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ABSTRACT
Accumulating evidence shows that the gastric bacterial community may contribute to the devel
opment of gastric cancer (GC). However, the reported alterations of gastric microbiota were not 
always consistent among the literature. To assess reproducible signals in gastric microbiota during 
the progression of GC across studies, we performed a meta-analysis of nine publicly available 16S 
datasets with standard tools of the state-of-the-art. Despite study-specific batch effect, significant 
changes in the composition of the gastric microbiome were found during the progression of 
gastric carcinogenesis, especially when the Helicobacter pylori (HP) reads were removed from 
analyses to mitigate its compositional effect as they accounted for extremely large proportions 
of sequencing depths in many gastric samples. Differential microbes, including Fusobacterium, 
Leptotrichia, and several lactic acid bacteria such as Bifidobacterium, Lactobacillus, and 
Streptococcus anginosus, which were frequently and significantly enriched in GC patients com
pared with gastritis across studies, had good discriminatory capacity to distinguish GC samples 
from gastritis. Oral microbes were significantly enriched in GC compared to precancerous stages. 
Intriguingly, we observed mutual exclusivity of different HP species across studies. In addition, the 
comparison between gastric fluid and mucosal microbiome suggested their convergent dysbiosis 
during gastric disease progression. Taken together, our systematic analysis identified novel and 
consistent microbial patterns in gastric carcinogenesis.
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Introduction

Gastric cancer (GC) is the fifth most common 
malignancy and the fourth-leading cause of cancer 
death worldwide, with an estimate of 1,089,103 new 
cases and 768,793 deaths in 2020.1 It develops 
through sequential stages from chronic gastritis, 
intestinal metaplasia (IM) to GC according to 
Correa’s model.2 Multiple host-related factors have 
been reported to contribute to the susceptibility of 
GC, including host genetics, lifestyle, diet, and age.3 

Besides, research also suggests the involvement of 
gastric microbiota in gastric tumorigenesis.4 In par
ticular, Helicobacter pylori (HP) was classified to a 
type I carcinogen by the World Health Organization 
in 1994.5 As a major risk for GC, it plays an initial 
role in the carcinogenesis cascade via triggering 
chronic inflammation and mucosal damage.6,7 

However, less than 3% of HP-infected individuals 
eventually develop GC,8,9 and approximately 18% of 
gastritis patients are HP-negative,10 implying other 
potential factors driving gastric carcinogenesis. 
Studies have shown that bacteria other than HP 
may also contribute to GC.11 For example, HP- 
monoinfected INS-GAS mice had delayed onset of 
GC compared to HP-infected INS-GAS mice with 
complex gastric microbiota.12 A study performed on 
a Chinese cohort identified five non-HP microbial 
biomarkers that had significant centralities in the 
GC microbiome network, which distinguished GC 
from superficial gastritis samples.13 Taken together, 
these observations indicate that the gastric micro
biome may be a crucial etiological element in GC 
and may have potential implications for disease 
diagnosis.
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To date, several studies have investigated the gastric 
microbiome during GC progression using 16S ribo
somal RNA (rRNA) gene amplicon sequencing.13–21 

Although these studies consistently reported dysbiosis 
of the GC microbiota, bacterial changes associated 
with GC were conflicting between studies. For exam
ple, the alpha diversity of the mucosal microbiome 
was found decreased in GC compared to precancer
ous stages in some studies,13,17,22–24 while others 
observed the opposite trend.16,25,26 Moreover, the 
reported GC-associated microbes varied across stu
dies. Castaño-Rodríguez et al. found marked increases 
in the relative abundances of Lactococcus, 
Fusobacterium, Veillonella, Haemophilus, and 
Leptochichia in GC patients compared to control 
samples.16 Coker et al. reported significant enrich
ments of Parvimonas micra, Dialister pneumosintes, 
Slackia exigua, Peptostreptococcus stomatis, and 
Streptococcus anginosus in GC compared with pre
cancerous stages.13 Another study revealed that 
Achromobacter, Citrobacter, Clostridium, 
Lactobacillus, and Rhodococcus were positively asso
ciated with GC.23 Collectively, consistent microbial 
changes in gastric carcinogenesis across studies are 
still lacking.

Studies varied widely in analytical methods, 
bioinformatic techniques, sampling strategies, parti
cipant demographics, 16S rRNA gene target regions, 
and sequencing platforms, leading to high variability 
in their conclusions, which may outweigh biological 
differences.27–29 Meta-analysis addresses these dis
crepancies in an unbiased manner and identifies 
consistencies across studies.30,31 Here, we presented 
an integrative meta-analysis on nine publicly avail
able 16S rRNA datasets to characterize consistent 
alterations of the gastric microbiome associated 
with histological stages of gastric carcinogenesis. 
Additionally, we explored the relationships between 
Helicobacter species for the first time and unveiled 
the significant influence of HP-induced composi
tionality on the gastric microbiome analysis.

Results

Study selection and study heterogeneity

In this meta-analysis, nine public 16S rRNA ampli
con sequencing datasets were found and included 
to investigate the role of gastric microbiota in 

gastric diseases (Table 1, see Methods for inclusion 
criteria). Overall, these studies covered 11 cohorts, 
encompassing 104 healthy samples, 511 gastritis 
samples, 223 intestinal metaplasia (IM) samples, 
and 1360 GC samples. For studies PRJEB26931 
and PRJNA375772, precancerous samples from 
different anatomical sites of gastric mucosa were 
collected; for studies PRJNA310127, PRJEB216931, 
and PRJNA375772, paired tumor and non-tumor 
mucosal tissues were collected from GC patients 
(Figure S1).

To eliminate the variation caused by different 
bioinformatic analyses, consistent QIIME2 pipe
lines were used to process all the raw sequencing 
data (Figure 1a).32 Fine-resolution amplicon 
sequence variants (ASVs) that distinguish single- 
nucleotide differences were first generated.33,34 A 
closed-reference operational taxonomic unit 
(OTU) assignment approach was next employed 
to merge the datasets targeting distinct sequencing 
regions for cross-study comparisons.35

Since studies varied in both demographic and 
technical factors (e.g., sampling sites, DNA extrac
tions, variable regions), we first determined the 
extent of the contribution of “study” factor to the 
gastric microbiome variability. Principal coordi
nates analysis (PCoA) plots showed that samples 
were distinctly segregated by studies (Figure 1b). 
All the available potential confounders, including 
stage, disease stage, HP status, continent, sample 
location, age, and gender, were evaluated using 
ADONIS test. The result showed that these factors 
together explained ~33.96% of the microbial varia
tion, with study, disease stage, and HP status fac
tors having the largest impact (Figure S2).

The effect of H. pylori on the gastric microbiome

HP infection has long been recognized as a high- 
risk factor for GC.3 Conventional clinical methods 
for detecting HP infection include rapid urease test, 
histology, serology, PCR, culture, etc. In this meta- 
analysis, six studies have tested host HP status via 
different conventional methods (Table 1). By com
paring it with sequencing results, we found that 
sequencing was more sensitive in detecting HP, 
which is consistent with previous studies.36,37 HP 
reads were detected in 98.5% HP-positive samples 
(Figure S3a). Four of the 5 HP-positive samples 
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with no HP reads detected were from study 
PRJEB21497. This study used a serology method, 
which reflects past infections but not necessarily 
current HP status. Among the conventionally 
tested HP-negative samples, 78.4% were found 
with HP sequences. Kim et al. suggested 1% as an 
appropriate cutoff to determine the colonization of 
HP,37 which achieved a higher agreement with 
clinical HP status (Figure S3b versus Figure S3a).

We next evaluated the effect of HP on the gastric 
mucosal microbiome. The relative abundance of 
HP species was negatively correlated with the 
alpha diversity indices in most studies (Figure 2a) 
and pooled data (Figure S4), which could be largely 
due to the compositional dominance of HP in the 
gastric microbiota. ADONIS analysis demon
strated that the relative abundance of HP signifi
cantly shifted the overall microbiome composition 
in all the 11 cohorts (P < 0.05 except for Jaccard 
distance in PRJNA375772_Inner_Mongolia, 
Jaccard and unweighted UniFrac distances in 
PRJEB21497, Figure 2b), albeit with the explained 
variances ranging from 0.008 to 0.736. The varia
tions explained by HP were higher for weighted 
distance metrics (weighted UniFrac and Bray- 
Curtis distances) than unweighted metrics 
(unweighted UniFrac and Jaccard distances). This 
suggests that HP exerted a relatively greater impact 
on microbial abundances than their presence when 
measured by overall microbial composition.

Compositional effect occurs when we rarefy 
or normalize sequencing depths to the same 

across samples,38 which is usually required for 
downstream statistical analyses. Since the pro
portions of HP reads were extremely high and 
variated substantially across samples (Figure 
S3c), relative abundance-based gastric micro
biome analysis may be heavily influenced by 
HP-induced compositionality. To illustrate 
whether the observed effect of HP on the gas
tric microbiome was a result of real ecological 
change or merely compositional effect, we re- 
analyzed the study PRJNA495436 that sampled 
from patients with gastritis before and after 
receiving HP eradication.20 If one assumes 
other microbiome impacting factors remained 
stable during eradication, the change between 
pre- and post-eradication arose partially from 
eradication effects in gastric microbial ecology 
and/or partially from HP compositional effects. 
To disentangle them, we analyzed these sam
ples with HP reads removed before rarefaction. 
The result showed that post-eradication gastric 
samples had significantly increased microbial 
richness (observed ASVs) and diversity 
(Shannon and Faith’s PD) compared to the 
HP-filtered pre-eradication samples (Figure 2c 
green box versus blue box). This large increase 
indicates that HP eradication does have a sig
nificant impact on the gastric microbial ecosys
tem, not merely an artifact from compositional 
effects. Taken together, we underscore the sig
nificant effect of HP on the gastric microbiome 
from both technical and biological aspects.

PRJEB21104

PRJEB21497

PRJEB22107

PRJEB26931

PRJNA310127

PRJNA375772

PRJNA428883

PRJNA481413

PRJNA495436

a b

Figure 1. Meta-analysis workflow and study heterogeneity. (a) Overview of bioinformatic workflow for this meta-analysis. (b) The PCoA 
plot is based on unweighted UniFrac distance showing profound variations among different studies.
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Mutual exclusivity of helicobacter species

Another fundamental question involving HP is 
how HP species dominates the gastric mucosal 
niche. We compared the abundances of every pair 
of HP ASVs in each mucosal sample. Scatter plots 
showed that HP ASVs were largely mutually exclu
sive, and this observation was reproducible in all 
the studies (Figure 3 top panel, Figure S5). Notably, 
some HP ASVs were particularly more dominant 
in infected subjects than others (red star marked in 
Figure 3a and Figure S5). We additionally investi
gated the relationships between HP and other non- 
pylori Helicobacter species and found that they 

were also incompatible. In contrast to abundant 
HP ASVs, the relative abundances of non-pylori 
Helicobacter ASVs were generally extremely low 
(<1%) (Figure 3a-b bottom panel, Figure S5e-g 
right panel). Nevertheless, we also found excep
tions: the relative abundance of a non-pylori 
Helicobacter ASV reached 96.6% and 35.3% in 
two samples in study PRJNA481413 (Figure 3b 
bottom panel). This ASV was 100% sequence iden
tical to Helicobacter suis/Helicobacter heilmannii, 
which occurred naturally in animals and have 
been reported to be detected in human stomach.39 

A recent study suggested that Helicobacter suis may 

Combined

PRJNA495436

PRJNA481413

PRJNA428883

PRJNA375772_Xi_an

PRJNA375772_Inner_Mongolia

PRJNA310127_Mexico

PRJNA310127_China

PRJEB26931

PRJEB22107

PRJEB21497

PRJEB21104

0.0 0.2 0.4 0.6
R2

Distance metric

Bray Curtis

Jaccard

Unweighted UniFrac

Weighted UniFrac

Pvalue

ns

P < 0.05
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b

**
**

**
** **

**

**
**

**

a

afte
r e

radica
tio

n

with
out H

P

before eradica
tio

n 

with
 HP

before eradica
tio

n 

afte
r e

radica
tio

n

with
out H

P

before eradica
tio

n 

with
 HP

before eradica
tio

n 

afte
r e

radica
tio

n

with
out H

P

before eradica
tio

n 

with
 HP

before eradica
tio

n 

Figure 2. The effect of H. pylori on the gastric microbiome. (a) Heatmap showing the correlations between the relative abundance of HP 
and Shannon, Faith’s PD and Observed ASVs in each cohort. The colors in the heatmap were proportional to the Spearman’s correlation 
coefficient displayed in each cell. **P < 0.01, *0.01 < P < 0.05. (b) Microbial variations explained by the relative abundance of HP in each 
cohort. R2 was calculated using the ADONIS test. (c) Alpha diversity in patients before and after receiving HP eradication in dataset 
PRJNA495436 with or without HP reads removed. Statistical significance was determined by t-test: **P < 0.01, *0.01 < P < 0.05.
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be a potential gastric pathogen with different mole
cular pathogenicity and clinical manifestations 
from HP.40 Collectively, our findings show the 
mutual exclusivity of Helicobacter ASVs, indicating 
that the colonization of one HP ASV may inhibit 
others probably due to the competition for a simi
lar ecological niche.

The gastric mucosal microenvironments are 
relatively homogeneous

Because mucosal samples may be collected from 
different sites of the stomach, it is necessary to test 
whether the gastric microbiota inhabiting at differ
ent microenvironments are uniform before explor
ing the disease-associated microbial changes. To 
take into account the aforementioned HP-induced 
compositional effect, we performed downstream 
analyses both with and without HP reads removed 

from samples before rarefaction. For precancerous 
lesions, no significant differences were observed in 
Shannon index (Figure S6a, P > 0.05, paired t test) 
and overall microbial composition (P > 0.05, 
ADNOIS based on Bray-Curtis, Jaccard, weighted 
UniFrac or unweighted UniFrac distance) between 
matched sample pairs collected from gastric body, 
antrum, or fundus. The results were similar after 
removing HP reads (Figure S6b). For the cancer 
stage, we compared matched samples from on-site 
and off-site tumor tissues in four cohorts individu
ally. Significant differences in alpha diversity (P <  
0.05, paired t-test) and microbiome composition 
(P < 0.05, ADNOIS based on Bray-Curtis, Jaccard, 
weighted UniFrac, or unweighted UniFrac dis
tance) between tumor and non-tumor samples 
were found only in cohort RPHNA310127_China, 
but not in the other 3 cohorts (Figure S6c). 
Different from the other three cohorts, 

PRJNA428883

HP versus non-pylori Helicobacter

PRJNA481413
a b

*

*

*

*

*

*

HP versus HP HP versus HP

HP versus non-pylori Helicobacter

Figure 3. Mutual exclusivity of Helicobacter ASVs. (a–b) Scatter plots show the relative abundance of each pair of Helicobacter ASVs in 
dataset PRJNA428883 (a) and dataset PRJNA481413 (b). Each dot is one gastric microbiome sample. The top panel shows the 
relationship between every two HP ASVs; the bottom panel shows the relationship between each HP ASV and non-pylori Helicobacter 
ASV. The most dominant HP ASV in the population was marked by a red star.

6 Y. LI ET AL.



RPHNA310127_China had substantially higher HP 
abundance in non-tumor samples (Figure S6e). 
The delta HP abundance and delta Shannon 
index between the matched tumor and non- 
tumor samples were strongly negatively correlated 
(r = −0.817, Spearman’s correlation, Figure S6f), 
indicating the significant effects of HP on mea
sured microbial composition. After removing HP 
reads from the analysis, the differences between 
tumor and non-tumor samples disappeared in 
both alpha diversity (Figure S6d) and beta diversity 
(P > 0.05, ADNOIS based on Bray-Curtis, Jaccard, 
weighted UniFrac or unweighted UniFrac dis
tance) in this sample set, indicating that besides 
HP, there was no extensive alteration in the gastric 
microbiome composition between paired tumor 
and non-tumor samples. Thus, we concluded that 
the stomach microenvironments remain relatively 
homogenous during GC progression.

Mucosal microbiome shifted as gastric diseases 
progress

We next included all samples from different sto
mach sites and compared the gastric microbiota 
between disease stages. To control the study 
effects, we analyzed each cohort individually and 
then pooled the evidence of microbial changes 
across studies using a random effects model 
(REM). When HP sequences were included in 
the analysis, we found higher microbial richness 
and diversity in healthy subjects but no consistent 
significant change between other disease stages 
(Figure 4a). Similarly, to address the HP-induced 
compositional effect, we also performed the ana
lyses without HP reads. As shown in Figure 4b, 
the difference between healthy and gastritis sam
ples in alpha diversity disappeared or narrowed 
after removing HP reads due to the composi
tional effect caused by the excessive abundance 
of HP in gastritis patients. Additionally, signifi
cant differences of alpha diversity between gastri
tis and IM, IM and GC, and gastritis and GC 
were also identified. Specifically, the alpha diver
sity gradually decreased as the diseases progress: 
healthy > gastritis > IM > GC (Figure 4b). The 

contrasting results with and without HP under
score that dominant HP reads have a non-negli
gible impact on results. ADONIS analysis 
revealed significant differences in microbiome 
composition between each two groups both with 
(Figure 4c) and without HP (Figure 4d). The 
effect size, as measured by ADONIS R2, margin
ally increased after removing HP, especially for 
IM vs. GC and gastritis vs. GC comparisons. 
Collectively, we revealed progressive dysbiosis of 
the gastric mucosal microbiota during GC 
progression.

To identify microbial biomarkers that were repro
ducible across cohorts, we compared samples from 
gastritis and GC stages using REM – two stages with 
the largest number of samples (Table 1). Forty-four 
OTUs were found to be differentially abundant (P <  
0.01, Figure S7a), and the top 20 differential OTUs are 
shown in Figure 4e: Leptotrichia, Fusobacterium, 
Selenomonas, Bifidobacterium, Streptococcus angino
sus, Lactob-acillus, Veillonellaceae, Dialister, 
Lactobacillus mucosae, Lachnospiraceae, Parvimonas, 
Prevotella, Actinobacillus parahaemolyticus, and 
Clostridiales were consistently enriched in patients 
with GC; S24–7 tended to be more abundant in gas
tritis samples. A larger number of OTUs were found 
enriched in GC compared with that in gastritis (8 
gastritis-enriched OTU versus 36 GC-enriched 
OTUs in Figure S7a), which may indicate a compro
mise in GC mucosal barrier, leading to the coloniza
tion of exogenous bacteria.

To further confirm the discriminative power of 
these identified microbial biomarkers, we per
formed within-cohort, cohort-to-cohort and 
leave-one-cohort-out (LOCO) validation using 
random forest (RF) models. In within-cohort 
cross-validation, the 44 OTUs distinguished GC 
from gastritis with area under the receiver operat
ing characteristic curve (AUC) scores ranging from 
0.75 to 0.99 (Figure S7b). The performance of 
cohort-to-cohort transfer validation slightly 
decreased but still achieved a relatively decent aver
age AUC of 0.71 (minimum: 0.64, maximum: 0.76). 
The LOCO approach achieved similar prediction 
results as the cohort-to-cohort validation, with an 
average AUC of 0.77. Removing HP did not 
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a b

dc

e

Figure 4. Mucosal microbiome shifted as gastric diseases progress. (a-b) Forest plots of alpha diversity between each two stages. The 
combined log2(fold difference) and FDR-corrected p-values calculated by REM were shown in the figure. Point to the left of the gray 
dashed line indicates higher diversity in the early stage; point to the right of the gray dashed line represents higher diversity in the 
advanced disease stage. The length of the error bar depicts the 95% CIs. Analyses were performed both with (a) and without HP reads 
(b). (c-d) ADONIS based on various distance metrics demonstrated significant differences in the gastric microbiome composition 
between each of the two stages. Combined R2 across different cohorts was calculated using the ADONIS test with cohort as stratum. 
Analyses were performed both with (c) and without HP reads (d). (e) Combined log2(fold change) for the 20 differential OTUs with the 
largest effect size between gastritis and GC, calculated using DESeq2 and REM.
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improve accuracy, except for cohort PRJEB26931 
(Figure S7c), where HP was significantly different 
between gastritis and GC samples.

Enrichment of oral microbes in GC

Mounting evidence has shown that oral 
microbes are associated with various gastroin
testinal diseases,41,42 including gastric cancer.
13,43 To investigate the role of gastric microbes 
with putative oral origin in GC, the sequences 
from all gastric samples were profiled against 
the reference sequences from the Human Oral 
Microbiome Database (HOMD, 16S rRNA 

RefSeq version 15.21). Agreeing with this obser
vation, we noticed that 80% of the identified 
GC-enriched bacteria were potential oral 
microbes (Figure S7a). To comprehensively 
explore the changes in oral microbes across 
cohorts during GC progression, we compared 
five metrics of oral microbes between each of 
the two stages using REM, including three alpha 
diversity indices, total relative abundance, and 
the fraction of oral ASVs among all the 
observed ASVs. The oral microbes were more 
diverse and abundant in healthy individuals 
compared to gastritis; they also tended to be 
enriched in GC compared to gastritis and IM, 

Shannon Faith's PD Observed ASVs Relative
abundance Fraction

−0
.1 0.0 0.1 0.2 −0

.1 0.0 0.1 0.2 −0
.1 0.0 0.1 0.2 −0

.8
−0

.4 0.0 0.4 0.0 0.4 0.8

Healthy vs. GC

Gastritis vs. GC

IM vs. GC

Gastritis vs. IM

Healthy vs. Gastritis

log2(fold difference)

FDR

ns

0.01 < fdr < 0.05

fdr < 0.01

Without HP

Shannon Faith's PD Observed ASVs Relative
abundance Fraction

−0
.3

−0
.2

−0
.1 0.0 0.1 0.2 −0

.5 0.0 0.5 −1
.0

−0
.5 0.0 0.5 −2 −1 0 1 0.0 0.4 0.8

Healthy vs. GC

Gastritis vs. GC

IM vs. GC

Gastritis vs. IM

Healthy vs. Gastritis

log2(fold difference)

With HP
a

b

Figure 5. Comparison of oral microbes between different stages. (a-b) Forest plots of the alpha diversity, relative abundance, and 
fraction of oral microbes between each of the two disease stages. The combined log2(fold difference) and FDR-corrected p-values 
calculated by REM were shown in the figure. Point to the left of the gray dashed line indicates higher diversity in the early stage; point 
to the right of the gray dashed line represents higher diversity in the advanced disease stage. The length of the error bar depicts the 
95% CIs. Analyses were performed both with (a) and without HP reads (b).
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but there was no consistent, significant differ
ence between other stages (Figure 5a). However, 
after removing HP sequences from the analysis, 
we found a higher diversity, relative abundance, 
and fraction of oral bacteria in GC compared to 
all precancerous stages (Figure 5b), indicating a 
similar obscuring compositional effect of HP 
dominance. Thus, we concluded that oral 

microbes in the gastric mucosa were signifi
cantly elevated in the GC.

Dysbiosis of gastric fluid microbiome during GC 
progression

Limited studies have investigated the gastric fluid 
microbiota to date.44–46 Its characteristics during 

a b c

d e f

g h

Figure 6. Dysbiosis of the gastric fluid and mucosal microbiome across GC stages in dataset PRJNA481413. (a) The relative abundance 
of HP in fluid and mucosal samples across different stages. (b-c) Shannon index of gastric microbiome in fluid and mucosa samples 
across different stages. Analyses were performed both with (b) and without HP sequences (c). (d-f) The fraction (d), relative abundance 
(e), and alpha diversity (f) of oral bacteria in gastric fluid and mucosal samples across three disease stages. Analyses were performed 
without HP reads. **P<0.01, *0.01 < P<0.05. (g) The RF model trained on mucosal microbiome could distinguish GC from non-GC 
samples with an average AUC of 0.86, and it could predict fluid samples with an AUC of 0.71. The RF model trained on the fluid 
microbiome achieved a cross-validation AUC of 0.80, and it could classify mucosal samples with an AUC of 0.67. (h) After removing HP 
sequences from the analyses, the RF model trained on mucosal microbiome achieved a cross-validation AUC of 0.91 and it could 
predict fluid samples well with an AUC of 0.75. The RF model trained on fluid microbiome achieved a cross-validation AUC of 0.74 and 
it could predict mucosal samples well with an AUC of 0.75.

10 Y. LI ET AL.



the progression of GC still remain unknown. To 
this end, we compared gastric fluid samples from 
patients with gastritis, IM, and GC in the 
PRJNA481413 study (Table 1). In gastric fluid, 
the abundance of HP was much lower than that 
in mucosa (Figure 6a), but it still negatively corre
lated with the microbial diversity (r = −0.39, 
Spearman’s correlation, Figure S8a). The Shannon 
index of fluid microbiota displayed a trend of 
decrease as the disease progresses (Figure 6b-c). 
Permutational multivariate analysis of variance 
(PERMANOVA) using unweighted distances 
revealed a significant difference in fluid micro
biome composition between GC and gastritis/IM 
(unweighted UniFrac distance and Jaccard dis
tance, P < 0.01); However, PERMANOVA based 
on weighted metrics (weighted UniFrac distance 
and Bray-Curtis distance) showed no significant 
difference between any two stages. The result sug
gests that the difference was probably driven by 
low-abundance bacteria substantially altered in 
GC rather than high-abundance microbes. The 
fraction of oral microbes significantly increased in 
GC compared to other stages (Figure 6d), but no 
statistical difference was observed in alpha diversity 
or total abundance of the oral microbes between 
stages (Figure 6e-f).

Previous studies consistently reported distinct 
gastric fluid microbiome and mucosal 
microbiome.44,45 We next comparatively analyzed 
the fluid and mucosal microbiota across disease 
stages collected from the same data set 
PRJNA481413. The fluid microbiome was more 
diverse than the mucosal microbiome in all stages 
(Figure 6b), but the differences narrowed after 
removing HP reads and was no longer statistically 
significant for GC stage (Figure 6c). 
PERMANOVA analysis revealed remarkable diver
gent microbial compositions between gastric fluid 
and mucosal samples regardless of disease stages 
(P < 0.01). However, the extent of this difference 
between gastric fluid and mucosal microbiome, 
measured by the pseudo-F statistic of 
PERMANOVA, gradually decreased as the disease 
exacerbated (pseudo-F based on Bray-Curtis dis
tance with HP: gastritis, 21.1; IM, 12.1; GC 7.0. 
pseudo-F based on Bray-Curtis distance without 

HP: gastritis, 20.2; IM, 12.0; GC 4.5). Similar results 
were observed for other beta diversity metrics 
(Figure S8b), suggesting convergent microbial 
alterations toward GC between gastric fluid and 
mucosa. We further constructed an RF classifica
tion trained on mucosal microbial data, and found 
that it was able to distinguish GC fluid samples 
from non-GC fluid samples with an AUC of 0.71, 
and fluid microbiome classified GC mucosal sam
ples from non-GC with an AUC of 0.67 (Figure 
6g). The results were increased to 0.75 if removing 
HP sequences (Figure 6h). Overall, our findings 
suggest gastric fluid microbiome dysbiosis in GC 
and convergent shifts of fluid and mucosal micro
biome toward GC.

Discussion

In this paper, we reanalyzed nine available public 
datasets of human gastric microbiota via consistent 
pipelines and comprehensively assessed alterations 
of the gastric microbiome across the GC cascade in 
an effort to address the issue of reproducibility 
among heterogeneous studies. Our results high
light the influence of the compositional effect 
caused by HP on gastric microbiome analyses. 
After stratifying the analyses by HP and study 
factors, we found that the gastric microbiome sig
nificantly shifted during the progression of gastric 
carcinogenesis, accompanied by a gradual decline 
in microbial diversity. Reproducible microbial sig
natures across studies that could distinguish GC 
samples from gastritis were identified. Notably, 
oral microbes were substantially enriched in GC 
compared to other disease stages. Additionally, by 
analyzing the gastric fluid microbiome across dif
ferent disease stages, we found convergent micro
biome dysbiosis in gastric fluid and mucosa as GC 
progressed.

HP is a well-studied pathogen that infects more 
than half of the world population.7 Besides HP, 
other non-pylori Helicobacter ASVs were also 
detected in human gastric mucosa, although their 
abundances were usually relatively low. Notably, 
we found that Helicobacter ASVs were mutually 
exclusive in all of the nine datasets (Figure 3, 
Figure S5), suggesting the existence of niche-spe
cific competitions among different ASVs. With 
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that being said, 16S amplicon sequences were too 
short to determine whether a single Helicobacter 
ASV represents a single strain or comprises multi
ple closely related strains, as distinct strains can 
share the same amplicon region. Future shotgun 
metagenomic studies are warranted to confirm it.

Compositional effect caused by HP dominance 
pose grand challenges in microbiome data 
analyses.38 Here, we performed downstream ana
lyses both with and without HP sequences being 
removed. Comparing to analyses with HP reads, we 
found that results without HP reads seemed to be 
more robust and biologically plausible, which were 
summarized as follows: (i) differences in alpha 
diversity and microbiome composition between 
tumor and non-tumor samples were only identified 
in cohort PRJNA310127_China but not the other 
three, and these differences for this particular data 
set disappeared when HP reads were removed 
(Figure S6c versus Figure S6d); (ii) the alpha diver
sity shows a gradual decreasing trend as the disease 
progresses from gastritis to GC after removing HP 
(Figure 4a versus Figure 4b); (iii) the microbiome 
appeared more distinguishable especially between 
GC and other disease stages, after removing HP 
compared to the results with HP (Figure 4c versus 
Figure 4d); (iv) a significant enrichment of oral 
microbes was observed in GC compared with pre
cancerous stages when HP was removed (Figure 5a 
versus Figure 5b). Overall, our meta-analyses sug
gest that the compositionality caused by HP could 
be a potential confounder in gastric microbiome 
analyses and highlight the merit of performing 
analyses both with and without HP sequences.

Batch effects hinder comparisons across studies. 
Opposite results were reported in studies included 
in this meta-analysis. For example, in study 
PRJEB26931, Wang et al. found a similar micro
biome composition between paired on-site and off- 
site tumor tissues;17 in contrast, study 
PRJNA310127 showed distinct microbiome com
munities between tumor and matched non-tumor 
samples.18 Our meta-analysis revealed that the dif
ference found in study PRJNA310127 was likely an 
artifact caused by compositional effects due to the 
huge number of HP reads. Another conflicting 
report was on the alpha diversity of the gastric 

microbiome. Study PRJEB21497 found that the 
microbial richness was significantly elevated in 
GC.16 However, study RPJNA375772 reported sig
nificantly lower species richness in IM and GC 
subjects compared to gastritis.13 Study 
PRJEB26931 suggested that gastric microbial diver
sity decreased from healthy, gastritis, and IM to 
GC.17 After accounting for the intra-study varia
tion and HP-introduced compositionality, our 
study reported a progressive decrease in alpha 
diversity during the progression of GC. These 
results highlight the power of meta-analysis, 
which reduces the technical and biological noise 
or bias and elucidates robust findings across 
studies.

Current studies showed discrepancies in micro
bial signatures. Using REM, we identified a set of 
universal microbial biomarkers across cohorts 
between GC and gastritis with potential for GC 
diagnosis (Figure S7). Key microbial signatures 
included Fusobacterium, Leptotrichia, and several 
lactic acid bacteria such as Bifidobacterium, 
Lactobacillus, and Streptococcus anginosus (Figure 
4e). They all tended to be enriched in GC cases. 
Fusobacterium and Leptotrichia were opportunistic 
pathogens associated with oral and gastrointestinal 
diseases.16,47–49 Our results indicate that they may 
also be involved in gastric carcinogenesis. Lactic 
acid bacteria constitute a group of bacteria that 
ferment carbohydrate to lactic acids. The enrich
ment of lactic acid bacteria in GC may suggest a 
remarkable alteration in the stomach environment. 
Vinasco et al. proposed that these lactic acid bac
teria may promote GC via supplying exogenous 
lactate, increasing reactive oxygen species, N- 
nitroso compounds, and inducing immune 
tolerance.50 Streptococcus anginosus was reported 
to be associated with esophageal cancer, head and 
neck squamous cell carcinoma and GC.13,51,52 A 
recent study sampled paired tumor tissues and 
fecal samples from 1043 GC and gastritis indivi
duals and found that the relative abundance of 
Streptococcus anginosus was significantly increased 
in both GC tumor tissues and feces.53 Interestingly, 
the gut microbiota were also significantly altered in 
GC patients compared to healthy controls.54,55 The 
RF model trained on gut microbiome data 
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distinguished GC from healthy individuals with an 
AUC of 0.91.55 Zhou et al. suggested that fecal 
Streptococcus anginosus combined with 
Streptococcus constellatus are an accurate and sen
sitive biomarker for GC.53 The RF model trained 
using fecal microbiome data also classified surgical 
GC patients from non-surgical patients with an 
AUC of 0.75.56 These studies indicate that fecal 
microbiota may be an indicator of gastric dysbiosis, 
providing the possibility for noninvasive micro
biome diagnosis.

Notably, most of the identified microbial bio
markers were potentially derived from the oral 
cavity (Figure S7a). Mounting evidence has shown 
that oral microbes were found substantially 
enriched in the distal gastrointestinal tract in 
patients with systemic conditions, including pan
creatic cancer,42 inflammatory bowel disease,41 and 
colorectal cancer.57,58 Coker et al. revealed signifi
cant enrichment of oral microbes and their central 
role in GC microbial networks.13 Agreeing with 
this notion, we observed that the abundance and 
the fraction of oral microbes were significantly 
higher in GC compared to those in precancerous 
stages across studies (Figure 5b). It was possible 
that the dysfunction of mucosal barriers in GC 
offers opportunities for oral microbes to invade 
the mucosal surface.59 However, whether the 
enrichment of oral microbes aggravates GC pro
gression or it was merely a reflection of host patho
physiological changes awaits further investigation. 
Additionally, studies suggest that Helicobacter may 
be negatively associated with oral bacteria in GC. 
For example, Guo et al. found strong co-excluding 
relationships between Helicobacter genus and mul
tiple potential oral genera in advanced gastric 
lesions, including Fusobacterium, Neisseria, 
Prevotella, Veillonella, and Rothia.60 Another 
study also reported the co-exclusion between a 
Helicobacter OTU and oral-derived 
Campylobacter consisus in GC microbial interac
tion network.16We found distinct microbial com
positions between the gastric mucosal and fluid 
microbiome. The microbial diversity was higher 
in fluid compared to that in mucosa (Figure 6b- 
c). In fluid, the average fraction and abundance of 
oral bacteria were greater than 50% (Figure 6d-e), 
indicating that oral microbiota swallowed with 
food and saliva may be the major source of the 

gastric fluid microbiome. The fraction and diver
sity of oral microbes in gastric fluid were nearly 
double of those in gastric mucosa (Figure 6d,f), 
indicating that the tenacious mucus gel layer in 
conjunction with the epithelial bicarbonate pro
tects gastric epithelium from colonization of exo
genous bacteria.61,62 Intriguingly, despite the 
significant difference in gastric mucosal and fluid 
microbiota, PERMANOVA analysis suggested 
convergent microbial alterations in mucosa and 
fluid during GC progression. This is further sup
ported by the observation that the RF model 
trained on the mucosal microbiome could distin
guish the fluid GC samples from other fluid non- 
GC samples, and vice versa (Figure 6g-h). The 
convergent trend in the fluid and mucosal micro
biome might result from increased shedding of 
mucosal commensals and/or the progressive inva
sion of oral microbes or other exogenous bacteria 
on the gastric mucosa (due to the compromised 
gastric mucosal barrier in GC).

Despite our best efforts, this meta-analysis has 
limitations. First, batch effect challenges meta-ana
lysis. Unwanted sources of technical variation 
among studies, including sample collections, 
DNA extractions, sequencing regions and plat
forms, 16S amplicon analysis tools, and statistical 
methods being used for data analysis, can be sig
nificant and potentially obscure biological signals, 
even after correction. Batch effect removal is parti
cularly challenging for microbiomes due to the 
heterogeneity and sparsity in the microbial abun
dance table, exacerbating the technical differences 
across studies. We alleviated the batch effect by 
utilizing consistent workflow and statistical meth
ods and adapting the previously reported analysis 
strategy such as REM. However, we did not com
prehensively benchmark and review all the 
reported batch correction methods,63–67 which 
warrants a separate, systematic evaluation. Thus, 
theoretically there could be other approaches that 
might achieve similar or even better outcome. 
Second, the impact of demographic factors was 
not included in our analyses due to the limited 
availability of relevant metadata. Even though our 
result indicates that their contributions to gastric 
microbiome variation are small, their exact effects 
await further investigation when more data become 
available. Third, our findings on the gastric fluid 
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microbiome during the progression of GC were 
supported by a single dataset, as there is no other 
data publicly available, which warrants future inde
pendent validation.

In conclusion, current studies on the gastric micro
biome in gastric diseases have yielded many remark
able findings, but generalizability of results across 
studies was potentially poor. Our meta-analysis inte
grates multiple public datasets and underscores the 
notable influence of HP on gastric microbiome ana
lyses. We identified highly consistent microbial fea
tures, which helps to refine the associations between 
gastric disease and microbiome. Moreover, we dis
covered the mutual exclusivity of HP and convergent 
dysbiosis of the gastric fluid microbiome and mucosal 
microbiome during GC progression. Our work pro
vides comprehensive insights into the gastric micro
biome dysbiosis in gastric carcinogenesis, laying a 
foundation for future microbiome-targeted diagnosis 
or treatment.

Methods

Study selection and sample exclusion

A literature PubMed search was conducted using 
terms ‘gastric microbiome’ [OR] ‘gastric micro
biota’ [OR] ‘gastritis AND microbiota’ [OR] 
‘intestinal metaplasia AND microbiota’ [OR] ‘gas
tric cancer AND microbiota’ to identify studies 
published prior to August 2020. Studies fit our 
inclusion criteria if they (1) sequenced the 
human gastric microbiome via Illumina platform 
targeting 16S rRNA genes; (2) had publicly avail
able raw sequences data. Eight studies met all of 
the above criteria. Moreover, public repositories 
including the Sequence Read Archive (SRA) in 
NBCI, MG-RAST and European Nucleotide 
Archive (ENA) were also queried with the same 
search terms, resulting in an additional study 
PRJNA481413. A total of 9 datasets were included 
in our meta-analysis. Raw sequencing data were 
downloaded using SRA toolkit (V.2.10.8) from 
SRA using identifiers: PRJEB21104, PRJEB22107, 
PRJEB26931, PRJEB21497, PRJNA310127, 
PRJNA375772, PRJNA428883, PRJNA481413, 
and PRJNA495436 (Table 1). We herein focused 
on the microbiome shifts during the progression 
of GC (from healthy, gastritis, IM to GC), non- 

gastric samples, gastric samples that did not 
belong to the four stages, or gastric samples that 
were from patients subjected to drug treatment or 
other interventions were excluded from this meta- 
analysis. For example, fecal samples (in study 
PRJNA495436) and PPI-treated gastric samples 
(in study PRJEB21104) were excluded.

Standardized microbiome analysis pipelines

The bases of primers or adaptors were trimmed to 
ensure the reliability of downstream analysis. The 
trimmed sequences were next processed using 
standardized quantitative insights in microbial 
ecology version 2 (QIIME2, release 2020.2) 
pipelines.32 Briefly, within each dataset, sequences 
were first filtered by the quality score using a qiime 
quality-filter q-score command with default 
settings.68 Deblur algorithm was employed to 
remove singletons, artifacts, and chimera, resulting 
in a high-quality ASV table.33 Taxonomy was 
assigned against the Greengenes database (version 
13_8)69 using QIIME2 q2-feature-classifier plugin.
70 Sequences that were classified as mitochondria 
and chloroplast were discarded. ASVs that were 
100% identical to the reference sequences (version 
15.21) from HOMD were defined as potential oral 
microbes. Sequence alignment was performed via 
the VSEARCH tool.71

To merge ASV data from studies targeting dif
ferent 16S amplicon sequencing regions, closed- 
reference clustering was performed at 99% identity 
against the Greengenes reference database using 
QIIME2 q2-vsearch plugin, resulting in a pooled 
OTU table. OTUs that were 99% identical to the 
HOMD reference sequences (version 15.21) were 
labeled as potential oral microbes.

To evaluate the impact of HP-induced composi
tional effect on the gastric microbiome analyses, 
two pipelines were used in parallel in downstream 
analyses: one with HP sequences, and the other 
with HP ASVs or OTUs being removed from the 
corresponding ASV or pooled OTU counts table.

Microbial diversity analyses

Within each study, samples were first rarefied to an 
appropriate depth according to the rarefaction 
curve. Alpha diversity metrics, including Shannon 
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index, observed features, and Faith’s phylogenetic 
diversity (Faith’s PD), were calculated using 
QIIME2 q2-diversity plugin based on the rarefied 
ASV tables. To explore the microbial shifts between 
healthy, gastritis, IM and GC, samples from each 
pair of stages were compared within each study. 
The combined change in the alpha diversity 
between each of the two stages was computed to 
account for the study effects as described in Bisanz 
et al. 72 Taking the comparison of gastritis and GC 
as an example, for each study that contained these 
two stages, the alpha diversity index was first scaled 
to the geometric mean of gastritis samples. Welch’s 
t-test was next employed to calculate significance 
and 95% confidence intervals (CIs). REM was 
applied to integrate the results of each study and 
determine the combined result with the formula 
log2(fold difference) ~ disease stages + (1|cohort). 
Combined p-values were next adjusted using the 
FDR approach (p.adjust function in the R stats 
package).

To integrate and compare the gastric micro
biome across studies, beta diversity analyses were 
performed based on the pooled OTU table. 
Samples with less than 1000 OTU sequences were 
removed from downstream analyses. The OTU 
table was next rarefied to 1000 according to the 
rarefaction curve. Beta diversity metrics including 
Bray-Curtis, Jaccard, weighted UniFrac and 
unweighted UniFrac distance, were calculated 
using QIIME2 q2-diversity plugin. The PCoA plot 
was visualized using the Emperor tool.73 The over
all microbiome community between each of the 
two stages was compared using ANONIS with 
999 permutations (adonis in the R vegan package).
74 The combined R2 was calculated by setting the 
“strata” parameter to cohorts to constrain the study 
effect as described in Bisanz et al.72 Combined p- 
values were next adjusted using the FDR approach 
(p.adjust function in the R stats package).

Differentially abundant OTUs between gastritis and 
GC samples across cohorts

Differential abundance analysis between gastritis and 
GC samples was conducted using DESeq275 based on 
the OTU abundances in cohorts PRJEB26931, 
PRJNA375772_Xi_an, PRJNA375772_Inner_ 
Mongolia and PRJNA481413, respectively. REM was 

employed to identify reproducible microbial biomar
kers across cohorts using the R metafor package as 
described in Shah et al. 76,77 Cohorts were used as a 
random effect to control the study effects. OTUs with 
a combined P < 0.01 calculated by REM were consid
ered as the universal differential microbes across 
cohorts.

Application and evaluation of the machine learning 
models

Random forest (RF) models were used to test the 
predictive power in classifying GC from gastritis 
samples. Within-cohort prediction was measured 
through stratified fivefold cross-validation to ensure 
balanced gastritis and GC samples in each fold. In 
cohort-to-cohort validation, RF models were trained 
on one cohort and validated on another. In LOCO 
validation, data from one cohort was used as the 
external validation set and the other three cohorts 
were pooled as a training set. All RF models were 
built using the scikit-learn module.78 The AUC of 
the ROC curve was used to measure the predictive 
accuracy of the classification model.

Since the PERMANOVA analysis showed con
vergent dysbiosis in the gastric fluid microbiome 
and mucosal microbiome as GC progressed in data
set PRJNA481413, we trained RF models to test if 
they can discriminate GC samples from other non- 
GC samples. The models were trained on gastric 
fluid relative abundance data and validated on 
mucosal relative abundance data and vice versa.

Other statistical analysis

Paired t-test (scipy.stats.ttest_rel) was applied to 
compare the alpha diversity metrics of samples 
collected from matched anatomical sites or paired 
tumor and non-tumor tissues. Independent 
between-group comparisons were performed 
using t-test (scipy.stats.ttest_ind). The relationship 
between alpha diversity and the relative abundance 
of HP was calculated using Spearman’s rank corre
lation (scipy.stats.spearmanr). PERMANOVA was 
performed with permanova function in scikit-bio 
(v0.5.5) python library. R2 between groups were 
calculated using the ANONIS test with 999 permu
tations (adonis in the R vegan package).
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