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Abstract 

Background  Detecting treatment effect heterogeneity is an important objective in cluster randomized trials and 
implementation research. While sample size procedures for testing the average treatment effect accounting for par-
ticipant attrition assuming missing completely at random or missing at random have been previously developed, the 
impact of attrition on the power for detecting heterogeneous treatment effects in cluster randomized trials remains 
unknown.

Methods  We provide a sample size formula for testing for a heterogeneous treatment effect assuming the outcome 
is missing completely at random. We also propose an efficient Monte Carlo sample size procedure for assessing het-
erogeneous treatment effect assuming covariate-dependent outcome missingness (missing at random). We compare 
our sample size methods with the direct inflation method that divides the estimated sample size by the mean follow-
up rate. We also evaluate our methods through simulation studies and illustrate them with a real-world example.

Results  Simulation results show that our proposed sample size methods under both missing completely at random 
and missing at random provide sufficient power for assessing heterogeneous treatment effect. The proposed sample 
size methods lead to more accurate sample size estimates than the direct inflation method when the missingness 
rate is high (e.g., ≥ 30%). Moreover, sample size estimation under both missing completely at random and missing 
at random is sensitive to the missingness rate, but not sensitive to the intracluster correlation coefficient among the 
missingness indicators.

Conclusion  Our new sample size methods can assist in planning cluster randomized trials that plan to assess a het-
erogeneous treatment effect and participant attrition is expected to occur.
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Contributions to the literature

•	 No previous studies have formally investigated how 
attrition can affect the sample size estimation in clus-
ter randomized trials when the objective is to assess 
treatment effect heterogeneity.

•	 We provide a sample size formula for testing a het-
erogeneous treatment effect assuming the outcome is 
missing completely at random.

•	 We describe an efficient Monte Carlo sample size 
procedure for assessing a heterogeneous treatment 
effect assuming covariate-dependent outcome miss-
ingness.

•	 We found that the intracluster correlation coeffi-
cient among the missingness indicators has a limited 
impact on the power of heterogeneous treatment 
effect analysis in cluster randomized trials.

Background
Cluster randomized trials (CRTs) correspond to a study 
design that allocate intervention at the group or commu-
nity level and are increasingly popular in implementa-
tion science research [1, 2]. An essential component in 
planning CRTs is to estimate the sample size that pro-
vides sufficient statistical power for detecting a clini-
cally meaningful effect size [3, 4]. When randomizing 
clusters, the intracluster correlation coefficient (ICC)—a 
quantity that measures the similarity in outcomes among 
units within the same cluster—is a driving factor for 
variance inflation and must be accounted for [5]. There 
has been a growing interest in studying the heterogene-
ous treatment effects (HTE) in clinical and public health 
research, particularly for studies with a health equity 
objective [6, 7]. Broadly, HTE refers to the differences in 
treatment effects across different subpopulations defined 
by levels of baseline covariates or effect modifiers (e.g., 
age, sex, education) and is modeled through treatment 
by covariate interaction terms. While there are different 
types of HTE in CRTs, our focus in this article is the sys-
tematic HTE that can be explained by measured baseline 
covariates, rather than the unexplained HTE across clus-
ters that may be accounted for by a random treatment 
effect [8]. Accounting for treatment effect heterogeneity 
is important in CRTs for several considerations. First, 
an interaction term representing treatment effect het-
erogeneity in the analytical model is essential for testing 
and estimating differential treatment effects in patient 
subpopulations. Second, Tong et al. [9, 10] and Li et al. 
[11] have demonstrated in different CRT designs that 
accounting for treatment effect heterogeneity can lead 
to a more efficient average treatment effect estimator. 

In other words, failure to account for treatment effect 
heterogeneity could even reduce the power to study the 
average treatment effect.

Understanding treatment effect heterogeneity across 
different subgroups (e.g., age, sex, education) is not 
uncommon in cluster randomized trials (CRTs) [12]. 
For instance, according to a systematic review [13] of 
64 CRTs assessing cardiovascular and chronic respira-
tory disease interventions, 18 out of 64 conducted the 
analysis with patient-level baseline covariates. As another 
broad example, the Consolidated Standards of Report-
ing Trials (CONSORT) extension in 2017 has encour-
aged investigators to explicitly formulate health equity 
objectives as the trial’s primary objective [7]. In addition, 
the health equity best practices guidance document [14] 
(item 3) developed by the National Institute on Aging 
(NIA) IMbedded Pragmatic Alzheimer’s disease (AD), 
and AD-Related Dementias (AD/ADRD) Clinical Tri-
als (IMPACT) Collaboratory also included “Be explicit 
in the sample size justifications with regard to health 
equity objectives” as a recommended practice for AD/
ADRD pragmatic trials (personal communication), many 
of which randomize nursing homes instead of individual 
patients. Development on HTE-based sample size pro-
cedures can therefore respond to this emerging need. 
Specifically, the methods developed in this work can be 
used in several settings. For studies whose primary inter-
est is HTE (such as studies addressing health equity as 
a primary objective), our sample size methods provide 
tools to design a CRT with adequate power, accounting 
for missing outcomes. For studies whose primary inter-
est is ATE but still hope to study HTE as a pre-specified 
secondary objective, our sample size tools can formally 
quantify the power for that secondary objective. In other 
words, one can assess if sufficient power can already be 
obtained for testing an HTE given a sample size already 
calculated based on the primary goal of studying ATE. 
For studies that are interested both in ATE and HTE, 
choosing a conservative sample size (maximum) from the 
ATE or HTE objective could be a feasible approach, in 
cases where there is no need for multiplicity adjustment.

Recent studies introduced methods to plan CRTs for 
assessing the systematic HTE with pre-specified effect 
modifiers such as sex and age [9, 15]. Yang et  al. [15] 
proposed sample size methods for testing HTE in CRTs 
with a continuous endpoint and found that the sample 
size is influenced not only by the outcome ICC but also 
the covariate ICC, a quantity which measures the degree 
of similarity between effect modifiers within the same 
cluster [16]. Tong et al. [9] generalized their sample size 
procedure for unequal cluster sizes. They found that vari-
able cluster sizes lead to negligible power loss for testing 
HTE with an individual-level effect modifier. The sample 
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size procedure for assessing HTE has also been extended 
to accommodate three-level CRTs [11]. These develop-
ments respond to the need for CRT methods to generate 
knowledge on how individuals may respond differently to 
interventions or how the intervention may reduce exist-
ing disparity in outcomes between subgroups.

A potential limitation of existing formulas is that they 
assume complete follow-up of individuals and clusters, 
and therefore the impact of attrition on the power of the 
HTE test remains unknown [17–19]. Previous studies 
on the impact of attrition for planning CRTs focused on 
the average treatment effect and were typically under the 
missing completely at random (MCAR) assumption [20, 
21]. Taljaard et  al. [22] developed the sample size meth-
ods to account for expected attrition in testing the average 
treatment effect under MCAR, and found that the direct 
approach that simply inflates the sample size by mean 
follow-up rate can overestimate the sample size. Xu et al. 
[23, 24] proposed sample size methods to address outcome 
attrition for continuous and binary outcomes in matched-
pair CRT design. Outside the CRT context, Zhu et al. [25] 
and Zhang et  al. [26] studied attrition with the matched-
pair design under the generalized estimating equations 
(GEE) framework and proposed a sample size formula for 
continuous and binary outcomes. Moreover, several stud-
ies concerning the missing data in longitudinal studies also 
developed sample size methods that may be applied to 
CRTs. For example, Roy et al. [3] developed a sample size 
method to address attrition in a hierarchical longitudinal 
design that permits differential dropout rates. Wang et al. 
[27] compared power methods for longitudinal data under 
monotone missing at random (MAR) assumption.

To date, no previous studies have formally investi-
gated how attrition can affect the sample size estimation 
in CRTs when the objective is to assess treatment effect 
heterogeneity. This paper bridges the gap by contribut-
ing sample size procedures with outcome attrition under 
both the MCAR and MAR mechanisms. We provide a 
closed-form sample size formula for the MCAR and dis-
cuss relevant insights. For the second mechanism, we 
assume the effect modifier of interest is predictive for 
outcome attrition, and describe an efficient Monte Carlo 
approach for sample size estimation. The rest of the paper 
is organized as follows. In Methods, Testing HTE with 
an individual-level effect modifier section formulates 
the problem by introducing both the outcome model for 
the analysis and the missingness model. Accounting for 
expected attrition under MCAR​ section  and Account-
ing for expected attrition under MAR section  introduce 
our sample size methods for detecting HTE to allow for 
expected attrition under both MCAR and MAR. We then 
present simulation studies to validate our sample size 
procedures. Results section provides an illustration based 

on a real-world data example from the Work, Family, and 
Health Study [28]. Throughout, we compare our sam-
ple size procedures to the direct inflation approach (i.e., 
obtaining the sample size assuming no attrition, and then 
inflating it with the mean follow-up rate). Discussion sec-
tion discusses the results of the simulation studies and 
data example. Conclusions section concludes.

Methods
Testing HTE with an individual‑level effect modifier
We first review the typical formulation for testing con-
firmatory HTE in a two-arm CRT under the linear mixed 
model framework. We define Yij as the continuous out-
come for i th cluster and  j th individual, i ∈ {1, . . . , n} , 
j ∈ {1, . . . ,m} , where n is the total number of clusters;m 
is the common cluster size typically assumed in study 
planning. Define the cluster-level treatment indicator as 
Wi with Wi = 1 if a cluster is randomized to the interven-
tion, and Wi = 0 if randomized to the control. We focus 
on a single, individual-level effect modifier Xij . Then, the 
linear mixed model accommodating the treatment by 
covariate interaction can be written as,

where β1 , β2 , β3 , and β4 are intercept, treatment main effect, 
covariate main effect, and treatment-by-covariate interac-
tion effect; µi ∼ N 0, σ 2

µ  is the random intercept account-
ing for the within-cluster correlation; ǫij ∼ N

(
0, σ 2

ǫ

)
  is the 

residual error. The variance formula of the HTE estimator 
β̂4 has been characterized in Yang et al. [15] as

where ρx is the covariate ICC (which quantifies the ratio 
of between-cluster covariate variation to the total covari-
ate variation), σ2x is the marginal variance of the effect 
modifier, ρy|x =

σ
2
µ

σ
2
y|x

 is the adjusted outcome ICC (which 

quantifies the ratio of between-cluster outcome variation 
and the total outcome variance), and σ2y|x = σ

2
µ
+ σ

2
ǫ is the 

total adjusted variance components.
Here, ρx is the counterpart of outcome ICC and can 

be defined as ρx = Cov
(
Xij ,Xik

)
/σ 2

x  , for j  = k where 
Cov

(
Xij ,Xik

)
 represents the common covariance between 

effect modifiers observed for any two individuals j and k 
in a given cluster i . For a two-sided z-test with type I error 
rate α to achieve a power of (1− ζ ) , the required number 
of clusters for testing a pre-specified effect size of δ is,

(1)Yij = β1 + β2Wi + β3 Xij + β4WiXij + µi + ǫij

var
(
�̂4

)
=

�2

y|x
(
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)
{1 + (m − 1)�y|x}
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1 + (m − 1)�y|x

}

m�2�2
w
�2
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{
1 + (m − 2)�y|x − (m − 1)�x�y|x
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where zq is the q-quantile of the standard normal distri-
bution, and σ 2

w is the Bernoulli variance of the treatment 
indicator. Under a balanced 1:1 randomization, σ 2

w = 1/4.
The above sample size procedure has been extended to 

scenarios with randomly varying cluster sizes [9]. Assume 
the cluster sizes follow from a common distribution 
of mi ∼ f (mi) with finite first and second moments as −m 
and σ 2

m + m̄2 . We can define the coefficient of variation 
(CV) of cluster sizes as, CV = σm/

−
m [29–32]. Tong et al. 

[9] derived a multiplicative correction factor (CF) for the 
sample size requirement of HTE test with a continuous 
outcome as a function of the mean cluster size and CV,

The impact of this multiplicative correction factor 
depends on the relative size of ρx and ρy|x.  It is equal to 
one if ρx = ρy|x , below one if ρx > ρy|x , and above one if 
ρx < ρy|x . As shown numerically in Fig.  1 in Tong et  al. 
[9], this correction factor is almost always 1 with a small 
CV of cluster size (CV = 0.3). With an extreme CV of 
cluster size (CV = 0.9), when the cluster size is 100, it is 
frequently close to 1 except when the covariate ICC 
approaches one. However, when the cluster size becomes 
smaller (e.g., 20), the correction factor is only close to 1 
when the covariate ICC falls below 0.5 across a common 
range of outcome ICC (from 0 to 0.2). Therefore, 
CF

(
−
m,CV

)
 in general has little impact on the sample 

size requirement.

Accounting for expected attrition under MCAR​
We propose to modify the above sample size procedure 
under expected attrition. Assuming a binary missingness 
indicator Oij such that Oij = 1 if the outcome Yij is observed 
and Oij = 0 if the outcome is missing. We assume the pro-

portion of observed outcomes or average follow-up rate as 
Pr

(
Oij = 1

)
= π . Because the missingness is likely cor-

related within the same cluster due to cluster randomi-
zation, we assume a compound symmetric correlation 
structure of missingness similar to Taljaard et al. [22] The 
ICC between j th and k th individual missingness within i th 
cluster is defined as corr

(
Oij ,Oik

)
= τ for j  = k ; the ICC 

between two individual missingness indicators in different 
clusters as corr

(
Oij ,Oi′k

)
= 0 for i  = i′ ; and by definition 

(3)CF

�
−
m,CV

�
=

⎡
⎢
⎢
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1 − CV
2

−
m �y�x

�
1 − �y�x

��
�x − �y�x

�

�
1 +

�
−
m −2

�
�y�x −

�
−
m −1

�
�x�y�x

��
1 +

�
−
m −1

�
�y�x

�2

⎤
⎥
⎥
⎥⎦

−1

the ICC with itself is corr
(
Oij ,Oij

)
= 1 . To ensure that the 

correlation matrix for the missingness indicator is positive 
semidefinite, τ is bounded with −1/(m− 1) ≤ τ ≤ 1 [33]. 
Importantly, the lower bound is reached when the miss-
ingness is independent at the individual level, whereas the 
upper bound is reached when the missingness indicator for 
all individuals within a cluster takes the same value (clus-
ter attrition) [22]. Therefore, this formulation accommo-
dates the loss to follow up at both the individual and cluster 
levels.

Under MCAR, the missingness is independent from both 
outcome and covariate, such that Oij ⊥ {Yij ,Xij ,Wi }. We 

have the number of observed outcomes in each cluster as 
mi =

∑m
j=1Oij . The expected number of observed outcomes 

(observed cluster size) is mc =
∑m

j=1 Pr(Oij = 1) = πm , 
and the variance of the observed cluster size for each cluster 
is �2

mc =
∑m

j=1
Var

�
Oij

�
+
∑

j≠j�Cov
�
Oij ,Oij�

�
= �(1 − �)m{1 + �(m − 1)} . 

Hence the coefficient of variation of the observed cluster 
size becomes

An important insight under MCAR is that the expected 
attrition leads to randomly varying cluster sizes, and 
therefore we can modify the formula developed in Tong 
et  al. [9] to address attrition. Specifically, we insert CV 
and mc into Eqs. (2) and (3), which gives,

where, 

Here, CF(π , τ ) is the multiplicative correction fac-
tor of sample size under MCAR. Interestingly, the cor-
relation between missingness only enters the formula 
through CF(π , τ ) , which increases with τ , suggesting the 
power loss is larger when the missingness correlation 
is higher. In two special cases, the lower bound of τ is 
−1/(m− 1) , and CF(π , τ ) = 1 when this lower bound of 
τ is reached, which indicates the missingness modifies 

CV = σmc/mc =

√
(1− π){1+ τ (m− 1)}

πm

(4)n1 =
(z1−�∕2+z1−� )

2
�2

y|x(1−�y|x){1+(�m−1)�y|x}

�m�2�
2

w
�2
x{1+(�m−2)�y|x−(�m−1)�x�y|x}

× CF (�, �)

CF (�, �) =

⎡
⎢
⎢⎣
1 −

(1 − �){1 + �(m − 1)}�y�x
�
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�
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Fig. 1  Heatmap of the ratio of sample size estimated based on the proposed formula under MCAR to that obtained from the direct inflation 
method under the follow-up rate of π = 0.6. , the cluster size of m ∈ {20, 100} and the missingness ICC of τ ∈ {0.05,0.6,1}  
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the cluster size by multiplying the mean follow-up 
rate; the upper bound of τ is 1 , where the maximum of 
CF(π , τ ) is reached (cluster attrition). However, the cor-
rection factor often takes values close to one, [9] and 
therefore, we anticipate that τ only minimally affects 
the sample size with an individual-level effect modifier 
given fixed π.

We compare the sample size formula in Eq.  (4) to the 
direct approach that inflates the sample size results in 
Eq. (2) by the average follow-up rate π as

To facilitate the illustration, we provide contour plots 
in Fig.  1 that compares the new sample size formula we 
proposed versus the direct inflation approach assuming 
m ∈ {20,100} , π = 0.6 , and τ ∈ {0.05,0.6,1} . The ratio of 
n1 to n0 is plotted with the outcome ICC in 0 to 0.2 and 
covariate ICC in 0 to 1. Several patterns emerge. First, the 
ratio of n1 to n0 is always smaller than 1 across all the pan-
els in Fig. 1, suggesting that the direct inflation approach 
overestimates the sample size when τ is relatively small; 
this finding is consistent with that in Taljaard et  al. [22] 
for testing the average treatment effect. However, when 
τ is large, the ratio becomes slightly larger, showing that 
the direct inflation approach would be less conservative. 
Second, the accuracy of the direct inflation approach is 
mainly driven by the outcome completion rate π , and rel-
atively insensitive to the outcome ICC or covariate ICC. 
When π is smaller, the direct inflation approach can be 
quite conservative. Additional scenarios of m ∈ {20,100 } 
and τ ∈ {0.05,0.6,1} with the follow-up rate π = 0.9 are 
plotted in Appendix Fig. 1. The patterns are qualitatively 
similar.

Accounting for expected attrition under MAR
We now consider the covariate-dependent attrition or 
MAR. With a specific effect modifier of interest, a gen-
eral formulation of MAR, sometimes called the covar-
iate-dependent missingness mechanism, assumes that 
Oij ⊥ Yij|

{
Xij ,Wi

}
 . For illustration, we only consider 

a scenario where the missingness only depends on 
the effect modifier Oij ⊥

{
Yij ,Wi

}
|Xij but an exten-

sion to allow for dependence on Wi is also straightfor-
ward. To proceed, we specify the missingness model as, 
Pr

(
Oij = 1|Xij

)
= πij

(
Xij

)
, and the correlation of missing-

ness indicators between observations within the same clus-
ter as τ

(
Xij ,Xik

)
= corr

(
Oij ,Oik |Xij ,Xik

)
 . Essentially, these 

quantities are counterparts of those in the previous section 
to allow for the dependence on the effect modifier.

n0 =
1
π
×

(z1−α/2+z1−ζ )
2
σ 2
y|x(1−ρy|x){1+(m−1)ρy|x}

mδ2σ 2
wσ

2
x {1+(m−2)ρy|x−(m−1)ρxρy|x}

Unlike MCAR, deriving the closed-form formula for 
Var

(
β̂4

)
 under MAR can be challenging due to the com-

plicated correlation patterns between the missingness 
indicator and covariates. Under MAR, the attrition rate 
per cluster is no longer homogeneous and the observed 
cluster size could be correlated with covariate. Sample 
size formula under MAR will inevitably depend on the 
cluster size’s distributional assumption and its associa-
tion with the covariate value. Therefore, we propose an 
efficient Monte Carlo approach to estimate the sample 
size through simulating the covariates and missing data 
patterns under pre-specified working models. Monte 
Carlo approach has been proven to be a popular and 
effective alternative when closed-form expression for 
variance is not available in sample size determination 
[34–36].

The Monte Carlo sample size procedure for searching 
for an optimal sample size is summarized with five steps 
in Fig. 2. Our objective is to find the smallest number of 
clusters such that the predicted power is greater than or 
equal to a prespecified level, such as 80%. In Step 1, we 
specify the parameters for the outcome models, including 
outcome ICC, effect sizes, allocation ratio, total variances 
of the outcome, and the parameters for generating covari-
ates, including covariate ICC, and other distributional 
parameters. For example, we can employ a mixed-effect 
logistic model as the missingness model with a random 
intercept to induce the ICC of the missingness on the logit 
scale [37]. Once the model configurations are determined, 
we set the number of simulations B and an even integer 
n(0) as the initial number of clusters. The initial number 
can be obtained by assuming MCAR using Eq.  (4). We 
iterate B times of Step 2–3. In each iteration of Step 2, we 
simulate the effect modifier according to pre-specified 
distributional assumption while accounting for the covari-
ate ICC. With a continuous effect modifier, this can be 
achieved via a linear mixed model; with a binary effect 
modifier, we can use the beta-binomial model [38] or the 
conditional linear family approach [39] to simulate cor-
related binary effect modifiers within a cluster for a pre-
specified covariate ICC. In addition, we can numerically 
specify the intercept of the mixed-effects logistic model 
for missingness to set our marginal follow-up rate to the 
given value.

Next, we follow Yang et al. [15] and Tong et al. [9] and 
consider a linear mixed analysis of covariance model with 
a mean-centered treatment as,

Yij = �1 + �2(Wi−
−

W ) + �3Xij + �4(Wi−
−

W )Xij + �i + �ij .



Page 7 of 14Tong et al. BMC Medical Research Methodology            (2023) 23:85 

The compound symmetric correlation for cluster i 
becomes Ri =

(
1− ρy|x

)
Imi + ρy|xJmi

 , and its inverse is 
given by

Here mi is the number of individuals with a measured 
outcome in each cluster; I s and J s are s × s identity matrix 
and matrix of ones, respectively. We also define the collec-
tion of design points for each individual as 
Z ij =

(
1,

(
Wi−

−

W
)
,Xij ,

(
Wi−

−

W
)
Xij

)T and for each cluster as 

Z i =
(
Z i1,⋯ ,Z imi

)T , and β = (β1,β2,β3,β4)
T . Given values 

of the variance and ICC parameters, our target variance of 
the HTE estimator, Var

(
β̂4

)
 , can be approximated by the 

(4,4) element of σ 2
y|x

{∑n
i=1Z

T
i R

−1
i Zi

}−1
 . Since this vari-

ance is a function of n , we rely on the searching algorithm 
to solve for the required sample size. Specifically, in each 
iteration of Step 3, we calculate 

∑n
i=1Z

T
i R

−1
i Zi and record 

(5)R
−1
i = 1

1−ρy|x
Imi −

ρy|x

(1−ρy|x){1+(mi−1)ρy|x}
Jmi

its realization �∑n

i=1
ZT

i
R−1

i
Z i

�(b) in iteration b, b = 0, 1, . . . ,B . 
In Step 4, we estimate Var

(
β̂4

)
 by the average over all itera-

tions as B−1
∑B

b=1

�∑n

i=1
ZT

i
R−1

i
Z i

�(b) and obtain our target var-
iance of the HTE estimator, Var

(
β̂4

)
 , as the (4,4) element 

of �2

y�x

�
B−1

∑B

b=1

�∑n

i=1
ZT

i
R−1

i
Z i

�(b)
�−1 . In Step 5, we estimate 

the power using a two-sided z-test with a pre-specified type 
I error rate α and sample size n(0) . Assuming our target 
power is 80%, for each k = 0,1, . . . , we will assess whether 
the current sample size estimate n(k) ensures both 
1− ζ

(
n(k)

)
≥ 80% and 1− ζ(n(k) − 2) < 80% , where we 

define the power 1− ζ (n) as a function of n . If it does, the 
final sample size estimate will be ascertained as n(k) and the 
search concludes. Otherwise, we set n(k+1) = n(k) + 2 
(assuming equal randomization) if the predicted power is 
below 80%; or decreased by 2 as n(k+1) = n(k) − 2 if the 
predicted power is over 80%.

Fig. 2   A schematic roadmap for executing the Monte Carlo approach for sample size calculation with the HTE analysis in cluster randomized trials 
under the missing at random assumption
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Simulation design under MCAR​
For simplicity, our simulation only considers the balanced 
design with a single covariate, (i.e., σ 2

W
= 1/4, p = 1 ). 

Since the values of β1,β2, and β3 do not affect the simula-
tion results, we choose β1 = 0,β2 = 0.25, and β3 = 0.1 . We 
fix the type I error rate as α = 0.0 5, power as 1− ζ = 80% , 
and outcome variance σ 2

y|x = 1 . We set the cluster size 
to be m ∈ {20, 50, 100} and mean follow-up rate to be 
π ∈ {0.7, 0.9} . The values of missing indicator correlation 
τ ∈ {0.05, 0.3, 0.6, 1} , in which 1 indicates the special case of 
cluster-level attrition following Taljaard et al. [22]. We chose 
two outcome ICC values, ρy|x ∈ {0.01, 0.1} ; two covariate 
ICC values, ρx ∈ {0.1, 0.5} . We consider both a continu-
ous covariate and a binary covariate, where we specify the 
standardized effect size of δ/σx = {0.1, 0.25} for the con-
tinuous covariate, and the effect size of δ = {0.25, 0.45} for 
the binary covariate. The above parameter settings total 288 
simulation scenarios for each covariate type. The simulation 
code can be found at https://​github.​com/​decka​rdt98/​HTE_​
CRT_​Attri​tion.

With a continuous covariate, we fix σ 2
x = 1 , and use 

the linear mixed model to simulate Xij = 1/2+ �i + γij 
where �i ∼ N

(
0, ρxσ 2

x

)
, γij ∼ N (0, (1− ρx)σ

2
x ) . With a 

binary covariate, we assume a beta-binomial distribution. 
The data generation follows a two-step process as fol-
lows. First, we generate the event rate πi for each cluster 
from a beta distribution, Beta  (q1, q2 ). Second, we ran-
domly generate the covariate value for each individual 
from Bernoulli(πi) . We fix the marginal expectation of the 
binary covariate as 0.3. According to the law of total expec-
tation and law of total variance, we can solve q1 and q2 
from q1/(q1 + q2) = 0.3 and ρx = 1/(1+ q1 + q2) simul-
taneously to obtain q1 and q2 . Then the marginal variance 
of covariate can be obtained from σ 2

x = q1q2/(q1 + q2)
2 

given q1, q2 . Moreover, under MCAR, the missingness 
indicator Oij was generated using simbinCLF() function 
from the geeCRT package in R, which allows the speci-
fication of a common τ for all clusters to generate binary 
missingness indicators with a compound symmetric cor-
relation structure in each cluster [33, 39].

We simulate each scenario as follows. (a) We first cal-
culate the required sample size based on our proposed 
Eq. (4) under MCAR and round up it to the nearest even 
integer. (b) We generate the covariate Xij as described, 
and outcome Yij from the linear mixed model in the 
Methods section. (c) We generate the missing indicators 
Oij to obtain the observed outcomes after attrition. (d) 
We fit the linear mixed effects model with the observed 
data and estimate β̂4 via restricted maximum likelihood 
methods (REML) using the nlme package in R. (e) We 
calculate p values under null hypothesis H0 : β4 = δ = 0 
and alternative hypothesis H1 : β4 = δ �= 0 respectively. 
For each scenario, we repeat Step (a) to (e) for 3000 times. 

The empirical type I error rate ψ is evaluated as the pro-
portion of false positive using the simulated data under 
the null, whereas the empirical power ϕemp is evaluated as 
the proportion of true positive using the simulated data 
under the alternative. We compare empirical power ϕemp 
to analytical power ϕpre based on Equation (4) under the 
alternative, and empirical type I error rate ψ to 0.05 under 
the null. The values of ϕpre can be slightly larger than 0.8 
because the estimated sample size is rounded to the next 
even integer. The corresponding Monte Carlo stand-
ard errors under 3000 simulations assuming Bernoulli 
random variables are 0.004 for the type-I error rate and 
0.007 for power. Therefore, the 95% error margin for the 
empirical type I error is ±0.008 , and the empirical power 
is ±0.014 . To illustrate the advantage of our methods, the 
sample sizes obtained from the direct inflation method 
are also calculated for each simulation scenario.

Simulation design under MAR
Under MAR, we preserve the design parameters for the 
outcome model from the MCAR simulations but intro-
duce additional parameters in the missingness model. We 
employ a mixed-effect logistic regression model to simu-
late the missingness indicators:

 where bi is the cluster-specific intercept that follows 
N (0, σ 2

b ) . We fix the value of α1 as 0.5 and consider one 
single covariate,  Xij , which can be either continuous or 
binary. The covariate data-generating procedure is identi-
cal to that under the MCAR simulation design. To make 
MAR simulation results comparable with MCAR, we tune 
the marginal follow-up rates to be π ∈ {0.7, 0.9} by vary-
ing the value of α0 . For the missingness ICC, τ , we con-
sider τ ∈ {0.05, 0.3, 0.6} and do not consider the extreme 
case of τ = 1 . This is because τ equals to 
σ 2
b /(σ

2
b + π2/3)  under the mixed-effect logistic regres-

sion model [37]; in this setup, τ = 1 is theoretically not 
attainable but can be approximately once we set σ 2

b  to be 
extremely large. With the above parameter setup, we have 
144 simulation scenarios for each type of covariate. We 
note that both the variance Var

(
β̂4

)
 and empirical power 

are obtained by Monte Carlo simulations. For each sce-
nario, we average over B = 1000  Monta Carlo draws to 
obtain the variance Var

(
β̂4

)
 and calculate the sample size 

based on this variance. After rounding up to the nearest 
even integer, the analytical power is calculated from the 
Equation (2). We simulate 3000 trials to calculate the 
empirical power following the same procedure under 
MCAR. To facilitate the comparison, we also calculate the 
required sample sizes using our proposed sample size for-
mula under MCAR and the direct inflation method.

logit
{
P
(
Oij = 1|Xij , bi

)}
= α0 + α1Xij + bi,

https://github.com/deckardt98/HTE_CRT_Attrition
https://github.com/deckardt98/HTE_CRT_Attrition
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Result
Simulation results under MCAR​
Table  1 shows the estimated required number of clus-
ters for the z-test based on the proposed formula under 
MCAR given a continuous individual-level covariate. The 
correlation of missingness indicators is set to be τ = 0.05 , 
and the missingness rate is tuned to be 0.1 or 0.3. Most 
scenarios have the predicted power and the empirical type 
I error rate within the error margin. When the number 
of clusters become smaller, cases with predicted power 
out of the error margin are occasionally observed. This 
is not unexpected because our sample size formula relies 
on the asymptotic distribution. Similar simulation results 
with a continuous covariate assuming τ ∈ {0.3, 0.6, 1} 
are included in Appendix Tables 1, 2 and 3 and another 
set of simulations with a binary covariate are included 
in Appendix Tables 4, 5, 6 and 7. Overall, our simulation 
verifies the accuracy of our proposed sample size formula 
under MCAR. In addition, compared to the sample sizes 
estimated via the direct inflation method, our results sug-
gest that the magnitudes of sample size inflation, defined 

by the ratio of unadjusted sample size versus adjusted 
sample size, based on our method can be close to the 
follow-up rate in the direct inflation method under many 
simulation scenarios. However, in scenarios with large 
values of covariate ICC, the direct inflation method over-
estimates the sample size, and the degree of overestima-
tion increases when the outcome ICC is large and when 
the follow-up rate is low. These findings are consistent 
with our numerical illustration in  the Methods section. 
In addition, in Appendix Tables 2 and 3, we present the 
results for when τ ∈ {0.3, 0.6} ; in Appendix Table  4, we 
present results for the special case of τ = 1 where the 
attrition occurs at the cluster level. The results are all 
qualitatively similar. In general, our simulation shows that 
under MCAR the sample size stays approximately con-
stant as the missingness correlation, τ , varies, even when 
the attrition is at the cluster level ( τ = 1 ). Moreover, the 
estimated number of clusters is insensitive to the outcome 
ICC when the covariate ICC is small but becomes more 
sensitive to the outcome ICC when the covariate ICC 
increases.

Table 1  Estimated required number of clusters for HTE test by the direct inflation ( n0 ), the proposed formula under MCAR ( n1 ), the 
empirical type I error rate of the Wald test for HTE ( ψ ), the predicted power ( ϕpre ) and empirical power ( ϕemp ) of the HTE test with a 
continuous individual-level effect modifier under MCAR. The effect size is δ ∈ {0.1, 0.25} . The missingness ICC is τ = 0.05

δ = 0.10 δ = 0.25

m ρx ρy|x π n0 n1 ϕpre ϕemp ψ n0 n1 ϕpre ϕemp ψ

20 0.1 0.01 0.7 228 228 0.802 0.791 0.047 38 38 0.818 0.811 0.054

0.9 178 178 0.803 0.815 0.052 30 30 0.823 0.797 0.052

0.10 0.7 226 226 0.803 0.802 0.053 36 36 0.801 0.806 0.047

0.9 176 176 0.804 0.801 0.052 28 28 0.801 0.803 0.054

0.5 0.01 0.7 244 240 0.803 0.798 0.045 40 40 0.818 0.801 0.048

0.9 190 190 0.804 0.796 0.054 32 32 0.824 0.781 0.051

0.10 0.7 318 302 0.802 0.798 0.050 52 50 0.815 0.802 0.049

0.9 248 244 0.803 0.805 0.049 40 40 0.812 0.802 0.051

50 0.1 0.01 0.7 94 92 0.801 0.793 0.049 16 16 0.832 0.829 0.048

0.9 72 72 0.801 0.796 0.052 12 12 0.817 0.803 0.043

0.10 0.7 90 90 0.801 0.802 0.044 16 16 0.841 0.836 0.046

0.9 70 70 0.801 0.791 0.048 12 12 0.828 0.824 0.050

0.5 0.01 0.7 108 104 0.804 0.799 0.045 18 18 0.834 0.787 0.065

0.9 84 84 0.808 0.808 0.049 14 14 0.824 0.786 0.060

0.10 0.7 144 138 0.804 0.796 0.055 24 22 0.802 0.800 0.055

0.9 112 110 0.802 0.815 0.049 18 18 0.811 0.808 0.050

100 0.1 0.01 0.7 48 48 0.812 0.813 0.049 8 8 0.827 0.809 0.057

0.9 38 38 0.816 0.820 0.053 6 6 0.811 0.799 0.053

0.10 0.7 46 46 0.810 0.811 0.052 8 8 0.841 0.831 0.051

0.9 36 36 0.812 0.814 0.048 6 6 0.828 0.829 0.057

0.5 0.01 0.7 60 58 0.811 0.788 0.054 10 10 0.839 0.793 0.061

0.9 48 46 0.804 0.800 0.053 8 8 0.836 0.792 0.060

0.10 0.7 76 74 0.804 0.814 0.056 14 12 0.809 0.817 0.051

0.9 60 60 0.812 0.818 0.047 10 10 0.828 0.823 0.054
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Simulation results under MAR
Table 2 presents the estimated required number of clus-
ters for the z-test based on the Monte Carlo method 
under MAR with a continuous covariate, τ = 0.05 , and 
π = 0.7, 0.9 . Overall, the accuracy of our Monte Carlo-
based method under MAR is confirmed as the predicted 
power for most of the scenario is within the error mar-
gin of the empirical power while the test maintains a 
valid empirical type I error rate. Only when the num-
ber of clusters becomes very small can we find empiri-
cal power lower than the predicted power. Compared 
to the other methods, we found that the MCAR method 
often underestimates the sample size when the true 
missingness model is MAR, especially when the pre-
specified effect size is small, the cluster size is small, 
and the missingness rate is high. In the worst cases with 
lowest follow-up rate of 0.7 and smallest cluster size 
of 20 , the estimated number of clusters using our for-
mula under MCAR are 10 clusters fewer compared to 
the more accurate estimation based on the proposed 

Monte Carlo method under MAR. As for the direct 
inflation method, it can underestimate the sample size 
when the true missingness mechanism is MAR, espe-
cially when the pre-specified effect size is small. How-
ever, when the covariate ICC and outcome ICC are 
large, and the missing rate is high, the direct inflation 
method can also overestimate the sample size. Similar 
results are observed for scenarios with a continuous 
covariate when τ ∈ {0.3, 0.6} (in Appendix Tables 8 and 
9) as well as the scenarios with a binary covariate when 
τ ∈ {0.05, 0.3, 0.6} . (Appendix Tables  10, 11 and 12). 
Note that with a binary covariate, the sample size for-
mula under MCAR and the direct inflation method tend 
to overestimate the sample size when the true missing-
ness mechanism is MAR.

Application to the Work, Family, and Health Study
We demonstrate our proposed sample size methods using 
data from the Work, Family, and Health Study (WFHS) 
[28, 40]. WFHS implemented a social experiment among 

Table 2  Estimated required number of clusters for HTE test by the direct inflation ( n0 ), the proposed formula under MCAR ( n1 ), and 
the proposed procedure under MAR ( n2 ), the empirical type I error rate of the Wald test for HTE ( ψ ), and predicted power ( ϕ ,MAR

pre
 ) and 

empirical power ( ϕMAR
emp

 ) of the HTE test with a continuous individual-level effect modifier under MAR. The effect size is δ = {0.1, 0.25} . The 
missingness ICC is τ = 0.05

δ = 0.10 δ = 0.25

m ρx ρy|x π n0 n1 n2 ϕMAR
pre

ϕMAR
emp

ψ n0 n1 n2 ϕMAR
pre

ϕMAR
emp

ψ

20 0.1 0.01 0.7 228 228 238 0.802 0.807 0.053 38 38 38 0.802 0.793 0.050

0.9 178 178 182 0.803 0.804 0.051 30 30 30 0.814 0.809 0.052

0.10 0.7 226 226 234 0.801 0.781 0.052 36 36 38 0.807 0.808 0.051

0.9 176 176 178 0.800 0.794 0.048 28 28 30 0.820 0.816 0.051

0.5 0.01 0.7 244 240 250 0.803 0.799 0.059 40 40 40 0.802 0.765 0.043

0.9 190 190 194 0.805 0.791 0.050 32 32 32 0.815 0.796 0.056

0.10 0.7 318 302 312 0.802 0.796 0.057 52 50 50 0.802 0.800 0.048

0.9 248 244 246 0.801 0.792 0.048 40 40 40 0.807 0.792 0.053

50 0.1 0.01 0.7 94 92 96 0.800 0.789 0.048 16 16 16 0.816 0.812 0.056

0.9 72 72 74 0.804 0.815 0.056 12 12 12 0.808 0.802 0.042

0.10 0.7 90 90 94 0.802 0.791 0.048 16 16 16 0.826 0.831 0.051

0.9 70 70 72 0.804 0.814 0.044 12 12 12 0.820 0.813 0.051

0.5 0.01 0.7 108 104 108 0.804 0.807 0.045 18 18 18 0.821 0.785 0.057

0.9 84 84 84 0.802 0.795 0.048 14 14 14 0.818 0.760 0.051

0.10 0.7 144 138 142 0.804 0.798 0.052 24 22 24 0.826 0.815 0.058

0.9 112 110 112 0.804 0.808 0.053 18 18 18 0.806 0.807 0.053

100 0.1 0.01 0.7 48 48 50 0.812 0.811 0.049 8 8 8 0.811 0.798 0.051

0.9 38 38 38 0.809 0.801 0.055 6 6 6 0.803 0.800 0.051

0.10 0.7 46 46 48 0.810 0.809 0.050 8 8 8 0.826 0.812 0.052

0.9 36 36 36 0.805 0.812 0.047 6 6 6 0.820 0.824 0.047

0.5 0.01 0.7 60 58 60 0.809 0.809 0.048 10 10 10 0.826 0.791 0.057

0.9 48 46 48 0.813 0.805 0.057 8 8 8 0.828 0.784 0.062

0.10 0.7 76 74 76 0.804 0.814 0.048 14 12 14 0.856 0.851 0.053

0.9 60 60 60 0.808 0.816 0.047 10 10 10 0.824 0.814 0.057
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employees in a Fortune 500 information technology com-
pany and studied the effect of altered workplace practices 
and policies on work-life balance of employees. Rand-
omization was at the group level, where each group com-
prised employees governed by the same leadership.

There were 799 participants nested within 56 groups 
enrolled in this trial at baseline and 694 participants 
completed the followed-up assessment at 6 months 
( π = 0.87 ). The group size varies between 7 and 60 with 
an average of 29.

In this illustration, the outcome of interest is control over 
working hours (CWH) assessed at 6 months through sur-
vey interview. It is a continuous outcome measuring the 
degree of flexibility for managing working hours and was 
also measured at the baseline. Our goal is to estimate the 
sample size for studying HTE with the covariate of CWH 
at baseline on the CWH outcome at 6 months. According 
to published results [40], the outcome ICC is estimated to 
be 0.14; the estimated total outcome variance conditional 
on the baseline CWH is σ 2

y|x ≈ 0.23 ; the estimated mar-
ginal variance of covariate is σ 2

x = 0.4 ; the estimated ICC 
for the baseline CWH is ρx = 0.058 . The allocation ratio 
is 1:1 and σ 2

W = 0.25 . We consider the effect size on the 
outcome δ ∈ {0.2, 0.3} ; the correlation in the missingness 
τ ∈ {0.05, 0.3, 0.6} . Besides π = 0.87 , we also consider 
π = {0.935, 0.610 } to expand our illustration. We esti-
mate the required sample size under the MCAR and MAR 
assumptions with the same configurations of outcome 
and covariates ICCs and missingness ICC and marginal 
average missing rate. For the latter, we employ the same 
mixed-effects logistic model for the missingness indicator 
on covariate as in the Simulation design under MAR sec-
tion with a slope of α1 = 0.5 . We round up the calculated 
sample size to the nearest even integer. All calculations per-
formed under type I error rate of 0.05 and power of 80%.

Table  3 summarizes the estimated number of clusters 
to test HTE with baseline CWH under different miss-
ingness mechanisms. The estimated number of clusters 
ranges from 16 to 26 when δ = 0.2 , and from 8 to 12 
when δ = 0.3. The sample size is invariant with regard to 

assumptions on τ when other parameters are fixed, while 
being much more sensitive to the missingness rate as the 
number of required clusters increases when the follow-
up rate is lower. For δ = 0.3 and under high attrition 
( π = 0.61 ), the direct inflation method and the estima-
tion formula under MCAR may underestimate the sam-
ple size when the actual missingness mechanism is MAR. 
When δ = 0.3 , the estimated sample sizes are relatively 
invariant across different methods because the estimated 
sample size is generally quite small. Overall, these pat-
terns are consistent with the findings observed in our 
simulation studies.

Discussion
This paper developed new sample size procedures for 
assessing HTE in CRTs with outcome attrition under both 
MCAR and MAR mechanisms. Under MCAR, we pro-
posed a closed-form formula for sample size calculation by 
adapting the result from Tong et al. [9]. This closed-form 
sample size is easy to implement and clarifies how design 
parameters can influence the sample size requirement 
under MCAR. Under MAR, we described a Monte Carlo 
method to calculate sample size. Our simulation studies 
show adequate performance of our proposed sample size 
methods under both missingness mechanisms. We also 
compared the performance of our sample size methods 
to the direct inflation method. Although the estimated 
sample sizes are similar across different methods in our 
simulation studies with a limited number of scenarios, 
they are expected to be more different under other set-
tings. For example, under MCAR, Fig.  1 illustrates that 
the direct inflation method becomes more conservative 
with an increasing covariate ICC, but may be close to the 
proposed method when the covariate ICC approaches 
zero. Our simulation results also suggest the implications 
when the sample size is calculated using the direct infla-
tion method. Based on the results in Tables  1 and 2, we 
find that the direct inflation method only overestimates 
the sample size under MCAR, but can either overestimate 
or underestimate the sample size under MAR depending 

Table 3  Estimated required number of clusters for the WFHS study with π ∈ {0.935,0.87,0.61} , τ ∈ {0.05,0.3,0.6} , and δ ∈ {0.2,0.3} and the 
methods of direct inflation ( n0 ), the formula under MCAR ( n1 ), and the Monte Carlo based approach under MAR ( n2)

π = 0.935 π = 0.87 π = 0.61

δ τ n0 n1 n2 n0 n1 n2 n0 n1 n2

0.2 0.05 16 16 16 18 18 18 24 24 26

0.3 16 16 16 18 18 18 24 24 26

0.6 16 16 16 18 18 18 24 24 26

0.3 0.05 8 8 8 8 8 8 12 12 12

0.3 8 8 8 8 8 8 12 12 12

0.6 8 8 8 8 8 8 12 12 12
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on the missingness rate, cluster size, covariate, and out-
come ICCs. In the context of CRT, clusters typically refer 
to communities, hospitals, or health systems, and it is 
often the case that the difference of one cluster can mean 
a significant change in the study budget and is important. 
Regardless of the values of design parameters, our formula 
and procedure still provide a useful approach to estimate 
the sample size required for a CRT accurately.

Although sample size calculations for CRTs can be 
carried out via simulation-based methods, it could be 
computationally intensive (due to repeatedly fitting mul-
tilevel models based on simulation data) and operation-
ally cumbersome if one is interested in examining the 
study power across a wide range of design parameters. 
On the other hand, the availability of closed-form for-
mulas and methods reduces the computational burden 
and effectively decreases the amount of effort in explor-
ing many design scenarios. Perhaps more importantly, 
the closed-form formula clarifies key aspects and insights 
into the data-generating processes that determine the 
study power. For example, under the MCAR setting, our 
formula implies that the intracluster correlation coeffi-
cient of the missingness indicator generally has minimal 
impact on study power (except under whole cluster attri-
tion), which further indicates that it may not be neces-
sary to explore the change in sample size under varying 
intracluster correlation coefficient of the missingness 
indicator. Such insights can simplify the power analy-
ses because one could then focus on exploring essential 
design parameters to assess the sensitivity of sample size 
results, instead of blindly exhausting all design parame-
ters typically required in a simulation-based procedure. 
Finally, the closed-form sample size formula could offer 
knowledge on how key intracluster correlation param-
eters affect the study power, and inform investigators on 
selecting their values to obtain a conservative sample size 
when accurate knowledge is unavailable [15].

For the design parameters that are influential to the 
sample size estimation, our findings resemble those dis-
cussed in Tong et al. [9]. In brief, the required sample size 
increases as covariate ICC increases, and the required 
sample size decreases as outcome ICC increases. Regard-
ing the missingness model parameters, under MCAR, 
the required sample size is not sensitive to the missing-
ness ICC but increases almost proportionally as the miss-
ing rate increases. This finding facilitates the use of our 
method in practice because the missing rate is much 
easier to assume than the correlation between missing 
indicators at the design stage. Like MCAR, the required 
sample size increases as the missing rate increases under 
MAR. The choice of τ can be slightly more influential to 
sample size under MAR. However, when the cluster size 
is large, and the estimated sample size is small, the choice 

of τ still has limited impact on the sample size estima-
tion under MAR. Reliable estimation of ICC parameters 
is essential for informing the design of future CRTs, and 
has been a topic of study in many previous works, see, for 
example, Maas and Hox [41], Ukoumunne et al. [42], Wu 
et al. [43], Preisser et al. [44] and Li et al. [45] under dif-
ferent clustered designs. Ridout et al. [46] also compared 
the performance of 20 ICC estimators for binary data. 
When routinely-collected data are available, one could 
use existing ICC estimators to obtain correlation param-
eters for study design purposes. Alternatively, several 
previous studies [43, 47–49] also published on empirical 
ICC estimates in completed CRTs under different set-
tings and outcome types, and could inform the design of 
studies with similar features. Finally, when there is a lack 
of accurate knowledge of the ICC parameters nor existing 
data to inform such parameters, we recommend varying 
a range of ICC parameters (that are considered plausi-
ble depending on the context and primary outcome). For 
instance, in our data example, we conducted sensitiv-
ity analyses on sample sizes under various outcome or 
covariate ICCs. We did not further examine the sensitiv-
ity to the ICC of the missing indicator as this parameter, 
in most cases, is found to have minimal impact on study 
power. When there is no existing, routinely-collected data 
to inform study design parameters, it may be challenging 
to accurately simulate an MAR mechanism for sample 
size calculation at the design stage. However, when MAR 
(based on the effect modifier of interest) is suspected at 
the design stage, a reasonable approach is to conduct sen-
sitivity analyses varying the association parameter ( α1 in 
the logistic missingness model in the Simulation design 
under MAR section) between the effect modifier and the 
missingness while controlling for the overall missingness 
rate. This could generate a range of sample size estimates 
under different MAR mechanisms and can suggest a con-
servative sample size estimate over the range of missing-
ness parameters considered. Nevertheless, in future work, 
it would be interesting to develop a modified sample size 
procedure that is robust to misspecification of the miss-
ingness model under the MAR setting.

Our Monte Carlo method for evaluating sample size 
under MAR is flexible insofar as the specification of the 
missingness model. Notably, a correct sample size esti-
mation under MAR relies on the correct specification of 
the missingness model. The use of our method relies on 
the ignorability assumption. In this paper, we assumed a 
mixed-effects logistic model, and the regression param-
eter can be prespecified based on prior knowledge or 
estimated using existing data. Computation-wise, our 
Monte Carlo procedure does not require repeatedly fit-
ting mixed-effects logistic regression models and there-
fore is more efficient in computing time than other 
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Monte Carlo-based sample size methods developed 
for CRTs [50]. From our simulation results, we observe 
that, except for a few scenarios where the outcome ICC 
is relatively small, the deviation between predicted and 
empirical power is always within the expected Monte 
Carlo error margin (that is ±0.015 based on a target 
power of 80% under 3000 simulations). For this reason, 
we still recommend using our methods as a computa-
tionally efficient approach to explore sample size under 
MAR. However, if there is only a limited number of 
design scenarios and parameters to explore and compu-
tation allows, an alternative approach is to estimate the 
sample size based on the full simulation (by repeatedly 
fitting the linear mixed analysis of covariance model 
based on simulated data), which is expected to provide 
more accurate results.

Finally, there are several limitations of our proposed 
methods that we will address in future work. First, our 
methods only focus on a continuous outcome and may 
only provide an approximation when the outcome is 
binary or count. Second, our paper studies a univari-
ate effect modifier, but multivariate effect modifiers can 
also arise in certain situations. For instance, a trial may 
wish to investigate HTE with a continuous effect modifier 
under both a linear term and a quadratic term. Third, our 
method does not address missing not at random (MNAR) 
scenario, in which case sensitivity analysis strategies war-
rants further development [51].

Conclusion
Despite a growing interest in studying HTE in CRTs, no 
previous studies have formally investigated how attri-
tion can affect the sample size estimation in a CRT when 
the objective is to assess treatment effect heterogeneity. 
We discussed sample size procedures for assessing HTE 
in CRTs with outcome attrition under MCAR and MAR 
mechanisms. Our simulation studies show satisfactory 
performance of our proposed sample size methods under 
both missingness mechanisms. The outcome ICC, covari-
ate ICC and attrition rate are important input parameters 
for sample size determination at the design stage, but the 
ICC among the missingness indicators often has limited 
influence and can be considered as a nuisance parameter.
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