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Abstract
Background  The influenza viruses pose a threat to human health and medical services, and vaccination is an 
important way to prevent infection. However, the effectiveness of influenza vaccines is affected by various aspects. 
This study aimed to explore factors related to the immune response to influenza vaccines.

Methods  The study was conducted from September 2019 to September 2021, and a total of 593 volunteers were 
recruited from the Center for Disease Control and Prevention in 3 provinces in China. The hemagglutination inhibition 
assay was used to measure antibody levels. The Chi-square test, multivariable logistic regression analysis, and sum-
rank test were used to analyze the factors associated with influenza vaccine immune response.

Results  The Chi-square test showed that seroconversion rates and response rate were associated with age group, 
vaccination history, chronic conditions, the frequency of colds, and region (P < 0.05). The multivariable logistic 
regression analysis showed that age was an important factor that affected participants’ seroconversion rates for A/
H1N1, A/H3N2, B/Victoria, and response status (18–64 vs. ≤5: OR = 2.77, P < 0.001; ≥65 vs. ≤5: OR = 0.38, P = 0.01; 18–64 
vs. ≤5: OR = 2.64, P = 0.03). Vaccination history was also an affecting factor for A/H1N1, B/Victoria, and response status 
(yes vs. no: OR = 0.4 / 0.44 / 0.25, P < 0.001). The frequency of colds and chronic conditions were also affecting factors 
for participants’ seroconversion rates and response levels to different degrees. The sum-rank test showed that the fold 
changes for A/H1N1, B/Victoria, and B/Yamagata were associated with age group and vaccination history (P < 0.01). 
The fold changes for A/H3N2 were associated with the frequency of colds (P < 0.05), and those for B/Victoria were 
associated with gender and chronic conditions (P < 0.05).

Conclusions  Vaccination history, age, health condition, and frequency of colds were important factors affecting 
the seroconversion rate of the influenza vaccine in human. There is a need for developing optimized vaccination 
strategies for vulnerable groups to improve the efficacy of influenza vaccines in human.
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Introduction
The influenza viruses are enveloped negative-sense 
single-strand RNA viruses with a segmented genome, 
including types A, B, C, and D. [1] Influenza A and 
influenza B viruses cause seasonal epidemics annually. 
[2] Among them, the major circulating strains include 
influenza A H1N1, A H3N2, B/Victoria and B/Yamagata 
lineages. [1] There are an estimated 1  billion influenza 
cases worldwide each year, including 3 to 5 million severe 
cases and 290, 000 to 650, 000 deaths, [3] of which pose a 
threat to human health and medical services.

Vaccination is the most effective way to reduce human 
influenza disease burden. [2] The risk of seeking treat-
ment will decrease by 40–60% if influenza vaccine viruses 
match circulating viruses. [4] However, such protection 
effectiveness may be lower for some reasons, especially 
when the vaccine strains are mismatched with circulat-
ing viruses. [5] The immunogenicity of the vaccine is 
also one of the most important factors influencing vac-
cine effectiveness. [6] Previous studies indicate that 
the immunogenicity of the vaccine can be affected by 
repeated vaccination; [7] vaccine factors, such as vaccine 
types, dosage, and delivery mode of vaccine; [8–10] and 
host factors, such as age, gender, and health conditions. 
[6, 11]

In this study, 557 volunteers were recruited from three 
provinces in China and then vaccinated with the influ-
enza vaccines to explore the factors associated with the 
vaccine immunogenicity. Several factors associated with 
responsiveness to influenza vaccination were identified. 
The results may provide supporting data for identifying 
influenza vaccination low responders and optimizing the 
vaccination strategies, thereby improving the effective-
ness of the influenza vaccine in human.

Materials and methods
Participants and data Collection
Based on our previous research, [12] 593 volunteers were 
recruited by the staff of the Center for Disease Control 
(CDC) and Prevention of Yunnan Province, Shaanxi 
Province, and Xinjiang Uygur Autonomous Region from 
September 2019 to September 2021. We enrolled volun-
teers who were: (1) Han Chinese, (2) and had not already 
received the northern hemisphere formulation of influ-
enza vaccine for the corresponding year. Volunteers were 
excluded if they: (1) reported medical conditions not 
suitable to receive influenza vaccines such as any aller-
gic reaction to egg protein or previous dose of influenza 
vaccine; (2) reported medical conditions not suitable for 
intramuscular injection or venous blood collection such 
as the use of anticoagulant medication. As a result, 36 
volunteers were excluded, and 557 were eligible for fur-
ther research.

The following information of volunteers was collected 
by the staff of CDC via questionnaire: gender, age, height, 
weight, region, vaccine type, frequency of colds, vacci-
nation history, smoking and alcohol consumption, and 
health conditions. A total of 10 ml peripheral venous 
blood was collected by the staff of CDC before (day 1) 
and 28 days after the vaccination (day 28). The serum was 
isolated after blood samples setting for 4 h and stored in 
a − 80  °C ultra-low temperature freezer (Thermo Fisher 
Scientific, USA). The flow chart was described in Fig. 1.

All volunteers signed informed consent. The study 
was approved by the Ethics Review Committee of the 
National Institute for Viral Disease Control and Preven-
tion, Chinese Center for Disease Control and Prevention 
(NIVDC, assurance number, 202023).

Vaccines
All volunteers received trivalent inactivated vaccine 
(TIV) or quadrivalent inactivated vaccine (QIV) by intra-
muscular injection. The vaccines strains consisted of 
the Northern Hemisphere vaccine components recom-
mended by the World Health Organization (WHO), and 
details were shown in Table 1. The TIV contained 15 µg 
hemagglutination (HA) for 3 strains, including A H1N1, 
A H3N2, and either B/Victoria or B/Yamagata lineage, 
and was provided by Shenzhen Sanofi Pasteur Biologi-
cal Products Co., Ltd. The QIV contained 15 µg HA for 4 
strains above and was provided by HUALAN BIOLOGI-
CAL ENGINEERING, INC. Volunteers aged 5 years or 
older got 1 dose of vaccine containing 15 µg HA for each 
strain on day 1, and volunteers younger than 5 years got 
2 doses of vaccine containing 7.5 µg HA for each strain 
with an interval of 30 days. All the vaccines were free for 
volunteers.

Hemagglutination inhibition assay
Hemagglutination inhibition (HAI) assay was used 
to measure the serum antibody titers against vaccine 
strains. The influenza virus strains used in the study were 
provided by the Chinese National Influenza Center. They 
were cultured by specified pathogen-free (SPF) chicken 
embryos (Xin Xing Da Hua Nong Poultry and Egg Co., 
LTD, China). 1% red blood cells from turkey (Guangzhou 
Hongquan Biotechnology Co., LTD, HQ80085-2, China) 
were used for influenza A/H1N1 and B HAI assays, and 
those from guinea pigs (Guangzhou Hongquan Biotech-
nology Co., LTD, HQ80077-4, China) were used for influ-
enza A/H3N2 HAI assays. Before the assay, the serum 
was mixed with receptor-destroying enzyme (RDE) 
(Denka Seiken Co., Ltd., 340016, Japan) in a ratio of 1:3 in 
order to remove the non-specific inhibitor. The mixture 
was bathed in a 37  °C water bath (Jiangsu Keyi Instru-
ment Co., LTD, China) for 16–18 h and then in a 56  °C 
water bath (Jiangsu Keyi Instrument Co., LTD, China) for 
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30 min for inactivation. The mixture was diluted to a final 
dilution of 1:5 in phosphate-buffered saline (Biosharp, 
BL302A, China) and then serially diluted 2-fold down a 
U-bottom 96-well plate for A/H3N2 (V-bottom 96-well 
plate for A/H1N1, B/Victoria, and B/Yamagata). 25 µl live 
virus containing 4 HAU was added to each well for a final 
50 µl/well volume. After being incubated for 15–30 min 
at room temperature, 50  µl of 1% red blood cell was 
added to each well. After incubating for 30–60 min, the 
lowest dilution ratio leading to complete hemagglutina-
tion inhibition was recorded as the antibody titer. Opera-
tions involving the influenza virus were conducted in the 
Biosafety Level II laboratory.

The seroconversion rate referred to the proportion 
of participants showing a four-fold increase in post-
immunization compared with pre-immunization titers, 
or titers < 10 pre-immunization to at least 40 post-
immunization. [13] The seroprotection rate referred to 
the proportion of participants with a post-vaccination 
titer ≥ 40.13 The logarithm of antibody titer post-vac-
cination was divided by the logarithm pre-vaccination 

to obtain the fold change for antibody titer. Responders 
were defined as participants whose HAI titers achieved 
seroconversion to all influenza vaccine strains. Low 
responders were those whose HAI titers failed to achieve 
seroconversion to all influenza vaccine strains. The 
response rate referred to the proportion of responders to 
the sum of responders and low responders.

Statistical analysis
Descriptive statistics were used to describe the par-
ticipants’ characteristics, including mean (M), standard 
deviation (SD), frequency, and percentage. According to 
the HAI assay, the seroconversion status for each vaccine 
strain was categorized into “seroconversion” and “non - 
seroconversion”. For further analysis, the participants 
were categorized into “responders” and “low respond-
ers”. Independent variables include gender, age group, 
region, vaccine type, frequency of colds, vaccination his-
tory, body mass index (BMI) group, smoking, and alco-
hol consumption, and health conditions. The Chi-square 
test was used to compare the proportions of participants 

Fig. 1  Flow Chart
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among different groups first. Associations of indepen-
dent variables with the seroconversion were analyzed by 
multivariable logistic regression models adjusted for gen-
der and age. Mann-Whitney U test or Kruskal-Wallis H 
test was used to explore the associations of independent 
variables with the fold changes since the fold changes 
among different groups were not normally distributed 
according to the results of the Kolmogorov-Smirnov test 
and Shapiro-Wilk test. Statistical significance was defined 
as P < 0.05. SPSS Statistics for Windows, Version 25.0 was 
used for statistical analysis. GraphPad Prism for Win-
dows, Version 9.3.1 was used for processing graphs.

Results
Characteristics of participants
A total of 593 volunteers were recruited from 3 provinces 
of China, and 557 volunteers were included in the final 
analysis after 36 were excluded, whose details were shown 
in Table 2. The participants ranged from 2 to 89 years old, 
with a mean age of 49.4 ± 28. 6 years, and 60.7% (n = 338) 
were female. 42.9% (n = 239) were from Yunnan Prov-
ince, 39.9% (n = 222) of participants were from Shaanxi 
Province, and 17.2% (n = 96) were from Xinjiang Uygur 
Autonomous Region. A total of 179 (32.6%) reported hav-
ing a vaccination history, while 370 (67.4%) hadn’t been 
vaccinated. In the 2019–2020 and 2020–2021 season, 
179 (32.2%) and 214 (38.4%) participants were vaccinated 

with TIV, respectively. In the 2021–2022 season, 164 
(29.4%) were vaccinated with QIV. 34.0% (n = 188) of par-
ticipants’ BMI was between 18.5 and 23.9, 30.7% (n = 170) 
was < 18.5, 23.9% (n = 132) was between 24 and 27.9, and 
only 11.4% (n = 63) was ≥ 28. When asked about the fre-
quency of colds, 67.1% (n = 308) of participants reported 
2–3, 17.2% (n = 79) reported 4–6, followed by ≤ 1 (11.3%, 
n = 52), and only 4.4% (n = 20) reported >6. Most par-
ticipants reported not smoking (85.8%, n = 442) and not 
drinking (81.9%, n = 420). 76.6% (n = 422) of participants 
didn’t report chronic diseases. The seroconversion rates 
for A/H1N1, A/H3N2, B/Victoria, and B/Yamagata were 
57.1%, 58.6%, 57.0%, and 52.3%, respectively. There were 
135 (24.2%) responders and 71 (12.7%) low respond-
ers. The fold changes for A/H1N1, A/H3N2, B/Victoria, 
and B/Yamagata were 1.47(1.00-2.72), 1.60(1.23–2.20), 
1.60(1.00-2.72), and 1.38(1.00-1.92), respectively.

Associations between independent variables and 
responsiveness to influenza vaccination
The results of the Chi-square test were shown in Table 3. 
Seroconversion rates for A/H1N1, B/Victoria, B/
Yamagata, and response rate were associated with the 
age group (P < 0.05), and participants aged between 6 
and 18 years old had better responsiveness to the influ-
enza vaccines. Seroconversion rates for A/H1N1, A/
H3N2, and B/Victoria were associated with the region 
(P < 0.05). In addition, the seroconversion rate for A/
H3N2 and response rate were related to the frequency 
of colds (P < 0.05). Participants from Xinjiang Uygur 
Autonomous Region or with a lower frequency of colds 
had worse responsiveness. Besides, seroconversion rates 
for A/H1N1, B/Victoria, and response rate were associ-
ated with repeated vaccination (P < 0.05). Furthermore, 
seroconversion rates for B/Victoria, and B/Yamagata 
were associated with chronic conditions (P < 0.05). Those 
without a vaccination history or chronic conditions had 
better responsiveness to the influenza vaccine.

The results of the multivariable logistic regression 
analysis are presented in Table  4. Age (18–64 vs. ≤5: 
OR = 2.77, P < 0.001) and repeated vaccination (yes vs. no: 
OR = 0.4, P < 0.001) were important factors that affected 
participants’ seroconversion rates against A/H1N1. As 
for A/H3N2, age (≥ 65 vs. ≤5: OR = 0.38, P < 0.05) and fre-
quency of colds (4–6 vs. ≤1: OR = 10.71, P < 0.05) affected 
the seroconversion rate. In the case of B/Victoria, age 
(18–64 vs. ≤5: OR = 2.45, P < 0.001), vaccination history 
(yes vs. no: OR = 0.44, P < 0.001), and chronic conditions 
(yes vs. no: OR = 0.48, P < 0.01) affected the seroconver-
sion rate to influenza vaccines. Regarding B/Yamagata, 
chronic conditions (yes vs. no: OR = 0.18, P < 0.05) also 
affected the seroconversion rate. Similarly, age (18–64 
vs. ≤5: OR = 2.64, P < 0.05) and vaccination history (yes vs. 

Table 1  Vaccine strains recommended by WHO for northern 
hemisphere from 2019–2021 and vaccination details
Influenza 
season

Vaccine
strains

Vac-
cine 
type

Vac-
cinated 
number

2019–2020  A/Brisbane/02/2018 (H1N1)pdm09-
like virus

TIV 179

A/Kansas/14/2017 (H3N2)-like virus

B/Colorado/06/2017-like virus (B/
Victoria/2/87 lineage)

B/Phuket/3073/2013-like virus (B/
Yamagata/16/88 lineage)

2020–2021  A/Guangdong-Maonan/
SWL1536/2019 (H1N1)pdm09-like 
virus

TIV 214

A/Hong Kong/2671/2019 (H3N2)-like 
virus

B/Washington/02/2019 (B/Victoria 
lineage)-like virus

B/Phuket/3073/2013 (B/Yamagata 
lineage)-like virus.

2021–2022  A/Victoria/2570/2019 (H1N1)pdm09-
like virus

QIV 164

A/Cambodia/e0826360/2020 (H3N2)-
like virus

B/Washington/02/2019 (B/Victoria 
lineage)-like virus

B/Phuket/3073/2013 (B/Yamagata 
lineage)-like virus
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Table 2  Characteristics of Participants in Different Groups (n = 557)
Variable Category Frequency/Mean/Median Percentage/ 

Standard 
Deviation/ 
(P25, P75)

Gender Male 219 39.3%

Female 338 60.7%

Age Group ≤ 5 141 25.3%

6–17 36 6.5%

18–64 226 40.6%

≥ 65 154 27.6%

Region Yunnan 239 42.9%

Xinjiang 96 17.2%

Shaanxi 222 39.9%

Frequency of Colds ≤ 1 52 11.3%

2–3 308 67.1%

4–6 79 17.2%

>6 20 4.4%

Vaccination History No 370 67.4%

Yes 179 32.6%

BMI Group < 18.5 170 30.7%

18.5–23.9 188 34.0%

24-27.9 132 23.9%

≥ 28 63 11.4%

Smoking No 442 85.8%

Yes 73 14.2%

Alcohol Drinking No 420 81.9%

Yes 93 18.1%

Chronic Diseases No 422 76.6%

Yes 129 23.4%

Vaccine Type TIV 393 70.6%

QIV 164 29.4%

Seroconversion for A/H1N1 No 239 42.9%

Yes 318 57.1%

Seroconversion for A/H3N2 No 166 41.4%

Yes 235 58.6%

Seroconversion for B/Victoria No 239 43.0%

Yes 317 57.0%

Seroconversion for B/Yamagata No 42 47.7%

Yes 46 52.3%

Response status Low Responder 71 12.7%

Responder 135 24.2%

Neither 351 63.1%

Age - 40.4 28.6

Height/cm - 144.3 28.0

Weight/kg - 49.1 23.0

BMI - 21.5 4.8

The fold change for A/H1N1 - 1.47 1.00-2.72

The fold change for A/H3N2 - 1.60 1.23–2.20

The fold change for B/Victoria - 1.60 1.00-2.72

The fold change for B/Yamagata - 1.38 1.00-1.92
BMI: body mass index; TIV: trivalent inactivated vaccine; QIV: quadrivalent inactivated vaccine; P25: Lower quartile; P75: Upper quartile

Frequency of Colds: The frequency of common colds caused by adenovirus, parainfluenza virus, rhinovirus, respiratory syncytial virus (RSV), enterovirus, and 
coronavirus, etc. with mild upper respiratory syndromes per year; Vaccination history: Influenza vaccination history in the past 5 years. BMI Group: The grouping 
critiria was WS/T 428–2013. Smoking: Smoking in the past 5 years. Alcohol Drinking: Alcohol drinking in the past 5 years. Chronic Diseases: Diagnosed or treated for 
chronic medical condition during the past 5 years
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no: OR = 0.25, P < 0.001) were factors influencing partici-
pants’ response status to vaccine strains.

Associations between independent variables and antibody 
fold change after vaccination
As shown in Table 5; Fig. 2, the fold changes for A/H1N1, 
B/Victoria, and B/Yamagata were associated with age 
group (P < 0.05) and vaccination history (P < 0.05). Con-
sistent with the results above, participants aged from 18 
to 65 or without vaccination history had higher antibody 
folds. The fold changes for B/Victoria were associated 
with gender (P < 0.05) and chronic conditions (P < 0.05), 
and those who were female or without chronic diseases 
had higher antibody folds. Besides, the fold changes for 
A/H3N2 were associated with the frequency of colds 
(P < 0.05), and participants with a higher frequency of 
colds had higher folds.

Discussion
Immunogenicity response to the vaccine is a complicated 
process, which is affected by many factors, including vac-
cine and host factors. [6, 14] In this study, we identified 
several factors associated with the responsiveness to the 
influenza vaccine. The Chi-square test, multivariable 
logistic regression analysis, and sum-rank test showed 
that vaccination history, chronic condition, age, and fre-
quency of colds were important factors affecting immu-
nogenicity responsiveness to the influenza vaccine. These 
results will help optimize influenza vaccination strategies 
and improve the effectiveness of the vaccine in humans.

In this study, participants with a vaccination history 
presented worse immunogenicity responsiveness to the 
influenza vaccines, indicating that continuous annual 
vaccination may lead to reduced vaccine efficacy, con-
sistent with previous studies. A study evaluating the 
immunogenicity of trivalent inactivated influenza vaccine 
showed that the odds of seroconversion were strongly 
related to the baseline antibody titer, and the odds of 
seroconversion decreased dramatically when the baseline 
antibody level was higher. [15] Participants who received 
influenza vaccines in the previous year had significantly 
lower odds of seroconversion than those who did not. 
[15] One possible explanation was that repeated vacci-
nation negatively interfered with immunogenicity. [16] 
Surender Khurana et al. [17] indicated that repeated vac-
cination negatively affected antibody binding, antibody 
affinity maturation, and hemagglutination inhibition 
responses to H1N1, H3N2, and B strains manufactured 
by three different vaccine platforms. At the same time, 
results showed that repeated vaccination failed to induce 
CD4 T cell activation. [7] Studies demonstrated that 
prior-year vaccination correlated with low production 
of antibody-secreting cells and reduced effector B-cell 
responses to new vaccine immunization. [18, 19] The Ta
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concept of antigenic imprinting has been suggested to 
explain the negative effect of repeated vaccination. [20] 
When contacted with a novel virus strain similar to an 
individual exposed, the immune response to the origi-
nal one was predominantly boosted at the expense of 
response to the subsequent one. These participants’ 
immune systems tended to induce a strong anamnestic 
response to the original strains, and the production of 
their memory cells stimulated by the subsequent strains 
was reduced.

Health conditions were important factors influencing 
the body’s immunity. [6] In this study, participants with 
chronic diseases had a higher risk of lower seroconver-
sion rates. A similar study demonstrated that hyper-
tensive subjects had lower antibody levels against the 

COVID-19 mRNA vaccine. [21] A recent study revealed 
that this association might result from a dysfunctional 
immune system. [22] A study on antibody responses fol-
lowing vaccination with adjuvanted influenza vaccine in 
immunocompromised children (including AIDS, con-
genital immunodeficiency, and autoimmune diseases) 
showed that their geometric mean titer (GMT) and 
seroprotection rates were lower compared with immu-
nocompetent children. [23] This phenomenon could be 
due to the defects in their immune system, causing worse 
responses to the influenza vaccine. [24] However, diabe-
tes status seemed to have less impact on the immunoge-
nicity of the influenza vaccine. Sarah Spencer et al. [25] 
found that the serologic response to the influenza vac-
cine was similar in participants with and without type 

Table 4  Multivariable Logistic Regression Analysis of Responsiveness to Influenza Vaccine
Variable Category A/H1N1 A/H3N2 B/Victoria B/Yamagata Response Status

OR(95%CI) P OR(95%CI) P OR(95%CI) P OR(95%CI) P OR(95%CI) P
Age Group ≤ 5 1.00 - 1.00 - 1.00 - 1.00 - 1.00 -

6–17 2.83(0.98–8.12) 0.05 1.51(0.38–6.08) 0.56 2.30(0.87–6.11) 0.09 1.91(0.36–10.12) 0.45 4.31(0.43–43.07) 0.21

18–64 2.77(1.68–4.57) < 0.001 0.80(0.42–1.54) 0.51 2.45(1.51-4.0) < 0.001 2.45(0.58–10.28) 0.22 2.64(1.08–6.46) 0.03

≥ 65 1.32(0.76–2.28) 0.32 0.38(0.18–0.81) 0.01 1.46(0.86–2.47) 0.16 0.36(0.07–1.89) 0.23 1.16(0.42–3.25) 0.78

Frequency 
of Colds

≤ 1 1.00 - 1.00 - 1.00 - 1.00 - 1.00 -

2–3 1.17(0.56–2.46) 0.68 4.00(0.75–21.58) 0.11 1.28(0.63–2.60) 0.50 1.39(0.45–4.33) 0.57 1.38(0.33–5.69) 0.66

4–6 0.74(0.31–1.78) 0.50 10.71(1.68–
68.05)

0.01 0.70(0.30–1.63) 0.41 0.30(0.04–2.14) 0.23 0.50(0.10–2.50) 0.40

>6 2.15(0.63–7.36) 0.22 7.11(0.75–67.68) 0.09 1.16(0.38–3.54) 0.79 1.06(0.11–9.89) 0.96 0.80(0.08–8.08) 0.85

Vaccination 
History

No 1.00 - 1.00 - 1.00 - 1.00 - 1.00 -

Yes 0.40(0.26,0.62) < 0.001 0.73(0.38–1.41) 0.35 0.44(0.29–0.67) < 0.001 0.87(0.30–2.52) 0.79 0.25(0.11–0.56) < 0.001

Chronic 
Diseases

No 1.00 - 1.00 - 1.00 - 1.00 - 1.00 -

Yes 0.83(0.51–1.34) 0.44 0.77(0.92 − 0.51) 0.77 0.48(0.30–0.78) 0.003 0.18(0.04–0.76) 0.02 0.66(0.28–1.57) 0.66
OR: odds ratio; CI: confidence interval

Table 5  Rank-Sum Test of Antibody Fold Change
Variable Category A/H1N1 A/H3N2 B/Victoria B/Yamagata

M(P25,P75) P M(P25,P75) P M(P25,P75) P M(P25,P75) P
Gender Male 1.86(1.00-2.72) 0.18 1.43(1.16–1.90) 0.33 1.63(1.00-2.72) 0.03 1.32(1.00-1.75) 0.21

Female 1.88(1.16–3.15) 1.62(1.16–2.20) 2.29(1.12–2.74) 1.38(1.00-2.39)

Age Group ≤ 5 1.27(1.00-2.14) < 0.001 1.56(1.19–1.94) 0.68 1.39(1.00-2.72) 0.003 1.00(0.80–1.72) 0.04

6–17 1.94(1.28–2.42) 1.37(1.00-1.90) 2.11(1.00-2.74) 1.29(1.10–1.79)

18–64 2.34(1.27–3.26) 1.69(1.23–2.20) 2.29(1.19–3.15) 1.60(1.19–2.72)

≥ 65 1.86(1.00-3.15) 1.30(1.00-1.86) 1.65(1.00-2.72) 1.17(1.00-1.82)

Frequency of Colds ≤ 1 2.29(1.16–3.15) 0.3 1.00(1.00-1.54) < 0.001 1.86(1.00-2.72) 0.58 1.38(1.00-1.69) 0.09

2–3 1.86(1.14–3.15) 1.47(1.19–1.94) 1.94(1.12–2.72) 1.56(1.00-2.39)

4–6 1.47(1.07–2.72) 1.94(1.47–2.74) 1.47(1.00-2.94) 1.00(0.69–1.28)

>6 2.12(1.50–3.48) 1.86(1.22–3.37) 1.71(1.20–3.05) 1.43(0.86–2.47)

Vaccination History No 2.16(1.14–3.15) < 0.001 1.56(1.18–2.20) 0.20 2.29(1.00-3.15) < 0.001 1.69(1.00-2.51) 0.005

Yes 1.38(1.09–2.29) 1.43(1.09–1.90) 1.29(1.00-2.29) 1.19(1.00-1.41)

Chronic Diseases No 2.25(1.14–3.15) 0.20 1.60(1.19–2.20) 0.98 1.94(1.16–2.74) 0.02 1.49(1.05–2.67) 0.34

Yes 1.86(1.16–3.05) 1.53(1.23–2.36) 1.63(1.14–2.67) 1.31(1.00-2.02)
M: median; P25: lower quartile; P75: upper quartile
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Fig. 2  Rank-Sum Test of Antibody Fold Change. Comparison of antibody fold changes against 4 vaccine strains. (a ~ d) Comparison of antibody 
fold changes between male and female participants against 4 vaccine strains. (e ~ h) Comparison of antibody fold changes between participants with 
and without vaccination history against 4 vaccine strains. (i ~ l) Comparison of antibody fold changes between participants with and without chronic 
diseases against 4 vaccine strains. (m ~ p) Comparison of antibody fold changes among participants in 4 age groups against 4 vaccine strains. (q ~ t) 
Comparison of antibody fold changes among participants with 4 types of frequency of colds against 4 vaccine strains
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2 diabetes mellitus. Daniela Frasca et al. [26] found that 
type 2 diabetes patients had normal in vivo and in vitro B 
cell responses to the influenza vaccine. The possible rea-
sons for this were that the increase in their serum LPS 
and sCD14 would stimulate B cells, and the TLR4 expres-
sion level in their B cells also increased. [26] Therefore, 
the chronic underlying medical conditions affecting the 
immune response to the influenza vaccine were complex. 
These implied that vaccine boosters or different vaccine 
schedules should be used for patients with chronic dis-
eases to increase vaccination effectiveness.

Participants of different ages also differed in immune 
responses to the influenza vaccine. In the current study, 
participants aged 18 to 65 had higher fold changes and 
seroconversion rates, and this was consistent with previ-
ous studies. A Polish study evaluating the influenza virus 
circulation in the 2015/2016 epidemic season reported 
that both GMT levels and seroprotection rates of par-
ticipants aged 0 to 4 years and older than 65 years were 
lower, [27] suggesting the susceptibility of these two age 
groups to influenza virus. The immune system of infants 
is not completely developed, and the magnitude and 
activity of their antigen-presenting cells (APCs), immune 
cells, and cytokines are lower than in older children and 
adults. [28] For older people, Goodwin et al. [29] con-
ducted a quantitative review of studies concerning anti-
body levels for the influenza vaccine. They reported that 
the elderly over 65 had significantly lower antibody levels 
than younger adults, as well as the seroconversion rate, 
seroprotection rate, and the GMT level. However, the 
underlying reason for the worse responsiveness to vac-
cines in the elderly was “immunosenescence”, referred to 
as age-related changes in the immune system. [30] Aging 
negatively affects the body’s immune cell repertoire and 
results in cell-intrinsic defects in lymphocytes. [30] These 
contribute to the deterioration of innate and adaptive 
immune responses. [31] Influenza vaccines can provide 
moderate protection against viruses, but such protection 
is reduced in younger children and the elderly, and these 
two groups of people become vulnerable. Optimized 
vaccination strategy and new vaccines with improved 
immunogenicity were needed to reduce influenza-related 
morbidity and mortality.

Intriguingly, there seemed to be a trend for A/H3N2 
that the higher the frequency of common colds, the bet-
ter the responsiveness. This was observed in both mul-
tivariable logistic regression analysis and the rank-sum 
test. We speculated that the common cold could gener-
ate cross-reactive binding antibodies against the influ-
enza vaccine strain, [32] similar to Sealy’s study [33] et al. 
The study indicated that the pre-existing immunity con-
ferred by an individual’s past exposures to common cold 
human coronaviruses might influence the body’s con-
trol for SARS-CoV-2. [33] The common cold is caused 

by well-adapted pathogens and is less harmful to their 
hosts. [34] Therefore, people who often catch a cold have 
relatively low immunity and are also vulnerable to the 
influenza virus. Influenza vaccination is necessary for 
this group of people, who can benefit more from it. How-
ever, more research is needed to explore the association 
between the common cold and the immune response to 
the influenza vaccines from various aspects, providing 
more implications for vaccination.

Gender is an important factor affecting the immuno-
genicity of influenza vaccines. [35] Engler et al. found 
that women had significantly higher GMT than men in 
the case of different doses and strains. [36] However, in 
the current study, only the antibody fold change for B/
Victoria showed a significant difference between the male 
and female participants. In fact, the effect of gender on 
vaccine immunity is complex. Besides genetic factors, 
the difference can also be explained through the diver-
gent levels of sex steroid hormones, which are changing 
with aging. [35] [37] Women seem to lose their immu-
nological advantage after menopause. [35] Therefore, the 
composition and dosage of influenza vaccines need to be 
adjusted according to the sex-mediated immunity differ-
ences. Future studies need to explore more factors that 
mediate sex differences in the immune responses deeply 
and extensively.

This study identified several factors relating to respon-
siveness to the influenza vaccine and suggested the need 
for more optimized vaccination strategies for suscepti-
ble groups to improve the efficacy of influenza vaccines, 
which is of great importance for public health. The find-
ings in this study were a supplement to previous studies 
and may give some new insights into the immunogenic-
ity response to the vaccine. However, there were some 
limitations in the current study. This study was descrip-
tive, with some participants’ characteristics not collected 
comprehensively, and we did not perform mechanism 
studies based on the study cohort. The association 
between the immune response to different strains and 
host factors should be certain in the future. It is also nec-
essary to perform larger cohort studies and experiments 
to explore the underlying mechanisms.

The updated position paper on the use of seasonal 
influenza vaccines published by WHO recommended 
that older adults, children, health workers, pregnant 
women, and individuals with comorbidities and underly-
ing conditions be prioritized as target groups. [38] In the 
future, it is of significance to increase vaccination rates 
for these vulnerable populations and optimize vaccine 
components and vaccination strategies to improve vac-
cine efficacy and reduce the morbidity, mortality, and dis-
ease burden associated with influenza.
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Conclusions
This study explored the factors associated with the 
immune response to influenza vaccines in China. The 
results showed that repeated vaccination, health condi-
tion, age, and frequency of colds were important factors 
affecting the immunogenicity responses to influenza vac-
cines. The results may provide supporting data for iden-
tifying low responders and optimizing the vaccination 
strategies to improve the effectiveness of influenza vac-
cines in human.
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