-6), interleukin-8 (IL-8), and tumor necrosis factor α 
(TNF-α) of olive flounder, and enhanced the survival rate 
after challenge with Streptococcus iniae (Beck et al. 2015). 
Compared with the control fish, serum lysozyme activity and 
total protein, intestinal gene expression of toll-like receptor 
8 (TLR8) and kidney gene expression of toll-like receptor 9 
(TLR9), and disease resistance against Vibrio ponticus were 
all significantly increased in golden pompano after feeding 
with an autochthonous intestinal strain of Bacillus pumilus 
A97 (Liu et al. 2020). Dietary inclusion of Pediococcus aci-
dilactici MA18/5 M significantly elevated gene expressions 
of proliferating cell nuclear antigen (PCNA), TNF-α, and 
genes related to antiviral protection in the distal intestine 
of Atlantic salmon during the seawater stage, and increased 
fish resistance against infectious pancreatic necrosis virus 
(IPNV) after seawater transfer (Jaramillo-Torres et al. 2019). 
Compared to controls, the levels of serum acid phosphatase 
(ACP) and immunoglobulin M (IgM), and resistance against 
Aeromonas salmonicida were up-regulated in Atlantic 
salmon fed with probiotics consisting of Bacillus velezensis 
V4 and Rhodotorula mucilaginosa (Wang et al. 2019a).

Conclusions and future prospects

Because of the intimate interaction between the gut micro-
biota and its host, under normal circumstances, the two may 
be regarded as symbiotic. Both host factors and environ-
mental factors are responsible for the homeostasis or dys-
biosis of the gut microbiota. The marine fish gut microbiota 
is very diverse, and exerts an important role in the host 
(such as nutrition, development and immunity). It is neces-
sary to unravel the significant roles of the gut microbiota, 
whether focused on the predominant, rare, core or healthy 
gut components. When there is a deeper understanding of 
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the precise mechanisms by which various factors affect the 
gut microbiota, we may draw on the advantages and avoid 
the disadvantages, that is, to prevent the imbalance of the 
gut microbiota and maintain its homeostasis.

Until now, the reproducibility and comparability across 
studies focusing on the gut microbiota of fish are very poor. 
To solve these problems, experimental approaches includ-
ing sample collection and storage, laboratory procedures, 
sequencing methods and data analyses need to be improved 
and standardized. In addition, the gnotobiotic-rearing tech-
niques must be advanced as there are deficiencies in the 
existing gnotobiotic marine fish models. So far, much of our 
insights into the interactions between the gut microbes and 
marine fish is limited to bacteria. Unique and complex roles 
of more various microbial lineages, such as fungi, archaea, 
viruses and parasites, remain largely uncharacterized, and 
need further investigations. Moreover, as the interactions 
between the gut microbiota and its host is very complex, it 
is necessary to use multi-omics approaches to delineate the 
roles of unique gut microbial assemblages in the host. Ulti-
mately, studying the roles of the gut microbiota in fish will 
not only help to fill the gap in basic biology, but also help 
to optimize fish gut microbiota to promote the development 
of aquaculture.
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