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Abstract

Rationale and Objectives: Accurate segmentation of the upper airway lumen and surrounding 

soft tissue anatomy, especially tongue fat, using magnetic resonance images is crucial for 

evaluating the role of anatomic risk factors in the pathogenesis of obstructive sleep apnea (OSA). 

We present a convolutional neural network to automatically segment and quantify upper airway 

structures that are known OSA risk factors from unprocessed magnetic resonance images.

Materials and Methods: Four datasets (n = [31, 35, 64, 76]) with T1-weighted scans and 

manually delineated labels of 10 regions of interest were used for model training and validations. 

We investigated a modified U-Net architecture that uses multiple convolution filter sizes to achieve 

multi-scale feature extraction. Validations included four-fold cross-validation and leave-study-out 

validations to measure generalization ability of the trained models. Automatic segmentations were 

also used to calculate the tongue fat ratio, a biomarker of OSA. Dice coefficient, Pearson’s 

correlation, agreement analyses, and expert-derived clinical parameters were used to evaluate 

segmentations and tongue fat ratio values.

Results: Cross-validated mean Dice coefficient across all regions of interests and scans was 

0.70 ± 0.10 with highest mean Dice coefficient in the tongue (0.89) and mandible (0.81). 

The accuracy was consistent across all four folds. Also, leave-study-out validations obtained 

comparable accuracy across uniquely acquired datasets. Segmented volumes and the derived 
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tongue fat ratio values showed high correlation with manual measurements, with differences that 

were not statistically significant (p < 0.05).

Conclusion: High accuracy of automated segmentations indicate translational potential of the 

proposed method to replace time consuming manual segmentation tasks in clinical settings and 

large-scale research studies.
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INTRODUCTION

Obstructive sleep apnea (OSA) is a common sleep disorder that is characterized by recurrent 

episodes of partial or complete collapse of the upper airway during sleep. (1,2) Obesity is 

the primary risk factor for OSA due to the increased volume of the surrounding soft tissues 

of the upper airway. In particular, Schwab et al showed that increased volume of the lateral 

pharyngeal walls, total soft tissue, and tongue could compromise upper airway caliber and 

thereby increase the risk of developing OSA. (3) Moreover, studies have also shown that 

tongue fat is increased in patients with sleep apnea and that reductions in tongue fat volume 

are a primary mediator of improvements in OSA severity seen with weight loss. (4,5) As a 

result, quantification of the volumes of these clinically relevant upper airway structures is 

critical for comprehensive investigation of the pathogenesis of OSA.

Magnetic resonance imaging (MRI) has traditionally been used to quantify the volume of 

these upper airway anatomy, including airway sizes, craniofacial traits, and soft tissues. 

(3) Success of imaging studies largely depends on segmentation accuracy. The current 

gold standard for segmentation is manual delineation of upper airway structures on T1-

weighted MR scans. This is a time-consuming task, which is not feasible for large-scale 

datasets such as electronic health record-linked or radiologic biorepositories. Additionally, 

as MRI scanners produce 3D images by generating multiple 2D slices, radiologists or 

medical experts are required to go through the 3D dataset slice-by-slice, which may lead 

to inconsistencies in the 3D contours of manually segmented structures. When relying 

on manual scoring, intra and inter-rater variability can be high due to factors such as 

lack of contrast in boundaries that separate structures, small size of target structures, 

high anatomical variations of upper airway structures across subjects, and scanner related 

variations. To minimize this variability among and within raters, as well as to protect against 

drifts in scoring over time, specialized training and ongoing data quality assessments are 

required.

Deep learning (DL) has been on the cutting-edge of machine learning research in recent 

years, consistently and significantly outperforming traditional methods in a variety of 

segmentation tasks. (6) Recent advances in DL methods, specifically using convolutional 

deep neural networks (CNNs), have led to a major paradigm shift in image classification and 

segmentation. Traditional methods often rely on extensive and hand-crafted pre-processing, 

feature engineering, and reduction techniques to transform initial 2D or 3D image data into 

a set of optimal features that are then presented as training input to a subsequent classifier. 
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In contrast, DL methods can directly operate on raw or minimally pre-processed data and 

learn complex multi-variate patterns in the data through iterative training and optimization 

of network weights in multiple hidden layers. CNNs are specifically designed to analyze 

2D or 3D images. An input image passes through a series of convolution layers followed 

by pooling layers, which act together as filters to extract a very large number of translation 

invariant local features in different scales, without need for the manual feature engineering 

traditionally required. The network learns the optimal weights (i. e., the combination 

of optimal filters) that minimize the loss function, through intensive training with back-

propagation. For example, CNN architectures have obtained state-of-the-art performance 

in various neuroimaging segmentation tasks, such as brain extraction and segmentation of 

abnormal tissues (white matter lesions, infarcts, brain tumors). (7,8) As such, these cutting-

edge approaches are ideally suited to automate upper airway MRI analysis.

To the best of our knowledge, there are no existing machine learning approaches that 

segment all the OSA-implicated upper airway structures identified by Schwab et al (3) There 

have only been methods that segment individual regions identified in Schwab’s study (3) in 

a semi-automatic or automatic manner. (9–14) Among these partial methods, all but three 

have been tested on cone-beam computed tomography. (12,13,14) However, cone-beam 

computed tomography results in low resolution scans and patient radiation, significantly 

limiting routine use in large studies. In recent years, MRI, which is a non-radiation based 

scanning method, has been used more frequently as it provides excellent contrast between 

upper airway structures.

Considering this development, Xie et al recently developed a semi-automatic anatomy-

guided CNN methodology to segment the upper airway lumen on T2-weighted MR 

scans. (14) They split the upper airway into a subregion containing the nasal 

cavity and nasopharyngeal airway and another subregion containing the oropharyngeal, 

hypopharyngeal, and supraglottic/glottic laryngeal airway using a manual parcellation 

strategy. This strategy requires an expert to provide the initial location of the inferior, 

separation, and superior boundary slices of the upper airway. After automatically cropping 

the image based on dataset-specific spatial context as well as a normalization procedure, 

they train two 2D CNNs to segment each subregion and combine the two output masks 

into a final segmentation. While this work demonstrates a complete segmentation of upper 

airway lumen, it has three limiting factors in its applicability to OSA studies. First, this 

approach does not segment any of the important soft tissue structures surrounding the 

upper airway. Second, their use of a manual parcellation procedure necessitates human 

intervention for each scan, limiting its practicality when examining with large datasets. 

Third, their method only uses data from one site and an automatic cropping method 

trained on this specific dataset. This may prevent generalization due to differences in data 

acquisition from different locations.

A method that can automatically segment both upper airway lumen and the volume of 

the surrounding soft tissues implicated in OSA across different acquisition methods is 

necessary for large-scale studies investigating OSA pathogenesis; however, such methods 

are currently lacking. The present study describes a CNN-based DL method designed for 

automatically segmenting upper airway anatomic risk factors for OSA on T1-weighted MRI 
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scans. We hypothesize that DL models that train on data with ground truth labels can 

accurately delineate upper airway structures, which can then be used to calculate volumetric 

features and derived imaging biomarkers that are not significantly different compared to 

those obtained from manual segmentations.

MATERIALS AND METHODS

Data Sources

The MRI datasets were provided by the researchers at the Division of Sleep Medicine at the 

University of Pennsylvania. The data included scans of 234 participants from four studies 

investigating phenotypic characteristics of sleep apnea patients (Study one: n = 43; Study 

two: n = 43; Study three: n = 72; Study four: n = 76), with samples comprising participants 

with and without OSA (based on sleep study results). The demographic breakdown of each 

study by gender, age, race/ethnicity, and OSA status is as follows: Study one (Gender: 

45% Male/55% Female; Age (range): 48 (41–70); Race/ethnicity: 100% White; has OSA: 

40%); Study two (Gender: 54% Male/46% Female; Age (range): 45 (28–72); Race/ethnicity: 

44% African-American/47% White/9% Asian; has OSA: 55%); Study three (Gender: 100% 

Female; Age (range): 51 (45–54); Race/ethnicity: 45% African-American /48% White/7% 

Asian; has OSA: 80%); Study four (Gender: 62% Male/38% Female; Age (range): 41 (27–

58); Race/ethnicity: 56% African-American/44% White; has OSA: 53%).

Subjects in studies one, two, and four were scanned by a Siemens Avanto 1.5T with 

32-channel head/neck array while subjects in study three were scanned by a Siemens 

Prisma 1.5T with 32-channel head/neck array. For each subject, we had T1-weighted axial 

head and neck MRI with an image size of 512-by-512-by-58 voxels, a resolution of 0.508-

by-0.508 mm, and 3 mm slice thickness. Manual delineation of each upper airway structure 

was performed by a trained expert using 2D axial slices, resulting in one 3D mask with 

multiple labels for each scan. There were 10 regions of interest (ROI): mandible, retropalatal 

airway, retroglossal airway, soft palate, tongue (genioglossus plus intrinsic muscles), “other 

tongue” (all other extrinsic tongue muscles, including digastric, mylohyoid, geniohyoid, 

styloglossus, and hyoglossus), epiglottis, parapharyngeal fat pads, retropalatal lateral walls, 

and retroglossal lateral walls. Figure 1 illustrates some target ROIs overlaid and labeled on a 

T1-weighted scan.

MRI Quality Control and Pre-Processing

To create high quality testing and training sets, T1-weighted scans were manually verified 

for quality and 28 (~12%) scans of the initial dataset were excluded due to image processing 

errors (significant motion blur or artifacts), resulting in a final sample of 206 scans from 

independent subjects (Study one: n = 31; Study two: n = 35; Study three: n = 64; Study four: 

n = 76). Both in model training and testing phases, images were inputted to the network 

without any additional pre-processing steps. The main motivation for this design choice was 

to increase future applicability of the method in clinical settings by allowing the direct use of 

raw images from the scanner.
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Network Model

We used a 2D convolution neural network that follows a modified U-Net architecture 

designed for generic application to neuroimaging segmentation tasks. (15) This model 

combines recently proposed advances in the field. The network architecture consists of 

an encoding path and a corresponding decoding path as in U-Net, but using ResNet and 

modified Inception-ResNet-A blocks in the encoding and decoding paths. (16,17,18) A 

voxel-wise, multi-class soft-max classifier layer produces class probabilities for each voxel 

independently. The architecture of the proposed model is shown in Figure 2.

Training was performed on an NVIDIA TITAN Xp GPU with 12 GB memory. A learning 

rate of 0.05 was used with a decay of 0.98. A maximum epoch threshold was set at 200 

epochs. Axial slices of 3D scans and their labels were used as independent samples during 

training, as well as during testing. On average, 45 epochs were used with batch size of three. 

The model was constructed in TensorFlow with the Adam optimizer (epsilon of 0.1) and a 

cross-entropy loss function. The average total training time was 25 hours for each model.

Tongue Fat Volume Ratio

Previous studies reported significant associations between increased tongue fat and OSA 

and suggested “tongue fat ratio” as an imaging biomarker for OSA. (4,19) Identification of 

decreasing muscle and increasing fat in the tongue has also been proposed as a predictor 

for presbyphagia. (19) We used the segmented tongue and fat pad ROIs to automatically 

estimate the tongue fat volume ratio of each subject. Since the intensity profile of tongue 

fat does not have a boundary that clearly delineates it from non-fat tongue regions, we 

measured tongue volume fat ratios by normalizing the intensity values in the segmented 

tongue by the average intensity in the segmented fat pads region, which is used as a 

reference for the expected intensity of fat tissues. Normalized values within the tongue were 

thresholded to exclude non-fat regions and were integrated to estimate the final tongue fat 

volume ratio. We compared the estimated tongue fat volume ratios to those calculated from 

manual segmentations of the tongue and the fat pads. In our cross-validation experiments, 

we investigated the correlation and statistical difference between the two adjusted tongue fat 

volume ratios (voxel-weighted at two different thresholds: max [“V1”] and 99th percentile 

fat pad intensities [“V2”]) calculated from our model-derived segmentations to those 

calculated from manual segmentations.

Evaluation and Metrics

The model was applied in two distinct experiments. First, we performed a four-fold cross 

validation, with 25% of the data left out for testing (n ≈ 51) and the remaining 75% 

used for training (n ≈ 155) for each fold. Then, we also performed “leave-study-out” 

validations. We created four models, each one trained with three studies and one unique 

study left out for testing. For quantitative evaluations in both experiments, output multi-class 

segmentation maps from each fold were pooled together and labels for each structure were 

compared to reference manual segmentations — considered as the gold standard — using 

standard metrics for comparison of binary segmentations. As two complementary metrics for 

accuracy evaluation, we reported the mean and one standard deviation of Dice scores across 

all subjects (described in more details below).
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Spatial Overlap-Based Metric (Dice Score)—The primary metric of accuracy of 

segmentation labels was the Dice score, which was calculated individually for each different 

label class. In the context of biomedical imaging, the Dice score is used as a statistical 

validation metric to quantify the amount of spatial overlap between two segmentation masks. 

Given two sets of voxels S1 and S2 (i.e., two segmentation masks), the Dice score is defined 

as:

Dice S1, S2 = 2 ∗ S1 ∩ S2
S1 + S2

Correlational Analysis

Dice metrics are very sensitive to overall overlap between ground-truth and automated 

segmentations. However, in most analyses, the volume of the segmented region is the 

primary outcome of interest. Accordingly, we calculated, independently for each structure, 

the correlation between the ROI volumes obtained from ground-truth and automated 

segmentations across subjects.

Agreement Analysis—To understand the agreement between measures derived from the 

ground-truth and DL methods, we conducted analyses described by Bland and Altman, (20) 

including evaluations of the mean difference between techniques (bias), calculation of limits 

of agreement (equal to ± 2 standard deviations around the mean difference), and evaluation 

of the correlation between the average value of the two methods and the mean difference. 

We defined a priori the limits of maximum acceptable differences based on segmentation 

training standards – defined as ± 5% of 2 standard deviations above the mean of the gold 

standard segmentations’ volumes (Table 1). We compared the limits of agreement with the a 
priori defined limits to determine if the results were within clinically acceptable parameters.

RESULTS

Study Cohorts

Images utilized in this analysis came from four different cohorts of patients, as described 

in Data Sources. Mean ages across the cohort ranged from 41–51 years-old. Overall, 38% 

of the cohort was male, 39% were African American, 57% were White, and 4% Asian, and 

59% had OSA. Study 1 included only White participants and Study three included only 

females.

Accuracy of the Deep Learning Algorithm

We evaluated the accuracy of the DL generated segmentations compared to gold-standard 

manual segmentations using Dice scores, as detailed in the Methods. In cross-validated 

segmentation experiments, our model obtained an overall spatial overlap accuracy of 0.70 ± 

0.10 (Table 2). Fold-aggregated mean Dice scores for each ROI are visualized via boxplot 

(Fig 3).

In addition to cross-validated results, in the leave-study-out experiments, we found that 

mean segmentation accuracy was comparable to results obtained using all studies together 
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— for each individual region of interest as well as for overall results (Table 3). In particular, 

the mean Dice score was highest for the model where Study two was excluded (0.71 ± 0.07) 

whereas the other three models had the same mean Dice score (Study one: 0.70 ± 0.07 and 

Studies three and four: 0.70 ± 0.10). Examples of segmentations from each leave-study-out 

model are shown in Figure 4.

Agreement in Calculated Values Between Deep Learning and Manual Approaches

To understand the agreement and potential application of these methods, we compared 

the values of upper airway anatomy structure volumes and tongue fat volume ratio from 

manual (gold standard) and DL-based methods (see Table 4, Fig. 5–6). Regional volumes for 

automated segmentations from the cross-validation experiment showed a strong correlation 

with manually derived values (Fig 5 and Table 4) and generally strong agreement between 

the two methods based on Bland-Altman analysis (Fig 6). On average, we observed 

similar values using the two approaches, with very small standardized mean differences 

between the two techniques (| standardized mean differences | < 0.1) for all measures 

except the epiglottis; thus, statistically significant differences observed in Bland-Altman 

analyses were not clinically meaningful. There is some evidence of negative correlations 

between differences and averages on the two techniques (Table 4), suggesting more negative 

bias estimates for larger average values. However, we found that the limits of agreement 

lay within our a priori defined range of maximum acceptable differences for nearly all 

ROIs, except the epiglottis and the retropalatal airway. As indicated by the steeper slope 

of the linear fit compared to the slope of the identity line and the large standardized 

mean differences, there was a clear bias in the automatically segmented epiglottis volume. 

Automatically calculated tongue fat volume ratios V1 and V2 had a 0.85 and 0.96 

correlation, respectively, with the values calculated from manual segmentation. The V2 ratio 

derived from the DL segmentations was not significantly different (p < 0.05) from the V2 

ratio derived from the manual segmentations.

DISCUSSION

We presented a fully automated method to segment 10 upper airway structures that are 

anatomic risk factors for OSA and to derive the tongue fat biomarker from T1-weighted 

MRI scans using a dataset of 206 unique subjects from four different clinical studies. 

To the best of our knowledge, this is the first study that uses DL techniques to address 

segmentation of the important pharyngeal soft tissue anatomic risk factors for OSA. The 

proposed algorithm was built on a generic CNN architecture that integrates components 

designed based on recent advances in neuroimage analysis using DL. (4,5) Overall, in our 

evaluation experiments using four-fold cross-validation, our model obtained high accuracy 

and agreement, indicating its potential for application in the study of large imaging datasets 

to understand the pathogenesis of OSA.

Inter-rater agreement has been established for the MR upper airway measures between 

human scorers (22); using these established criteria, nearly all the Dice scores reported 

in this paper fall within the “almost perfect” (0.80–0.99) and “substantial” (0.61–0.80) 

ranges. The tongue region was the region with highest mean segmentation accuracy, with 
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an average (standard deviation) Dice score of 0.89 (0.04), whereas the fat pads region had 

the lowest mean accuracy, with an average (standard deviation) Dice score of 0.58 (0.12). 

In our four-fold cross-validation experiment, we had identical 95% CIs for overall Dice 

scores across three folds and a lack of significant volume differences (p < 0.05) in multiple 

structures that are more difficult to segment due to small size or lack of image contrast 

in region boundaries, such as the mandible, retroglossal airway, and soft palate. Just as 

importantly, most Dice scores were within the same inter-rater agreement ranges between 

subjects and datasets. Taken together, this suggests that our algorithm is not affected by 

image and cohort variations.

A primary goal of quantitative image analysis is to derive imaging biomarkers that can 

be clinically used to determine anatomic risk factors for OSA, including an enlarged 

volume of the tongue, lateral walls, soft palate, increased tongue fat volume ratio and 

a narrow upper airway. (23) Previous analyses were limited to relatively small samples, 

mainly due to the difficulties and effort required for manual segmentation of upper airway 

structures. In our comparisons against manual calculations used as the ground-truth, DL 

derived volumes for nearly all pharyngeal structures were highly correlated (p ≥ 0.98), 

not significantly different from manual segmentation (p < 0.05), and within the limits of 

maximum acceptable differences. In addition, a completely automated tongue fat volume 

ratio obtained a very high correlation (p = 0.96) and was not significantly different (p 
< 0.05) relative to manual segmentation. Surprisingly, the agreement between automated 

and manual ratios was high across all cases — even for cases that obtained relatively low 

Dice scores in tongue segmentation. This result indicates that even when the automated 

and the ground truth segmentations do not completely agree, the final biomarker that 

is derived using each approach is similar. This may indicate the robustness of the final 

biomarker to variations due to scanners, subjects, or methodology used for segmentation. 

Our results indicate that the proposed approach could have important practical utility for 

automatically deriving imaging biomarkers in large scale research or clinical studies. Many 

patients undergo MRI of the neck and head for clinical reasons unrelated to sleep apnea. 

We could potentially apply our DL algorithms in the background to automatically segment 

(calculate volumes) of the soft tissues surrounding the upper airway to identify patients with 

anatomic risk factors for sleep apnea. Such patients could then be screened for sleep apnea.

A concern for DL methods is generalizability, e.g., its applicability to imaging datasets 

never seen during training. Using a heterogeneous training set that captures the expected 

variations in input images is a commonly used strategy for obtaining more robust results. 

In this study, we combined four different datasets and performed experiments using careful 

cross-validation to test the generalizability of the final trained model. To further test our 

method’s robustness, we performed leave-study-out cross-validation. As such, we were 

able to test the potential of our model to work on datasets with different acquisition 

methods (leave-study-out validations). The accuracy in leave-study-out experiments was 

comparable to the accuracy of models with four-fold cross-validations. The current results 

are promising, especially for application to larger-scale studies with similar imaging 

approaches; nevertheless, further training on patients with more variable morphology in 

their upper airway would be valuable to improve generalizability and ultimately facilitate 

incorporating these algorithms more routinely in clinical practice. In particular, a range of 
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scans from a diverse patient population (i.e., in age and in upper airway morphology) will 

allow the model to generalize with greater accuracy.

Although our model obtains clinically acceptable agreement for nearly all pharyngeal 

structures, this study still has some limitations. The epiglottis segmentation had an obvious 

bias, with the volumes being overestimated. Since our model minimized the error for the 

joint set of all structures, relatively smaller structures, such as the epiglottis, retropalatal 

airway, and fat pads, would be expected to yield higher error rates. Moreover, while we used 

a unique multi-study dataset with manual ground-truth segmentations and with a moderately 

large sample size, application of the proposed method on a larger clinical scale would 

require further training using a larger, more heterogeneous sample set. We plan to address 

these challenges in future work using semi-supervised learning strategies. Another limitation 

is that our method is applied on T1-weighted images, and we need to perform more 

validation studies on samples acquired from a greater variety of scanners. Using multi-modal 

imaging may improve segmentation accuracy and increase potential for clinical usage in a 

real-world setting. Our network architecture is readily adaptable to a multi-modal setting. 

We are working on collecting multi-modal data for extending our method to multi-modal 

scans in future work.

In conclusion, the results of our quantitative evaluations indicate high spatial accuracy and 

volumetric agreement with manual standards and demonstrate the potential of DL-based 

segmentation for automating the segmentation and quantification of upper airway anatomic 

risk factors for OSA in large-scale studies. This, in turn, could facilitate several research and 

clinical applications, including genetic association studies in electronic health records with 

linked genetic data or potential for screening for obstructive sleep apnea by applying this DL 

algorithm to clinically obtained images and quantifying relevant risk factors, including the 

volume of the tongue and tongue fat.
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Abbreviations:

OSA obstructive sleep apnea

MRI magnetic resonance imaging

MR magnetic resonance

DL deep learning

CNN convolutional neural network

ROI region of interest

V1 voxel-weighted at max fat pad intensity

V2 voxel-weighted at 99th percentile fat pad intensity
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Figure 1. 
Target upper airway structures. Illustration of seven target upper airway structures overlaid 

on a single T1-weighted scan (midsagittal view).
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Figure 2. 
Network architecture to segment upper airway structures. The architecture of the 

convolutional neural network used for segmenting upper airway structures. Each item in 

the legend describes a unique and prototypical series of mathematical operations native to 

machine learning research. (13,14,15) Conv = convolutional layer; ReLU = rectified linear 

unit.
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Figure 3. 
Fold-aggregated mean Dice Scores for each region of interest. Box and whisker plot for 

mean Dice Scores of each region of interest as well as of overall results. The diamonds 

represent outliers. The mean Dice scores are from the aggregated segmentation results of the 

cross-validations (n = 206). RG = retroglossal; RP = retropalatal.
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Figure 4. 
Automatically generated segmentations from each leave-study-out validation model. Four 

automatically generated segmentations from the leave-study-out validations, one for each 

excluded study model. Top left: Study 1, Top right: Study 2, Bottom left: Study 3, Bottom 

right: Study 4.

Bommineni et al. Page 15

Acad Radiol. Author manuscript; available in PMC 2023 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Spearman correlation plots between anatomical traits derived from manual and deep learning 

methods. Spearman correlation plots between each of 10 manually segmented and deep 

learning-segmented ROI volumes (in mm3) as well as 2 correlation plots of the relation 

between each manually derived adjusted tongue fat volume ratio and deep learning-derived 

adjusted tongue fat volume ratio. The black dashed line represents the calculated correlation 

between the automated and manual segmentation volumes whereas the red dashed line 

represents the identity line. The deep learning-derived ratios and ROI volumes are calculated 

from the aggregated segmentation results of the cross-validation experiment (n = 206). ML = 

machine learning; RG = retroglossal; RP = retropalatal; V1 = voxel-weighted at max fat pad 

intensity; V2 = voxel-weighted at 99th percentile fat pad intensity.
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Figure 6. 
Bland-Altman plots of the relation between anatomical traits derived from manual and 

deep learning methods. Bland-Altman plots of the relation between each of 10 manually 

segmented and deep learning-segmented ROI volumes (in mm3) as well as 2 Bland-Altman 

plots of the relation between both manually derived adjusted tongue fat volume ratios 

and both deep learning-derived adjusted tongue fat volume ratios. The dark green lines 

indicated the upper and lower limits of agreement whereas the dashed green line represents 

the mean difference. The deep learning-derived ratios and ROI volumes are from the 

aggregated results of the cross-validation experiment (n = 206). ML = machine learning; 

RG = retroglossal; RP = retropalatal; V1 = voxel-weighted at max fat pad intensity; V2 = 

voxel-weighted at 99th percentile fat pad intensity.
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TABLE 1.

The Expert-Defined Limits of Acceptable Differences for Each of the 10 Regions of Interest Under 

Consideration

Limits of Maximum Acceptable Differences for each Region of Interest

Structure Maximum Acceptable Differences (in mm3)

Mandible ±4050

Retropalatal airway ±358

Retroglossal airway ±659

Soft palate ±705

Tongue ±6041

Other tongue ±2547

Epiglottis ±159

Fat pads ±400

Retropalatal lateral walls ±1050

Retroglossal lateral walls ±870

These limits are defined as ±5% of two standard deviations above the mean of the 206 manual segmentations volumes.
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