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Summary

Disrupted hormonal appetite signaling plays a crucial role in obesity as it may lead to

uncontrolled reward-related eating. Such disturbances can be induced not only by

weight gain itself but also by glucocorticoid overexposure, for example, due to

chronic stress, disease, or medication use. However, the exact pathways are just start-

ing to be understood. Here, we present a conceptual framework of how glucocorti-

coid excess may impair hormonal appetite signaling and, consequently, eating control

in the context of obesity. The evidence we present suggests that counteracting gluco-

corticoid excess can lead to improvements in appetite signaling and may therefore

pose a crucial target for obesity prevention and treatment. In turn, targeting hormonal

appetite signals may not only improve weight management and eating behavior but

may also decrease detrimental effects of glucocorticoid excess on cardio-metabolic

outcomes and mood. We conclude that gaining a better understanding of the rela-

tionship between glucocorticoid excess and circulating appetite signals will contribute

greatly to improvements in personalized obesity prevention and treatment.
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1 | INTRODUCTION

Over the past years, obesity (BMI ≥ 30 kg/m2) has emerged as a

pandemic that poses a major health problem and a challenge to health

care providers worldwide.1 Environmental catalysts such as the

omnipresence of palatable high-calorie foods and sedentary lifestyles

are major steering wheels in the development of an obese phenotype,

especially in Western societies.2–4 One might therefore argue that an

intact physiological and psychological control over one's eating

behavior might be needed more than ever in a world full of

obesogenic temptations.

However, disturbances in this control are a key problem in

obesity. The tendency for uncontrolled hedonic overeating is fre-

quently reported in people with a high BMI along with altered sig-

naling of appetite-regulating hormones.5 Prominent dysfunctional

eating behaviors in this context include disinhibited/binge eating,

emotional eating (comfort eating as a coping strategy in response to

negative emotions), and eating impulsivity or external eating

(opportunistic, often reward-related eating that is triggered by food

cues). All are characterized by the tendency to eat for the hedonic

value of food in the absence of homeostatic need.6 While the

capability to overeat at times when food is abundant was probably
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an evolutionary advantage in the human past, our current obeso-

genic environment promotes overeating and weight gain. Unsurpris-

ingly, uncontrolled hedonic eating behaviors were found to predict

future increases in BMI.7,8 In fact, a prospective epidemiological

study (1,562 subjects, 38.4% women) showed that high emotional

eating was a better predictor for subsequent weight gain than life-

style behaviors such as low physical activity, high alcohol consump-

tion, or low intake of healthy food (vegetables, fruits).7 Meanwhile, a

large body of evidence indicates that uncontrolled overeating is

related to the signaling of hormones regulating appetite and metabo-

lism.9,10 Prominent support for this idea comes from genome-wide

association studies showing strong links between BMI and common

variants of genes involved in brain-appetite regulation, indicating

that there is a neurohormonal basis for an individual's susceptibility

to weight gain in an obesogenic environment.11 Moreover, patients

with obesity often show altered peripheral and central signaling of

appetite-regulating hormones compared to healthy-weight controls.9

Thus, the (neuro-)hormonal connection between peripheral sites of

appetite regulation (e.g., the gastrointestinal tract, adipose tissue, the

pancreas) and the brain is seen as a promising target for obesity

treatment.12,13 Indeed, the first anti-obesity drugs became available,

which target circulating regulators of hedonic and homeostatic food

intake and thereby successfully induce weight loss and metabolic

improvements.14,15

Intriguingly, the hormonal gut-brain connection works in close

interaction with the hypothalamic-pituitary-adrenal (HPA) axis and

its major downstream effector cortisol, an endogenous glucocorti-

coid. In addition to their profound peripheral gluconeogenic and

anti-inflammatory effects, glucocorticoids can induce an increase in

food intake and a preference for highly caloric foods.16–19 As a

result, chronically increased levels of glucocorticoids, e.g. due to

medication or chronic stress, may give rise to weight gain and,

eventually, obesity.16,20–22 Previous research suggests that this

effect is at least partially mediated by glucocorticoid-induced

alterations in the levels and/or signaling of appetite-regulating

hormones.16,19,23 Notably, many patients with obesity have cortisol

levels in the high-physiological range and/or use glucocorticoid

medication,24,25 indicating that there may be a large subgroup of

patients suffering from glucocorticoid effects on appetite and

metabolism.

Altogether, altered neuroendocrine appetite signaling may be a

crucial mediator in the relationship between glucocorticoid excess

and overeating. Here, we provide a conceptual framework of how

glucocorticoid-induced alterations of hormonal appetite signaling

may induce uncontrolled eating and thereby contribute to the devel-

opment and/or maintenance of obesity. In this context, we present

evidence building the hypothesis that circulating appetite signals

may serve as highly valuable biomarkers for the prevention, diagnos-

tics and treatment success evaluation in obesity, particularly for

patients suffering from chronic glucocorticoid excess. Moreover, the

presented findings suggest the utmost value of further investigating

the potential use of pharmacological therapeutics targeting circulat-

ing appetite regulators in such patients.

2 | GLUCOCORTICOIDS, APPETITE-
REGULATING HORMONES, AND EATING
BEHAVIOR IN OBESITY

Homeostatic and hedonic aspects of eating behavior and appetite are

mainly regulated via two central systems. Concerning the physiologi-

cal need to eat, the hypothalamus plays a crucial role as the main inte-

grator of peripheral and central signals for hunger and satiety.

Specifically, orexigenic neuropeptide-Y (NPY) and agouti-related pep-

tide (AgRP) neurons as well as anorexigenic pro-opiomelanocortin

(POMC) neurons in the hypothalamic arcuate nucleus orchestrate

appetite signals in order to maintain energy homeostasis.26 Circulating

appetite-regulating hormones are of major importance in this process,

not only as regulators of short-term food intake initiation or termina-

tion (e.g., ghrelin, PYY, and GLP-1), but also as long-term sensors of

energy status and fat storage (e.g., leptin and insulin).13,27 Meanwhile,

the hedonic desire to consume highly palatable foods (which are high

in sugar and fat) is mediated by mesolimbic reward circuits in response

to food cues such as sight, smell, and taste. Mainly acting through pro-

jections from the ventral tegmental area (VTA) to the nucleus accum-

bens (NAc) and the prefrontal cortex, dopaminergic signals induce a

feeling of reward in response to the intake of highly palatable foods

and thereby act reinforcing.28 The VTA, however, also receives input

from peripheral appetite signals (e.g., insulin, leptin, and ghrelin),

thereby serving as a major site of integration of hedonic and homeo-

static appetite–regulating signals.10,28

Glucocorticoids can act directly on the hypothalamus and

mesolimbic regions (e.g., the VTA), but also indirectly via interac-

tions with circulating appetite regulators. Overall, this may result in

diminished homeostatic control and an increased hedonic drive for

food intake.16,19,22,28,29 Interactions of appetite-regulating hormones

with the HPA axis have been implicated in various psychoneuroen-

docrine models of stress and obesity, which has been addressed in

previous reviews.16,19,22,29–33 Notably, the eating response to

stress can vary not only between different individuals, but also

depending on stimulus-dependent characteristics, such as the

duration of stress. Acute stress, especially, can also cause suppres-

sion of appetite via effects of corticotrophin-releasing hormone and

urocortin release leading to an inhibition of orexigenic NPY/AgRP

neurons.22

Here, we focus on effects on hormonal appetite regulation in the

context of obesity and how this may translate into decreased eating

control, especially under conditions of chronically increased glucocor-

ticoid exposure. We give a brief overview of the recent advances in

this field and highlight the relevance of further progress. A summary is

depicted in Table 1.

2.1 | Leptin

Leptin is an adipocyte-derived hormone that primarily acts as a long-

term sensor for the amount of body fat.34,35 Low levels of leptin

induce a physiological starvation response including feelings of hunger
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and decreases of energy expenditure as well as increases in the

hedonic value of food.36,37 Normal and high levels of leptin reduce

food intake by inhibiting orexigenic NPY/AgRP neurons, activating

anorexigenic POMC neurons in the hypothalamus and diminishing

food reward by reducing the firing rate of dopaminergic VTA neu-

rons.37,38 Thus, leptin poses a tonic background signal which informs

the brain about the state of fat (i.e., energy) stores in the body. As

such, it also has a permissive effect for the mainly gut-derived satia-

tion signals involved in meal termination. This modulating

(or enhancing) effect of circulating leptin on gut-derived signals is

mediated (1) by descending projections from the hypothalamus to the

brainstem and (2) by a direct effect of leptin on the brainstem, where

these satiation signals are integrated.39–42 Serum leptin levels corre-

late positively with BMI and elevated circulating leptin levels are

observed in obesity.35,43 The paradoxical lack of anorectic effects in

individuals with a high BMI has been attributed to leptin resistance—a

state of altered leptin-mediated hypothalamic and VTA functioning

that renders individuals insensitive for leptin's satiating and reward-

reducing actions.34,44,45 Understanding of this phenomenon is still

limited, and the term “leptin resistance” is still being discussed. How-

ever, accumulating evidence indicates that obesity-related attenuation

of central leptin actions (which some would summarize under the term

“leptin resistance”) involve altered intra-neuronal signaling of leptin

receptor-expressing neurons, neuro-inflammation, gliosis and endo-

plasmic reticulum stress.34,39,45 It has been proposed previously that,

in the context of obesity, even enhanced leptin signaling itself (caused

by elevated leptin levels) may attenuate downstream leptin action,

thus imposing a functional ceiling for leptin action and thereby allow-

ing for an excessive accumulation of body fat.39 Nevertheless, this

innate propensity to overeat may be more strongly pronounced in

some individuals than others, possibly depending on environmental

influences.

Accumulating evidence points towards a role of glucocorticoid

excess in attenuating central leptin actions.16,22 For example,

adrenalectomized rodents show strongly increased sensitivity to

leptin injections along with weight loss; an effect which is dose-

dependently reversed upon glucocorticoid supplementation using

dexamethasone.46,47 Partially in line with this, prednisolone treatment

TABLE 1 Proposed interactions of appetite hormones and the HPA axis

Hormone
Major site of
synthesis

Central effect
on appetite

Major

appetite-
regulating
receptor(s)

Major site(s) of
appetite-regulating
actions

Proposed effects of

chronic
glucocorticoid
excess

Other comments
(explanations in text)

Leptin White

adipose

tissue1

Anorexigenic2 LepR3 ArcN & VTA3 Increase, fosters

central resistance2
/

Insulin Pancreatic β
cells4

Anorexigenic4 Insulin

receptor4
Hypothalamus &

VTA4

Increase, fosters

central resistance5
/

Ghrelin Stomach6 Orexigenic6 GHSR1a7 Vagus nerve, ArcN &

VTA6

Increase8, 9 Potential moderator of

the stress response

NPY NPY/AgRP

neurons10
Orexigenic11 Y1 & Y511 ArcN10, 12 Increase12 Potential moderator of

stress + diet effects on

obesity outcomes

Adiponectin White and

brown

adipose

tissue13

Inconsistent14–16 AdipoR114–16 ArcN & VTA14–17 Decrease18, 19 Potential moderator of

the stress response

Target for future

pharmacotherapy

PYY Intestinal L

cells6
Anorexigenic20 Y220 Gut, vagus nerve&

ArcN6

Inconsistent Target for future

pharmacotherapy

GLP-1 Intestinal L

cells6
Anorexigenic21,

22

GLP-1R21, 22 Gut, vagus nerve,

brainstem,

hypothalamus,

VTA21–23

Inconsistent Potential moderator of

stress + diet effects on

obesity outcomes

Already target for

pharmacotherapy

Note: (1) Considine, R.V., et al, N Engl J Med, 1996; (2) Zakrzewska, K.E., et al, Diabetes, 1997; (3) Myers, M.G., M.A. Cowley, and H. Münzberg, Annu. Rev.

Physiol., 2008; (4) Kullmann, S., et al, Lancet Diabetes Endocrinol, 2020; (5) Baura, G.D., et al, Diabetes, 1996; (6) Cummings, D.E. and J. Overduin, J Clin

Invest, 2007; (7) Steinert, R.E., et al, Physiol. Rev., 2017; (8) Lutter, M., et al, Nat. Neurosci., 2008; (9) Yousufzai, M., et al, Transl Psychiatry, 2018; (10) la

Fleur, S.E., et al, Int J Obes (Lond), 2010; (11) Duhault, J., et al, Can J Physiol Pharmacol, 2000; (12) Konno, J., et al, Neurosci. Res., 2008; (13) Nigro, E.,

et al, Biomed Res. Int., 2014; (14) Kubota, N., et al, Cell Metab, 2007; (15) Suyama, S., et al, Sci. Rep., 2016; (16) Coope, A., et al, FEBS Lett, 2008; (17) Sun,

F., et al, Mol. Psychiatry, 2019; (18) Roerink, S.H.P.P., et al, Obesity (Silver Spring), 2017; (19) Babinska, A., et al, Steroids, 2018; (20) Batterham, R.L., M.A.

Cowley, and C.J. Small, Nature, 2002; (21) Holt, M.K., et al, Diabetes, 2019; (22) Alhadeff, A.L., L.E. Rupprecht, and M.R. Hayes, Endocrinology, 2012; (23)

Brierley, D.I., et al, Nat Metab, 2021.

Abbreviations: ArcN, arcuate nucleus (hypothalamus); VTA, ventral tegmental area (mesolimbic system).
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induced increased food intake despite strongly increased circulating

leptin levels in women.48 Treatment with dexamethasone inhibited

leptin-mediated IL-1β expression in the murine hypothalamus and glia

cell cultures (a pathway assumed to mediate leptin's anorexigenic

effects).49 Hypothalamic leptin receptor expression was not affected,

suggesting another, possibly intra-neuronal signaling pathway. Addi-

tionally, rodent studies support the hypothesis that deficits in leptin

signaling (e.g., resistance or deficiency) pose a mediating link between

obesity and the common occurrence of comorbid depression, a dis-

ease that, notably, is characterized by HPA axis dysregulation and

weight change.50–52 In patients with major depressive disorder leptin

levels correlated positively with disordered eating, for example, emo-

tional eating and inability to quit.53 However, this correlation was not

corrected for BMI which strongly limits the interpretation of these

results. Other studies suggest that leptin may directly affect HPA axis

activity and could even act as a protective factor in response to acute

stress: raised leptin levels, either at baseline or in response to an acute

stressor, have been associated with decreased stress-induced snack

intake.32,50,54,55 Although this is in line with leptin's antidepressant

effects,50 it demonstrates the need for technological progress to dis-

tinguish the effects of leptin resistance from increased leptin levels

themselves on behavioral phenotypes in humans.

Overall, attenuations or defects of central leptin actions may

lead to increased susceptibility for overeating via (1) direct effects

due to altered signaling in the hypothalamus and VTA and (2)

indirect effects such as altered satiety signaling of gut-derived

hormones in hindbrain. This may be induced by glucocorticoid

excess and may be especially of relevance in the context of

negative affect. To pinpoint the role of (glucocorticoid-induced)

leptin signaling deficits in hedonic overconsumption, and specifically

emotional eating, quantitative biomarkers for an individual's leptin

signaling deficits are needed.

2.2 | Insulin

Secreted from the pancreas, insulin is an anabolic agent that is not

only essential for glucose metabolism but is also a crucial regulator of

homeostatic and hedonic eating. Insulin highly resembles leptin con-

cerning its role in central appetite regulation, including its anorexi-

genic and reward-diminishing effects on food intake via actions on

the hypothalamus and dopaminergic neurons of the VTA, respec-

tively.10,56 Boosting brain insulin action has therefore been suggested

as a target to improve eating behavior by reducing food cravings.56

Similar to leptin, plasma insulin levels correlate closely with fat accu-

mulation, suggesting that insulin poses another long-term marker for

energy stores rather than an acute satiety signal.57 However, insulin

levels in the cerebrospinal fluid (CSF) are negatively correlated with

BMI58 and the ratio of CSF/blood insulin decreases with whole-body

insulin resistance,58,59 indicating disrupted signaling. This seems at

least partially mediated by impaired insulin transport across the

blood-brain-barrier (BBB) via reduced insulin receptor sensitivity and

may result in brain insulin resistance.59–61

Importantly, chronically elevated glucocorticoid levels seem to

interfere with insulin signaling on multiple levels, including the devel-

opment of whole-body insulin resistance16,22,61 and impaired insulin

transport across the BBB.62 While central infusions of insulin lead to

reduced food intake in adrenalectomized rats, this was not observed

in intact counterparts.63 This supports the idea of glucocorticoid-

induced suppression of insulin's ability to exert its anorexigenic

effects in the hypothalamus, although other studies also report ano-

rectic effects of central insulin infusions in ‘intact’ animals (as noted

above).64,65 Intriguingly, disruptions in brain insulin signaling may also

pose a pathological link between type 2 diabetes (i.e., insulin resis-

tance) and depressive symptomatology.52,66 Indeed, the incidence of

depression in diabetic patients is two times higher than in the general

population.67 Improving brain insulin signaling has therefore been pro-

posed as an interesting target to reduce mood disturbances, particu-

larly in type 2 diabetes, via insulin's beneficial effects on emotional

regulation and HPA axis activity in response to stress.52 Indeed, intra-

nasal insulin administration can reduce symptoms of depression and

anxiety as well as HPA axis activity in animals and humans, as

reviewed previously.68 Altogether, counteracting glucocorticoid-

induced defects in insulin signaling (such as steroid-induced diabetes)

may pose an important treatment target to reduce (emotional) over-

consumption and mood disturbances in obesity.

2.3 | Ghrelin

Ghrelin is a gut peptide that is mainly produced in the stomach and

acts as a potent stimulator of appetite and food intake.10,69,70 It is

known that ghrelin heightens reward sensitivity and promotes the

intake of highly palatable foods by acting on the mesolimbic dopami-

nergic pathway, thereby opposing the effects of leptin and insu-

lin.28,69,71,72 In obesity, altered circulating ghrelin levels have been

reported (both upregulation and downregulation compared to healthy

controls), although most evidence points towards lower levels in obe-

sity.73 Notably, ghrelin is present in two forms: acylated and unacy-

lated ghrelin. Since only acylated ghrelin binds to the appetite-

regulating GHSR1a receptor, it was originally assumed that unacylated

ghrelin is merely an inactive degradation product. However, more

recent evidence suggests that both forms have distinct functional

roles which may even oppose each other.70,74 Although the value of

measuring them separately (instead of total ghrelin) is therefore

becoming increasingly evident, total ghrelin is still often

measured.31,74

Intriguingly, studies in animals and humans have demonstrated

that levels of acylated and total ghrelin rise under chronic and acute

stress.75–79 Since ghrelin seems to have anxiolytic and antidepressant

actions,75,78 this has been proposed as a protective mechanism which

may come at the expense of increased food intake.22,23,30,31,75,78

Indeed, it was repeatedly shown that ghrelin mediates chronic-stress-

induced increases in food intake, food-reward behavior and weight

gain in mice.75,80 In humans, emotional eaters show lower baseline

ghrelin levels and a lack of postprandial ghrelin decreases when
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presented with a snack during or after stress (although both emotional

and non-emotional eaters show a stress-induced increase in ghrelin

levels),77,79 indicating that ghrelin signaling likely plays an important

role in determining inter-individual differences of eating behavior in

response to stress. Notably, diet-induced obesity is often associated

with central resistance to the effects of ghrelin (e.g., in the hypothala-

mus and the VTA).72,81 This led to the hypothesis that a reduced abil-

ity to mobilize central ghrelin mediates impaired coping and an

increased susceptibility to reward-related eating in response to nega-

tive emotions in the context of obesity.31 However, our understand-

ing of how peripheral ghrelin acts on deeper brain areas such as the

VTA is still very limited (although upstream mechanisms likely play a

role, including, e.g., decreased hypothalamic GHSR expression and

actions via GHSR1a heterodimers with dopamine receptors).71,81

Intriguingly, chronic stress-induced elevations of circulating acyl ghre-

lin levels seem to cause ghrelin resistance in the amygdala (a key

region for ghrelin to exert its anxiolytic effects) via decreased amyg-

dala GHSR1a expression,82 supporting the idea that ghrelin poses a

link between chronic stress, obesity, mood dysregulation and

overeating.82

Altogether, disrupted ghrelin signaling may pose a functional link

between chronic stress, emotional dysregulation and reward-related

eating behavior in obesity. However, more evidence is needed to sup-

port this hypothesis. When trying to unravel ghrelin's role in (gluco-

corticoid-induced) hedonic overeating, we need to gain a better

understanding of ghrelin's central targets, central ghrelin sensitivity

and the role of glucocorticoids in this context. It would also be useful

to establish distinct acylated and unacylated ghrelin measurements as

the regular approach to assess ghrelin's function.

2.4 | Neuropeptide Y (NPY)

NPY is a highly orexigenic peptide, which is produced by neurons in

the hypothalamic arcuate nucleus, but in the periphery it can also act

directly on adipose tissue where it promotes lipogenesis (i.e., energy

storage in fat).83–88 Similar to ghrelin, NPY increases (food-)reward-

seeking behavior but also acts as an anxiolytic.88–91

It is therefore not surprising that NPY seems to play an important

role in the relationship of obesity and glucocorticoid excess. First, ani-

mal models have shown that elevated glucocorticoid levels directly

stimulate hypothalamic NPY release, which may in turn directly lead

to increased food intake and fat accumulation.84,92,93 Second, evi-

dence from animal and human studies suggests that the role of NPY

in the relationship between increased glucocorticoid levels and obe-

sity is that of a modulator whereby high NPY levels, in concert with

increased glucocorticoid exposure, lead to more detrimental obesity

outcomes.84,86,94,95 Indeed, central amygdala NPY neurons mediate

the combined negative effects of stress and an unhealthy calorie-

dense diet (resulting e.g. in accelerated weight gain).96 This is in line

with human studies that demonstrated a gene-by-psychosocial stress

interaction effect of NPY polymorphisms to be linked to overall obe-

sity and the metabolic syndrome.94

Altogether, NPY may augment the detrimental effect of increased

glucocorticoid levels in the context of obesity. Notably, Glucagon-like

peptide-1 (GLP-1) may directly or indirectly inhibit hypothalamic NPY

expression97,98 while GLP-1 receptor (GLP-1R) agonists are already

available for obesity treatment (see below). Consequently, these drugs

might have beneficial effects in the treatment of obesity associated

with combined glucocorticoid and NPY excess which should be fur-

ther investigated in future studies.

2.5 | Adiponectin

Adiponectin is a circulating adipokine and well known for its insulin-

sensitizing effects.99 Its role in appetite regulation is not yet fully

unraveled as studies indicate both anorexigenic and orexigenic actions

in the hypothalamus, possibly depending on blood glucose

levels.100–104 However, altered adiponectin levels in human eating

disorders (e.g., anorexia nervosa and bulimia nervosa) point towards a

direct link with appetite.105 Moreover, adiponectin was recently found

to decrease the activity of dopaminergic VTA neurons, suggesting a

potential role in hedonic eating.106 It is noteworthy that adiponectin

circulates in three isoforms while only the smaller trimeric and hex-

americ oligomers, but not the larger high-molecular-weight adiponec-

tin, have been found in the CSF.107 Future studies should therefore

investigate potential differences regarding the signaling pathways and

central effects of different adiponectin isoforms to shed light on adi-

ponectin's role in the regulation of energy homeostasis.

In obesity, adiponectin is often decreased and, in contrast to

other adipokines (such as leptin), levels are inversely correlated with

BMI.108,109 Due to its various protective properties (including anti-

inflammatory, anti-hyperglycemic and anti-atherogenic actions), adi-

ponectin is seen as a highly interesting pharmaceutical target for the

treatment of obesity and related diseases.99,110,111 Notably, lower adi-

ponectin levels are not only associated with the metabolic syndrome,

but also with depressive symptomatology independently of weight

status.99,110,112–114 Adiponectin deficits may therefore pose a vulner-

ability factor linking mood disturbances, metabolic dysfunction, and

appetite regulation.

Although findings regarding adiponectin-HPA axis-interactions

are not without controversy,115,116 strong evidence points towards

glucocorticoid-induced suppression of adiponectin. In vitro treatment

with dexamethasone (16–48 h) promotes decreased adiponectin

expression in adipocytes.115,117 In vivo, adrenalectomy increases adi-

ponectin expression and serum levels in obese mice.118 In line with

these findings, studies in patients with clinical or subclinical Cushing's

syndrome (“CS,” a disease characterized by chronic cortisol excess)

reported decreased adiponectin levels compared to age-, BMI,- and

gender-matched healthy controls.119–121 Intriguingly, such

glucocorticoid-induced reductions may even persist years after remis-

sion as has been shown when comparing adiponectin levels of former

CS patients to those of control subjects, also matched for age-, sex-

and BMI.122,123 However, the presence of adiponectin receptors in

human and rodent adrenal glands suggests that the adiponectin-
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glucocorticoid relation is not unidirectional.124,125 Indeed, in vitro adi-

ponectin administration has been reported to acutely reduce basal

corticosterone production and ACTH-induced steroidogenesis in

mouse adrenocortical cells.125 Partly in line with this, blockade of cen-

tral adiponectin action (via receptor deletion or haploinsufficiency) led

to increased stress-induced anxiety- and depressive-like behavior in

mice while intra-VTA adiponectin administration prevented stress-

induced increases of dopaminergic VTA signaling and anxiety-like

behavior.106,126 Adiponectin might therefore represent a protective

factor in the stress response.

In conclusion, evidence suggests that adiponectin poses a highly

interesting target to induce improvements in metabolism, insulin

sensitivity, mood, and, possibly, eating control; especially in the

context of glucocorticoid excess. Future studies investigating these

links should measure the different isoforms separately, instead of only

assessing total adiponectin, as they may differ in their effects.

2.6 | Peptide tyrosine-tyrosine (PYY)

Peptide tyrosine-tyrosine (PYY) is a potent anorexigenic peptide

hormone produced by intestinal L cells which circulates in two forms;

PYY1–36 and the active form PYY3–36.
13,70 PYY is released postprandi-

ally and acts in the gut to induce fullness via delayed gastric emptying,

which is also referred to as the “ileal brake.”70 Nevertheless, PYY

exerts its appetite-reducing effects mainly through binding to the

inhibitory neuropeptide Y2 receptor (Y2R) of orexigenic NPY/AgRP

neurons in the hypothalamic arcuate nucleus.13,127,128 Moreover, PYY

may play a role in emotional regulation as it has been reported that

PYY deficiency leads to increased depressive-like behavior in mice.129

Compared to healthy controls, patients with obesity often show

decreased basal PYY plasma levels130–132 and a blunted postprandial

increase.132–134 In genetically manipulated mice, PYY deletion led to

hyperphagia and weight gain, especially when fed a high fat

diet,130,135 indicating that PYY deficiencies may be involved in the

development and maintenance of obesity by reducing satiety signaling

and thereby promoting overeating.131,132,134,136 Indeed, a blunted

postprandial PYY increase has been associated with more disinhib-

ited/uncontrolled eating in healthy humans.136 Conversely, injection

of PYY3–36 acutely suppresses appetite and, subsequently, an �30%

decrease in calorie intake both in patients with obesity and healthy

volunteers, suggesting that patients are not resistant to the actions of

PYY3–36.
128,132,137 Thus, the field of pharmacological PYY treatment is

advancing to overcome adverse side effects (including nausea and

vomiting) and to provide PYY-analog-based options for therapeutic

use.138,139

The possibility of future PYY drug treatment could have special

relevance in the context of glucocorticoid-related obesity. As

reviewed previously, exposure to acute or chronic stressors can mod-

ulate circulating PYY, possibly resulting in decreased levels.23,140,141

However, evidence is inconclusive so far and especially studies

regarding long-term glucocorticoid exposure in humans are missing.

One study in former CS patients revealed no change in PYY levels

after remission, but unfortunately the study did not include a healthy

control group.142

Altogether, disruption of PYY's satiety signal seems to be involved

in obesity pathology and may be induced/worsened under conditions

of stress. This would make PYY3–36 and Y2R agonistic drugs interest-

ing targets in the context of glucocorticoid-related obesity. Future

research should continue studying PYY's involvement in eating (dis-)

inhibition and emotional regulation as well as the effects of chronic

glucocorticoid overexposure on PYY signaling in humans. Future stud-

ies should also assess the effects of long-term glucocorticoid or PYY

administration on the respective counterpart.

2.7 | Glucagon-like peptide 1 (GLP-1)

GLP-1 is an incretin hormone that is released postprandially and

known to reduce food intake, food reward, and food-directed motiva-

tion.143 While peripheral GLP-1 is secreted by intestinal L-cells and

acts mainly on the vagus nerve to transmit signals to the brainstem

and hypothalamus, central GLP-1 is mainly produced by brainstem

preproglucagon neurons and exerts its anorexigenic effects via actions

on the hypothalamus and mesolimbic regions (e.g. the VTA and the

NAc).144,145 Notably, recent evidence suggests that these two innate

GLP-1 circuits operate rather independently of each other.146

Due to GLP-1's potent food intake-suppressing properties along

with beneficial effects on glycemic control, GLP-1R agonists have

already been successfully developed into FDA- and EMA-approved

drugs for the treatment of diabetes and obesity (e.g., semaglutide and

liraglutide).15 Importantly, the anorexigenic effects of these drugs are

mediated by the central, rather than peripheral, endogenous GLP-1

system.98,147 In addition, targeting GLP-1 and its receptor GLP-1R is

seen as a promising approach for the development of novel antide-

pressants, specifically for patients suffering from obesity and/or dia-

betes with comorbid mood disorders.148,149 Intriguingly, emotional

eaters show less GLP-1R agonism-induced reductions in mesolimbic

reward signaling compared to non-emotional eaters, indicating that

emotional eating could be (at least partially) mediated by disrupted

GLP-1 signaling in the reward pathway.150

In view of the major advances in GLP-1-targeted drug develop-

ment, research investigating possible GLP-1-HPA axis-interactions is

surprisingly limited. Glucocorticoids may suppress GLP-1 signaling as

in vitro 48-h exposure to dexamethasone decreased GLP-1 secretion

in murine L cells. Likewise, 1-week in vivo dexamethasone treatment

of rats decreases circulating GLP-1 levels along with inducing insulin

resistance. Altogether, the authors interpreted these findings as a pos-

sible pathway of “steroid diabetes.”151 In turn, other studies have

shown that acute and subchronic treatment (≤2 weeks) with GLP-1R

agonists can induce HPA axis stimulation in rodents and

humans.152–154 However, more recent findings in healthy human sub-

jects do not indicate any effects of 3-week treatment with a GLP-1R

agonist.155 The originally observed increases in HPA axis stimulation

may reflect an acute treatment response which declines on the long

term; an idea which is supported by the beneficial effects of chronic
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GLP-1R agonist treatment on cardiovascular outcomes and glycemic

control.155,156 Remarkably, a rodent study showed that limiting

endogenous glucocorticoid secretion enhances the anorectic effect of

an GLP-1R agonist,157 suggesting that glucocorticoids may interfere

with the appetite-suppressing actions of endogenous GLP-1.

Undoubtedly, more research is needed to pinpoint the relationship of

GLP-1R agonism and HPA axis activation. Ideally, future studies

should include long-term measurements of glucocorticoid exposure

such as scalp hair cortisol/corticosterone in addition to the widely

used short-term measures (e.g., from blood, urine, and saliva).

A different line of evidence from animal studies suggests that

GLP-1 may have multiple protective effects under conditions of

stress, including reduced inflammation, food intake and depressive-

like behavior (as has been reviewed in detail before).23 Indeed, this

possibility deserves further investigation, especially in view of a study

which demonstrated that GLP-1R agonists successfully prevented

glucocorticoid-induced glucose intolerance in 8 healthy human volun-

teers.158 Nevertheless, evidence is still very limited and further stud-

ies in humans, especially patients with obesity, are needed to unravel

potential protective actions of GLP-1 analogs to counteract glucocor-

ticoid excess and its physiological effects.

Altogether, GLP-1R agonists may be readily available pharmaceu-

tical targets to modulate not only overeating, overweight and

glycemic control, but also related comorbidities such as mood dysre-

gulation, especially in the context of glucocorticoid excess. Gaining a

better understanding of the interactions between (especially chronic)

GLP-1 receptor agonism and (long-term) HPA axis activity may there-

fore be of utmost value towards development of more personalized

medicine, for example, for patients suffering from obesity and related

disorders such as steroid-induced diabetes and mood dysregulations.

3 | LIMITATIONS

Here, we provide a brief overview of well-known appetite-regulating

hormones and their interactions with the HPA-axis. We want to high-

light the therapeutic potential of further research. We do not claim to

give a comprehensive description of all mechanisms involved that are

potentially of relevance (e.g., neuropsychological factors and

peripheral energy metabolism). On this note, there are two important

limitations to be mentioned regarding this paper: (1) For some of the

hormones described above, prominently, for example, leptin and insu-

lin, profound sex differences have been described regarding their cen-

tral actions (likely driven by estrogens).159,160 This could be of high

relevance, especially in view of sex differences in eating such as

stress-related and emotional eating being more prevalent in women

than men.5,161,162 (2) The list of (potential) appetite-regulating hor-

mones is long. We decided to focus on those which are of special

interest due to recent advances in understanding their interactions

with the HPA-axis/therapeutic targeting.

4 | CONCLUSION

Altogether, the evidence we present in this review indicates that

chronic glucocorticoid excess may lead to disrupted signaling of major

appetite-regulating hormones. These hormones are needed not only

for maintaining energy homeostasis, but also emotional functioning.

The resulting increases in reward sensitivity and mood dysregulation

may induce an increased hedonic drive to eat while simultaneously

diminishing homeostatic control. Together, this may lead to hedonic

overeating (see Figure 1). In turn, targeting hormonal signals of appe-

tite may enable researchers and clinicians to counteract the vicious

circle of glucocorticoid excess and weight gain as well as comorbid

detrimental effects on eating control, metabolism and mood. This idea

seems especially relevant in view of the advances in pharmacological

anti-obesity therapeutics targeting the hormones discussed in this

review.

We conclude that hormonal appetite signals represent promising

biomarkers and treatment targets for obesity, which may be especially

useful in the context of glucocorticoid excess. Nevertheless, current

knowledge is still very limited, and extending it will be crucial on the

way towards the development of more personalized and efficient

obesity treatment. Physiological markers for individual signal

functioning will be needed as we are trying to objectively quantify

(glucocorticoid-induced) dysregulation of appetite signals and their

psycho-behavioral consequences manifested, for example, in uncon-

trolled overeating.

F IGURE 1 Proposed conceptual framework.
Dysregulations of hormonal appetite signaling are
observed in obesity, which can foster uncontrolled
eating, especially of highly palatable foods. HPA-
axis hyperactivity, for example, due to chronic
stress or medication, can also dysregulate the
highly sensitive system of appetite regulation,
thereby fueling an orexigenic hormonal profile,
but also detrimental metabolic processes and
mood impairments. These disturbances can, in
turn, promote further weight gain along with
HPA-axis alterations and result in a vicious circle.
Orexigenic, anorexigenic
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