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Adipocytes contribute to metabolic disorders such as obesity, diabetes, and atherosclerosis. Prior characterizations of the

transcriptional network driving adipogenesis have overlooked transiently acting transcription factors (TFs), genes, and reg-

ulatory elements that are essential for proper differentiation. Moreover, traditional gene regulatory networks provide nei-

ther mechanistic details about individual regulatory element–gene relationships nor temporal information needed to define

a regulatory hierarchy that prioritizes key regulatory factors. To address these shortcomings, we integrate kinetic chromatin

accessibility (ATAC-seq) and nascent transcription (PRO-seq) data to generate temporally resolved networks that describe

TF binding events and resultant effects on target gene expression. Our data indicate which TF families cooperate with and

antagonize each other to regulate adipogenesis. Compartmentmodeling of RNApolymerase density quantifies how individ-

ual TFs mechanistically contribute to distinct steps in transcription. The glucocorticoid receptor activates transcription by

inducing RNA polymerase pause release, whereas SP and AP-1 factors affect RNA polymerase initiation. We identify

Twist2 as a previously unappreciated effector of adipocyte differentiation. We find that TWIST2 acts as a negative regulator

of 3T3-L1 and primary preadipocyte differentiation. We confirm that Twist2 knockout mice have compromised lipid storage

within subcutaneous and brown adipose tissue. Previous phenotyping of Twist2 knockoutmice and Setleis syndrome Twist2−/−

patients noted deficiencies in subcutaneous adipose tissue. This network inference framework is a powerful and general ap-

proach for interpreting complex biological phenomena and can be applied to a wide range of cellular processes.

[Supplemental material is available for this article.]

Mature adipocytes contribute to a multitude of metabolic process-
es by regulating energy balance, producing hormones, and provid-
ing structural and mechanical support (Rosen and Spiegelman
2006). Adipocyte hyperplasia downstream from increased adipo-
genesis is associated with pathogenesis of obesity, type 2 diabetes,
and cardiovascular disease (van Kruijsdijk et al. 2009; Unamuno
et al. 2018). Adipogenic factors represent opportunities for inter-
vention and possible mitigation of obesity-related sequelae
(Ghaben and Scherer 2019; Ahmad et al. 2020). Adipocytematura-
tion is a tightly regulated process involving many chromatin and
transcriptional changes downstream from transcription factor
(TF) binding (Siersbæk et al. 2011; Tsankov et al. 2015;
Thompson et al. 2016; Rauch et al. 2019; Madsen et al. 2020).
Although prior studies have extensively characterized the TFs
and gene expression changes required for adipogenesis (Rosen
and Spiegelman 2006; Lefterova and Lazar 2009; Siersbæk et al.
2012), this work relied onmeasurements taken hours or days apart
on cells undergoing adipogenesis. Molecular events, such as TF
binding, chromatin remodeling, and redistribution of RNA poly-
merase, occur on a time scale of seconds to minutes (McNally
et al. 2000; Chen et al. 2014; Duarte et al. 2016). Therefore, previ-
ous examinations of adipogenic signaling likely omitted multiple

waves of signaling and potential regulatory factors that may be
critical to the process.

Molecular genomics assays can query transcriptional events
with extremely high temporal resolution. Although each assay de-
livers a tremendous amount of information, each is limited in the
biology that it measures. ChIP-seq directly quantifies chromatin
occupancy of proteins, but the assay is dependent upon the avail-
ability of antibodies and is limited to a single factor at a time.
ATAC-seq and DNase-seq assays quantify chromatin accessibility,
which is an indirect measure of regulatory element (RE) activity
(Boyle et al. 2008; Buenrostro et al. 2015). Combining accessibility
data with TF motif analyses can accurately infer TF binding with-
out the need for factor- and species-specific antibodies (Wu et al.
1979; Vierstra et al. 2020). Kinetic experiments can further in-
crease the sensitivity of inferring dynamic TF binding, because
changes in TF binding modulate local chromatin structure and ac-
cessibility (Guertin and Lis 2010, 2013; Siersbæk et al. 2011, 2014).
However, these assays do not directly inform on changes in tran-
scription and RNA polymerase dynamics. Although RNA-seq is a
popular approach for measuring transcription, the assay relies on
accumulation of mature RNA species over hours, making it inap-
propriate for rapid measurements. In addition, it is difficult to
deconvolve mechanistic insights from RNA-seq data, which mea-
sure secondary and compensatory transcription as well as long-
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lived RNA species predating initial measurements. Alternatively,
nascent transcription profiling with PRO-seq captures RNA poly-
merase density genome-wide at high spatial and temporal resolu-
tion (Kwak et al. 2013). PRO-seq, like RNA-seq, is limited in its
ability to identify potential upstream REs and regulatory TFs.
Only by combining multiple approaches can one fully capture
the signaling dynamics driving transcription regulatory cascades.

Differential TF activity defines cell identity and drives cellular
responses to environmental stimuli by enforcing gene regulatory
programs (Takahashi and Yamanaka 2006). Sequence-specific
TFs bind to conserved motifs (Ptashne 1967) in REs within pro-
moters and enhancers to regulate different mechanistic steps in
transcription (Fuda et al. 2009). TFs recruit cofactors such as chro-
matin-modifying enzymes and general transcriptionmachinery to
REs. TFs are generally characterized as activators or repressors based
upon their interaction partners, and recent studies more specifi-
cally describe TFs based upon their molecular function and which
mechanistic steps they regulate (Hah et al. 2011; Danko et al. 2013;
Duarte et al. 2016; Scholes et al. 2017; Sathyan et al. 2019;
Neumayr et al. 2022). In addition to chromatin opening and
RNA polymerase recruitment, many transcription steps are pre-
cisely regulated, such as RNA polymerase pausing, elongation,
and termination. RNA polymerase II (Pol II) pauses ∼30–50 bp
downstream from the transcription start site (TSS) (Rougvie and
Lis 1988; Rasmussen and Lis 1993), and the vast majority of genes
show promoter-proximal Pol II pausing (Muse et al. 2007;
Zeitlinger et al. 2007; Core et al. 2008). Further modifications to
the Pol II complex triggers pause release and productive elongation
(Marshall and Price 1995). Defining the steps regulated by TFs is
necessary to understandhowTFs coordinatewith one another pro-
ductively or antagonistically to regulate complex gene expression
programs.

Transcriptional networks consist of multiple rapid waves of
signaling through timewith potential regulatory feedback and sig-
nal propagation through activation and repression of regulatory
factors. These complex regulatory cascades are not captured in tra-
ditional gene regulatory networks. Differentiating one wave from
the next requires observations at multiple, closely spaced time
points. In this study, we perform ATAC-seq and PRO-seq on 3T3-
L1 cells at seven time points within the first four hours of adipo-
genesis. We incorporate accessibility and transcription changes
into a multiwave signaling network and identify TF families driv-
ing the regulatory cascade.

Results

TFs from at least 14 families are associated with dynamic

chromatin accessibility in 3T3-L1 differentiation

TFs bind promoters and enhancers to modify chromatin structure
and influence transcription of nearby genes. To identify dynamic
REs and potential TFs that regulate adipogenic differentiation,
we induced adipogenesis in 3T3-L1 mouse preadipocytes (see
Methods), harvested samples at eight time points, and performed
genome-wide chromatin accessibility assays (ATAC-seq) (Fig. 1A).
Chromatin accessibility is a molecular measurement used to infer
TF binding and RE activity. We identified more than 230,000 ac-
cessibility peaks and found that differentiation time is the major
driver of variation among the samples (Supplemental Fig. S1A).
To address whether the sequencing libraries are saturated, we
called peaks on subsets of the total reads and found that the num-
ber of called peaks had not reached saturation (Supplemental Fig.

S1B). The fraction of reads in peaks (FRiP) varied between 0.2
and 0.3 for most of our ATAC-seq libraries (Supplemental Fig.
S1C). However, we note that this score is depressed because we
use our total peak set, which includes dynamically accessible peaks
that may not be accessible at all time points. Approximately
13% of all peaks change significantly over the time course
(Supplemental Fig. S1D). We clustered dynamic peaks based on ki-
netic profiles (Supplemental Fig. S1E), which resulted in five gene-
ral response classes (Fig. 1B). To identify candidate sequence-
specific TFs that drive RE dynamics, we performed de novo motif
analysis on dynamic peaks (Bailey et al. 2015). This approach
yielded 14 potential TF family motifs, including CEBP, TWIST,
SP, KLF, AP-1, and the steroid hormone receptor motif (Fig. 1C;
Supplemental Fig. S1F). TF families comprise multiple proteins
containing paralogous DNA-binding domains that recognize
very similar sequence motifs (Fig. 1C). For example, multiple fac-
tors including androgen receptor, mineralocorticoid receptor, pro-
gesterone receptor, and glucocorticoid receptor (GR) bind to the
steroid hormone receptor motif. However, GR is the only factor
gene that is expressed in 3T3-L1 cells (Supplemental Fig. S1G).
Therefore, we refer to the steroid hormone receptor binding con-
sensus sequence as the GR motif. We identified AP-1, CEBP, and
GR, which are known positive effectors of adipogenesis (Rubin
et al. 1978; Distel et al. 1987; Freytag et al. 1994; Wang et al.
1995; Yeh et al. 1995; Flodby et al. 1996; Tanaka et al. 1997;
Moitra et al. 1998; Ramji and Foka 2002; Steger et al. 2010;
Siersbæk et al. 2011). Members of the KLF and SP families are
known to be associated with both proadipogenic (Inuzuka et al.
1999; Li et al. 2005; Mori et al. 2005; Birsoy et al. 2008; Pei et al.
2011) and anti-adipogenic functions (Tang et al. 1999; Banerjee
et al. 2003; Kawamura et al. 2006; Sue et al. 2008). The TWIST fam-
ily of TFs have previously unappreciated roles in adipogenesis but
have been shown to be important for differentiation of other mes-
enchymal cell types, such as osteoblasts (Yousfi et al. 2001; Bialek
et al. 2004). Members of all these factor families are expressed in
3T3-L1 cells (Supplemental Fig. S1G).

TF binding or dissociation from DNA leads to enrichment of
cognate motifs in dynamic peaks. The biological functions of the
TFs determine whether binding or dissociation results in increased
or decreased accessibility. Binding of TFs that recruit activating co-
factors, such as histone acetyltransferses or remodeling enzymes
that eject nucleosomes, can increase accessibility; dissociation of
these factors decreases chromatin accessibility. Likewise, binding
and dissociation of factors that recruit deacetylases, repressive
methyltransferases, or DNA methyltransferases can affect accessi-
bility. We found that the majority of peaks containing CEBP,
KLF, GR, or AP-1 motifs increase accessibility, whereas peaks con-
taining TWIST or SPmotifs decrease accessibility (Fig. 1D).We per-
formed the reciprocal analysis and plotted the density of motif
instances relative to the summits of increased, decreased, and non-
dynamic peak classes to confirm the classification (Fig. 1E;
Supplemental Fig. S1H). AP-1, GR, and CEBP motifs are strongly
enriched around summits of increased peaks, whereas TWIST
and SP motifs are enriched around summits of decreased peaks.
SP and KLF families have paralogous DNA-binding domains and
recognize similarmotif sequences; however, we confidently associ-
ate chromatin decondensation to KLF factors and chromatin con-
densation to SP factors (Supplemental Fig. S1I). The SP family is
composed of canonical activators (McKnight and Kingsbury
1982); therefore, SP TFs are likely dissociating from the chromatin
to reduce accessibility. Although we ascribe opening and closing
functions to the KLF and SP families, it is impossible to determine
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the relative contribution of KLF and SP factors at any individual
motif. We believe that the dual enrichment of KLF motifs at
both increased and decreased peak summits is owing to erroneous
classification of SP-bound REs as KLF-bound REs. This complica-
tion is not limited to closely related motifs, as many dynamic
peaks contain multiple-factor binding motifs, making it difficult
to isolate the contribution of individual factors. To address this
complication, we plotted the changes in accessibility at dynamic
peaks that contain only a single motif (Fig. 1F). This confirmed
that the majority of isolated AP-1, GR, CEBP, and KLF motif-con-

taining peaks increase in accessibility, whereas TWIST and SP mo-
tif-containing peaks decrease. The biological interpretation of
these results is that the adipogenic cocktail activates members of
the AP-1, GR, CEBP, and KLF TF families both directly and through
transcriptional activation of family member genes, leading to RE
binding and chromatin decondensation. SP and TWIST motifs
are associated with decreased accessibility. TFs can act as repressors
by binding to chromatin and recruiting chromatin modifiers such
as deacetylases. Alternatively, dissociation of an activating TF can
lead to gene repression. These results confirm the importance of
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B

DNA-binding
domain
alignment:

Figure 1. CEBP, TWIST, SP, KLF, GR, and AP-1 TF families drive either increased or decreased chromatin accessibility in adipogenesis. (A) Preadipocyte
fibroblast 3T3-L1 cells were treated with an adipogenesis cocktail and harvested at the indicated time points for ATAC-seq and PRO-seq experiments. (B)
Temporal classification of ATAC-seq peaks revealed five major dynamic classes. Each dynamic ATAC peak is a red or blue trace with the number of peaks in
the class indicated in the lower right; the x-axis represents time, and the y-axis indicates normalized accessibility. (C) De novomotif analysis identified the top
six DNAmotifs enriched within dynamic peaks. The individual TFs listed in the wedge below the DNA sequence logo recognize the respective DNA motifs.
The heatmap quantifies the local protein sequence alignment of the DNA-binding domains for the genes, as determined by the Smith–Waterman algo-
rithm (Farrar 2006). (D) Dynamic ATAC-seq peaks are classified by the presence of each DNA motif. The red bars represent the number of dynamic ATAC-
seq peaks within the immediate increase, transient increase, and gradual increase categories; the blue bars correspond to the transient decrease and grad-
ual decrease classes. (E) Red, blue, and gray traces are composite motif densities relative to ATAC peak summits for the increased, decreased, and nondy-
namic peak classes. The y-axis quantifies the density of the indicated position-specific weight matrix, and eachmotif instance is weighted by its conformity
to a composite motif. (F) Dynamic traces of peaks that exclusively contain the specified motif indicate that CEBP, GR, and AP-1 associate with increasing
accessibility; SP and TWIST associate with decreasing accessibility. Peak traces are colored as in panel B. These conclusions are consistent with the reciprocal
analysis from panel E.
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several TF families and suggest that previously unappreciated TF
families, such as TWIST, contribute to adipogenesis.

SP, NRF, E2F6, KLF, and AP-1 factor motifs are associated

with bidirectional transcription at REs

Coordinate TF binding ultimately results in the recruitment of
RNA polymerases and initiation of transcription. In mammals,
core promoters and enhancers often lack sequence information
that consistently orients initiating RNA polymerases (Core et al.
2014). Therefore, we sought to identify bidirectional transcription
signatures as a complement to chromatin accessibility assays to
identify REs (Core et al. 2008; Seila et al. 2008; Danko et al.
2013). We captured the short-lived divergent transcripts found at
active REs with PRO-seq in parallel with the ATAC-seq adipogene-

sis time points (Fig. 1A). We used discriminative regulatory-ele-
ment detection (dREG) to identify peaks of bidirectional
transcription from our PRO-seq data (Wang et al. 2019). We iden-
tifiedmore than 180,000 dREGpeaks (Fig. 2A,B) and an 18% chan-
ge significantly over the time course (Supplemental Fig. S2A).
ATAC-seq and PRO-seqmeasure distinct but related biological phe-
nomenon; therefore, they identify different but overlapping sets of
REs. Approximately 22% of dynamic dREG peaks overlap with dy-
namic ATAC-seq peaks compared with 20% of dynamic ATAC-seq
peaks in the inverse comparison. To further analyze the two classes
of REs, we separated the dynamic dREG and ATAC-seq peaks into
intragenic, intergenic, and promoter regions (Fig. 2C). Bothmeth-
ods effectively identify REs within promoters (Supplemental Fig.
S2B). We find PRO-seq more sensitively detects intragenic REs rel-
ative to the other categories, whereas ATAC-seq efficiently detects
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Figure 2. SP, NRF, and E2F6 TF families drive bidirectional transcription dynamics at regulatory regions within gene bodies and promoters. (A) The heat-
map illustrates more than 200,000 putative REs with a bidirectional transcription signature. (B) Both dREG and ATAC-seq identify a RE within the promoter
of Cops8. The intragenic RE is only identified by its bidirectional PRO-seq signature, whereas the upstream intergenic RE is only identified by ATAC-seq. (C)
Dynamic ATAC-seq- and dREG-defined REs largely overlap in promoter regions. Intragenic regions are defined based on primary transcript annotation of
PRO-seq data; promoters are between 150 bp upstream of and 50 bp downstream from TSSs; and intergenic regions are the remainder of the genome. (D)
Dynamic ATAC-seq peaks are enriched for a more diverse set of TF motifs than are dynamic dREG peaks. (E) Motif density distinguishes TFs associated with
dynamic bidirectional transcription from those associated with dynamic accessibility. For example, TWIST and GR motifs are enriched within dynamic
ATAC-seq peaks but are rarely found within dynamic dREG peaks. (F) SP is only associated with bidirectional transcription at promoters and not distal
REs. The top plot shows the average normalized PRO-seq signal for plus and minus strands around all 1,135,731 SP motif instances, and the bottom
plot displays all SP motifs excluding those in promoters (1,118,185). The distinct dual peak profile of bidirectional transcription collapses when only con-
sidering SP motifs outside promoters. (G) Dynamic bidirectional transcription peaks found in promoters are stratified by the presence or absence of TF
motifs. The left plot quantifies the total number of peaks, and the right plot scales to the proportion of peaks in each category. The x-axis factor motif cat-
egories are defined by the presence or absence of ATAC-associated factors (AP-1, CEBP, GR, KLF, and TWIST) and dREG-associated factors (SP, E2F6, and
NRF). dREG-associated factormotifs are enriched in peaks that decrease bidirectional transcription, suggesting a link between SP, NRF, and E2F6 factors and
an early and pervasive decrease in promoter initiation at their target genes.
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intergenic REs. We closely evaluated the overlap between ATAC
and dREG peaks by plotting PRO-seq signal at ATAC peaks and
vice versa (Supplemental Fig. S2C). We observe the distinctive
bidirectional transcription signature at ATAC peaks irrespective
of whether or not the ATAC peaks intersect dREGpeaks. The signa-
ture is less intense at ATAC-seq peaks that do not overlap dREG
peaks. Likewise, ATAC-seq signal is enriched at dREG-peaks that
do not overlap ATAC-seq peaks (Supplemental Fig. S2D).
Moreover, dREG peaks within intergenic, intragenic, or promoter
regions that do not overlap with ATAC-seq peaks have less bidirec-
tional transcription (Supplemental Fig. S2E). Although we find
that bidirectional transcription and accessibility do not perfectly
correlate, we are likely underestimating the extent of accessibility
and bidirectional transcription overlap.

We sought to identify TFs that drive bidirectional transcrip-
tion by further characterizing PRO-seq-defined REs. We hypothe-
sized that different sets of TF motifs are enriched within REs
defined by ATAC-seq and PRO-seq. For instance, the cognate mo-
tifs of TFs that recruit initiation machinery may be preferentially
enriched at dREG-defined REs. We performed de novo motif anal-
ysis on dynamic dREG peaks and found enrichment of the AP-1,
SP, KLF, NRF, and E2F6 motifs (Fig. 2D). Of these, only the E2F6
motif was not also enriched in ATAC-seq peaks. We plotted motif
density around the summits of either dynamic ATAC or dREG
peaks to further differentiate ATAC- and dREG-defined REs (Fig.
2E; Supplemental Fig. S2F). Of the motifs found de novo in
dREG peaks, only E2F6, NRF, and SP were more enriched in dy-
namic dREG versus dynamic ATAC-seq peaks. We hypothesize
that these three factor families regulate bidirectional transcription
in adipogenesis. The SP motif is found in >25% of human and
mouse promoters, making the SP motif the most enriched cis-RE
within promoters (Benner et al. 2013). To determine whether
divergent transcription signatures found at SP motifs are dominat-
ed by SP factors within promoters, we plotted plus- and minus-
strand nascent transcription at all SP motif instances (Fig. 2F,
top). Indeed, when SP motifs within promoters are removed
from the composite input, divergent transcription peaks collapse
(Fig. 2F, bottom). We also observe this phenomenon with E2F6
and NRF motifs (Supplemental Fig. S2G), implying that these fac-
tors and SP preferentially regulate divergent transcription at pro-
moters. Next, we wanted to determine whether SP, NRF, and
E2F6 motifs within the promoters associate with increasing or de-
creasing divergent transcription. We find that bidirectional tran-
scription tends to decrease in REs with dREG-enriched motifs as
opposed to those without dREG-enriched motifs (Fig. 2G). This
further supports the previous conclusions that SP and NRF motifs
associate with decreases in RE activity (Fig. 1E; Supplemental Fig.
S1H). We find distal REs are more likely to show accessibility
changes, whereas promoters are more likely to show bidirectional
transcription changes.

Defining predicted TF binding events as trans-edges in the network

We determined candidate functional TFs within the set of REs by
searching for overrepresented sequence motifs and determining
the expression levels of TF family members. However, inferring
TF binding from accessibility, motif, and expression data at any in-
dividual site remains a challenge (Guertin et al. 2012; Li et al.
2019b). In addition to chromatin accessibility, expression of the
TF, and presence of the TF’s cognate motif, we leverage the change
in accessibility over the time course to infer TF binding and disso-
ciation events in adipogenesis.We term these predicted changes in

TF occupancy,which are directed linkages fromTFs to REs, as trans-
edges in our networks. For simplicity, we refer to trans-edges as fac-
tor binding or dissociation events.

We define the following rules for trans-edge inference: (1) The
RE must first be defined as an ATAC-seq peak at any time point; (2)
the binding motif of the upstream TF must be present in RE; (3)
chromatin accessibility must change significantly between two
time points to infer binding or dissociation; (4) the direction of ac-
cessibility changes must match with the molecular function of the
TF as defined in Figure 1; (5) members of the TF family must be ex-
pressed at the appropriate time point (e.g., the TFmust be expressed
at the later time point for binding and the earlier time point for dis-
sociation); and (6) GR, AP-1, and CEBP are directly activated by the
adipogenic cocktail, so we infer edges from expressed family mem-
bers to REs from 0–20min.We necessitate that the nascent RNA ex-
pression of the other TFs changes significantly to infer trans-edges
from their genic node to an RE node. Mechanistically, TFs have
short residency times on DNA, and they are continually binding
and dissociating from their sites in vivo (McNally et al. 2000;
Chen et al. 2014). When we refer to inferred binding and dissocia-
tion within the network, we are strictly referring to overall changes
in occupancy at a genomic site within the population of cells.

The following examples highlight implementations of these
rules. TheNr3c1 gene, which encodesGR, decreases expression im-
mediately upon treatment (Supplemental Fig. S3A). We suggest
that the rapid transcriptional repression of Nr3c1 is the reason
GR-associated increases in accessibility are transient. Therefore,
we restrict binding edges attributed to GR to the first 40 min of
the time course. We attribute any significant decreases in accessi-
bility at inferred GR binding REs observed at later time points to
dissociation of GR. We label these edges with a dissociation attri-
bute. In the case of SP, we find that Sp1, Sp3, and Sp4 are all re-
pressed early in the time course (Supplemental Fig. S3B). We
hypothesize that the delayed accessibility decrease associated
with the SP motifs is owing to transcriptional repression and nat-
ural turnover of the SP pool, which result in overall dissociation
of SP on chromatin (Fig. 1F). We restrict trans-edges for SP to the
later part of the time course. Conversely, we observe Twist2 gene
activation early in the time course (Supplemental Fig. S3C).
Therefore, we predict that TWIST-associated repression is a result
of increased TWIST binding and recruitment of negative cofactors.
Twist2 expression levels have returned to baseline inmature adipo-
cytes (Supplemental Fig. S3D), suggesting that TWIST’s effects are
transient and can only be captured with an early, high-resolution
time course. By focusing only on the REs that change accessibility
and integrating with transcription data, we infer TF binding and
dissociation events that drive adipogenesis.

We integrated publicly available TF ChIP-seq data sets to assess
the performance of trans-edge inference. Specifically, we incorporat-
edChIP-seq profiling of AP-1 (cJun and JunB), KLF (KLF4 andKLF5),
CEBPB, and GR (Siersbæk et al. 2011, 2014). All these experiments
were performed in 3T3-L1 preadipocytes at 4 h of differentiation.
Furthermore, we integrated TWIST2 ChIP-seq data from myoblasts
overexpressing 3x-Ty1-tagged TWIST2 protein (Li et al. 2019a).
Both the difference in cell type and the disruption of normal
TWIST2 function owing to overexpression renders this data set a
poor comparison for our system. Nevertheless, we found that
55%–70% of our inferred binding events for these factors overlap
called ChIP-seq peaks (Supplemental Fig. S3E). The one exception
was for GR, which showed a much lower degree of overlap (35%).
This is consistent with our network, which suggests that GR binds
and dissociates rapidly from the chromatin atmany sites andwould
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not be expected to be bound at the 4-h ChIP-seq time point.
Furthermore, CEBP, GR, and KLF REs that show sustained high ac-
cessibility (i.e., nonattenuated) displayed a higher degree of overlap
with ChIP-seq peaks than those that did not, suggesting that our
ATAC-seq dynamics captured fluctuations in factor binding. In ad-
dition, we plotted composite ChIP signal at our predicted binding
sites and found a strong enrichment in signal at REs that overlap
with ChIP-seq peaks (Supplemental Fig. S3F). We also observed a
weaker enrichment of ChIP signal around inferred binding events
that donot overlapwithChIP-seq peaks, suggestingweaker binding
events at these locations were overlooked in ChIP-seq peak calling.
However, it is also possible that the enrichment in ChIP-seq signal
at these regions reflects underlying accessibility rather than actual
factor binding. We note that ChIP assays are limited by antibody
specificity, control data sets, and peak thresholding. Regardless,
these ChIP-seq data validate the predictive power of using dynamic
ATAC signal and the presence of sequence motifs to infer factor
binding.

Proximal changes in accessibility are tightly linked to transcription

Chromatin accessibility positively correlates with local gene tran-
scription. We confirmed this assertion by quantifying transcrip-
tion of genes within 10 kb of dynamic ATAC-seq peak sets that
exclusively increase or decrease accessibility (Fig. 3A). Themajority
of genes (63%) with one proximal increasing ATAC-seq peak are
activated; likewise, 68% of genes proximal to a single decreasing
ATAC-seq peak are repressed. Genes near two ormore increased ac-

cessibility peaks are much more likely to be associated with tran-
scription activation and vice versa (Fig. 3A). To further validate
this association and explore the relationship between RE and tar-
get gene distance, we focused on all genes near one dynamic
peak and stratified gene/peak pairs based on distance between
the TSS and peak summit (Supplemental Fig. S3G–I). The closer
the peak and the gene, the more likely gene transcription and
peak accessibility correlate in the same direction. This result indi-
cates that proximal REs have a greater impact on gene expression
than distal elements. Moreover, we plotted change in gene tran-
scription against distance-scaled local accessibility changes and
observed the expected positive correlation between transcription
and accessibility at both the early and late phases of the time
course (Supplemental Fig. S3J,K). These findings indicate that
both accessibility dynamics and distance are important factors
when considering the relationship between REs and genes.

We incorporated the distance between REs and genes aswell as
covariation in their accessibility and transcription to infer function-
al links, termed cis-edges, in our networks. We define cis-edges as
predicted regulatory relationships between REs and genes. For ex-
ample, if GR binds a RE within a gene’s promoter and induces
gene activation, we draw a cis-edge between the RE and the gene.
Within the network, we assign GR as an attribute to the edge. To
confidently infer and annotate cis-edges, we must assess whether
a class of TFs is associated with increasing or decreasing transcrip-
tion. Because the distance between a RE and a gene influences the
likelihood that accessibility and transcription will covary, we classi-
fied the function of a TF class within the context of adipogenesis by

# 
of

 In
cr

ea
se

d 
/ D

ec
re

as
ed

 A
T

A
C

 P
ea

ks
 

Transcription Change in First Hour
(Normalized PRO signal)

Genes within 10kb of ATAC Peaks 
that only Increase or Decrease

−3 −2 −1 0 1 2 3

1

2

3

4

5

6

7

8

9

0

5

10

15

20

−8

−6

−4

−2

ATAC change
decreasing

peaks
increasing

peaks

5

10

15

20

Chr14: 99,310,000 99,320,000 99,330,000

Klf5
1° transcript

0 min

20 min 

40 min 

60 min

2 hour

3 hour

4 hour

P
lu

s 
st

ra
nd

 P
R

O
-s

eq

Time (minutes)

N
or

m
al

iz
ed

 P
R

O
 s

ig
na

l
−2

−1
0

1
2

0 50 10
0

15
0

20
0

25
0

10

Chr1: 52,150,000

Stat1

52,170,000 52,190,00052,130,000

1° transcript

0 min

20 min 

40 min 

60 min

2 hour

3 hour

4 hour

P
lu

s 
st

ra
nd

 P
R

O
-s

eq

Time (minutes)

N
or

m
al

iz
ed

 P
R

O
 s

ig
na

l
−1

0
1

2

0 50 10
0

15
0

20
0

25
0

log GR Distance from TSS

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

0.
2

0.
4

0.
6

0.
8

0 2 4 6

0 50000 150000

0.
00

0.
04

0.
08

GR distance from TSS (bp)

114,000A
ct

iv
at

ed
 G

en
es

 C
D

F
 −

U
nc

ha
ng

ed
 g

en
es

 C
D

F

Gene class 0    20min 

Activated
Repressed
Unchanged

0 50000 150000

−0
.0

2
0.

00
0.

02
0.

04

SP distance from TSS (bp)

R
ep

re
ss

ed
 G

en
es

 C
D

F
 −

U
nc

ha
ng

ed
 g

en
es

 C
D

F

1,900

log10 SP Distance from TSS

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

0.
2

0.
4

0.
6

0.
8

0 2 4 6

Gene class 60    120min 

A B

D E

C

Figure 3. Chromatin accessibility, transcription dynamics, and proximity guide inference of cis-edges between REs and target genes. (A) Change in gene
expression correlates with local accessibility change over the first hour. Each data point represents a gene within 10 kb of either only increased (red) or
decreased (blue) peaks. The y-axis indicates the number of increased or decreased accessibility peaks near the gene, and the x-axis represents the normal-
ized change in gene transcription over the first hour. (B) Klf5 (left) is part of a cluster of 1717 immediately and transiently activated genes (gray traces on the
right). (C ) Cumulative distribution plots showing distance between GR-bound REs and genes either activated (red), repressed (blue), or unchanged (gray)
over the first hour of the time course. The left-shift of the red curve suggests that ATAC-seq peaks with GRmotifs are closer to the 20- versus 0-min activated
gene class. The inset plot reports the difference in cumulative distribution between the activated and unchanged gene classes as distance from the TSS
increases. The leveling off of the traces at 114 kb from the TSSs suggests that GR-mediated transcription activation requires GR to bind within 100 kb
of the TSS. (D) Stat1 (left) is part of a cluster of repressed genes (gray traces on the right). (E) ATAC-seq peaks with SP motifs are closer to the 60- versus
120-min repressed gene class. Traces converge 1900 bases from the start sites, suggesting that the functional distance of SP-mediated gene repression
is within 2 kb of TSSs.

Twist2 regulates adipogenesis

Genome Research 319
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277559.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277559.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277559.122/-/DC1


determining if peaks with a cognate TF motif are closer to activated
or repressed gene classes.We expected that factor families associated
with decreases in accessibility, like SP, would be closer to repressed
genes on average. To test this hypothesis, we first categorized genes
as significantly activated, repressed, or unchanged for each pairwise
comparison within the time course. For example, Klf5 (Fig. 3B, left
panel) is one of a subset of 4225 genes immediately activated
from 0 to 20min (Fig. 3B, right panel). Plotting the cumulative dis-
tribution function (CDF) for genes against the distance between the
closest peak summit and the gene TSS shows that GR peaks tend to
be closer to the 4225activated genes comparedwith the repressed or
unchanged genes (Fig. 3C). To estimate the maximum range that a
factor can act, we plotted the difference between the repressed gene
class CDF against the unchanged gene class CDF against distance
between gene and peak (Fig. 3C, inset). We find that the difference
in the CDFs plateaus at ∼114 kb, meaning that inferred GR binding
events accumulate at the same rate for activated and unchanged
genes at distances >114 kb. This distance constraint represents an
empirical observation that suggests a maximum regulatory distance
in this system. It is possible that we would detect a different con-
straint in another cellular context owing to differences in genomic
architecture and regulatory environment. Immediately repressed
genes like Stat1 are closer to SP peaks than are control gene sets
(Fig. 3D,E). This analysis indicates that SP acts very proximal to its
target genes, with an actionable range of <2 kb (Fig. 3E, inset).
This finding is consistent with our previous conclusions that de-
creased SP peaks are primarily found in promoters (Fig. 2F). Our ob-
served maximal distances represent a hypothesized maximal
actionable distance for factor activity in3T3-L1s.However,we antic-
ipate that the optimal distance formost factors ismuch closer to tar-
get genes than these maxima. Therefore, we apply a closer distance
threshold when inferring regulatory relationships between individ-
ual REs and genes as described in the next section. The lower thresh-
olds increase our confidence in our predicted cis-edges.

Linking REs to target genes

We incorporate these biological principles into logical rules to
define cis-edge predictions within an adipogenesis network. We
develop our rules to maximize confidence in our predicted regula-
tory interactions. First, a gene and REmust bewithin 10 kb to infer
a cis-edge. Second, RE accessibility and gene transcriptionmust co-
vary over the same time range. These two logical rules provisional-
ly link REs and genes, and then we employ additional rules that
reflect the biology of individual TFs. For instance, the 10-kb dis-
tance metric is made more strict for factors such as SP, for which
the functional distance constraint, as determined in Figure 3E, is
<10 kb. Temporal rules also influence edge predictions. For in-
stance, GR-bound REs are only significantly closer to genes activat-
ed in comparison to the 0-min time point such as the 20-versus-
zero comparison (Fig. 3C), meaning that genes activated later in
the time course cannot be directly activated by GR binding in
the network. Therefore, as with trans-edges, we only infer cis-edges
between GR-bound REs and genes that change early in the time
course. Incorporating these observations into our cis-edge rules,
we infer direct functional relationships between REs, bound TFs,
and changes in target gene expression.

Constrained networks identify genes regulated combinatorially

or by individual TF families

Quantifying nascent transcription with PRO-seq maps the posi-
tion and orientation of RNA polymerase with base-pair resolution.

Nascent transcriptional profiling captures engaged RNA polymer-
ase species throughout the genome, including intragenic features
such as the proximal promoter and gene body. We can infer regu-
latory mechanisms of gene sets by quantifying relative changes in
RNA polymerase density within the pause region and gene body.
For instance, if the rate of RNA polymerase pause release increases
between conditions, we expect that the signal in the pause region
to decrease and the gene body signal to increase. Previous studies
focus on biological systems in which one TF dominates the re-
sponse, such as ER, HSF, and NF-kB (Hah et al. 2011; Danko
et al. 2013; Duarte et al. 2016). In these systems, the composite
RNA polymerase signals at activated genes highlight differences
in densities between pause and gene body compartments (Hah
et al. 2011; Danko et al. 2013; Duarte et al. 2016; Sathyan et al.
2019). A complication in our system is that multiple TFs cooperate
to drive transcription changes, making it difficult to identify the
target steps (i.e., initiation, pause release) that TFs regulate. To ad-
dress this complication, we identified genes that are predominant-
ly regulated by a single TF in our network.

We constructed a bipartite network inferring changes in TF
binding (trans-edges) that regulate downstream changes in tran-
scription (cis-edges). Genes and REs can be regulated or bound
by either one or a combination of TFs. For example, we constructed
a constrained network with RE and gene nodes downstream from
individual TFs, including AP-1. In this network, 1224 genes are
solely activated by AP-1, and 1847 genes are activated by AP-1
and at least one other factor (Fig. 4A). Most REs downstream
from AP-1, both individually and combinatorially bound, are not
linked to any downstream genes (12,608 vs. 4829). This network
highlights a paradigm in the transcription field that a minority
of TF binding events lead to changes in gene expression (Spradling
et al. 1975; Westwood et al. 1991). We constructed similar net-
works for GR (Fig. 4B), SP (Fig. 4C), CEBP (Supplemental Fig.
S4A), KLF (Supplemental Fig. S4B), and TWIST (Supplemental
Fig. S4C). These networks illustrate the interconnectivity of gene
regulation while simultaneously identifying genes that are pre-
dominantly regulated by individual factors.

To extract mechanistic information from genes regulated by
only one TF, we plotted composite RNA polymerase density from
our PRO-seq data around pause peak summits at different time
points for the isolated genes (Fig. 4D–F; Supplemental Fig. S4D–

F). The resulting traces show the characteristic pause peak centered
around zero followed by release of the RNA polymerase into the
gene body. Examining RNA polymerase density traces of genes
only activated by AP-1 at 60 and 40min shows an increase in den-
sity in the pause region, suggesting increased RNA polymerase re-
cruitment to AP-1-activated genes (Fig. 4D). These time points
were chosen because AP-1 peaks are closest to genes activated be-
tween 60 and 40 min, suggesting that AP-1 exerts the most tran-
scriptional control during this time range. At first glance, we see
a similar result for GR when comparing traces from 0 and 20
min (Fig. 4E). However, the situation becomes more complex
when considering the ratio of pause density to gene body density,
or pause index (PI). The PI for genes regulated solely by AP-1 in-
creases on average from 40 to 60 min (Fig. 4D, inset). Conversely,
the PI for 71% of genes regulated solely by GR decreases, on aver-
age, between 0 and 20 min. This suggests that GR primarily acti-
vates transcription by inducing pause release (Fig. 4E, inset). The
affected step is unique to the factor, as isolated AP-1 genes do
not show the decrease in PI from 0 to 20 min observed with isolat-
ed GR genes (Supplemental Fig. S4G, inset). Isolated GR genes
show increases in PI later in the time course, likely owing to GR
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dissociation from the genome after the early phase of the time
course and an associated decrease in pause release rate (Supple-
mental Fig. S4H). As for repressed genes, we find a decrease in
pause peak and gene body intensity in predicted SP and TWIST tar-
get genes (Fig. 4F; Supplemental Fig. S4F). We find that SP target
genes show a more symmetrical distribution of PIs (Fig. 4F, inset).
Although it is likely that these factors affect Pol II recruitment, we
sought to develop a more rigorous approach to determine how
changes in initiation and pause release rates can account for ob-
served changes in Pol II density.

Modeling changes in regulatory transcription steps

We developed a mathematical model to further characterize how
TFs target specific steps in the transcription cycle. Our model
breaks up the gene unit into two compartments: a pause region
and gene body region. PRO-seq directly measures RNA polymerase
densitywithin these regions for eachgene.Wedefine a series of dif-
ferential equations to model polymerase density as measured by
PRO-seq within the two compartments (Fig. 5A). We establish

rate constants representing different transcriptional steps, namely,
RNA polymerase recruitment/transcription initiation (kinit),
premature termination (kpre), pause release (krel), and elongation
(kelong). The values of the rate constants determine the predicted
density within the two compartments. We vary the rate constants
for kinit, kpre, and krel over two orders of magnitude and vary the
kelong rate from 600 to 6000 bases per minute to determine the ef-
fect on pause and gene body density and how themodel compares
to observed changes. We make the assumption that kelong remains
constant between time points. Because krel and kinit are opposing
rates in the model, we cannot distinguish an increase in one rate
from a decrease in another. To simplify the model, we keep kpre
constant between time points. We determine how changes in kinit
combined with krel changes can account for the average density
changes for the 174 isolated GR-regulated genes from Figure 4E.
A wide range of rate parameters can describe the initial pause and
gene body densities, but regardless of the initial rates, a narrow
fold-change in these rates can account for the observed changes be-
tween time points (Fig. 5B). We find that an approximately 1.07-
fold increase in recruitment/initiation and an approximately
1.50-fold increase in pause release explain the changes in compart-
ment occupancy between 0 and 20min (Fig. 5B, left). We calculat-
ed the absolute rate of initiation and residency time of Pol II in the
pause region based on the models and plotted a simulated Pol II
profile (Fig. 5C). For this simulation, we chose the parameter set
with an elongation rate closest to the established consensus rate
of approximately 2500 bases per minute (Ardehali and Lis 2009;
Jonkers and Lis 2015). Estimated pause residency time drops
from 29 sec to 19 sec between 0 and 20 min as a result of the rate
constant changes. Taking a similar approach, an approximately
0.78-fold decrease in recruitment/initiation rate with an approxi-
mately 0.94-fold change in pause release rate produces observed
changes in Pol II occupancy between 60 and 120 min for the
1127 isolated SP genes (Fig. 5B,middle). This corresponds to an ini-
tiation/recruitment rate reduction from 15.1 to 11.9 polymerase
molecules perminute (Fig. 5D). If SP factors normally stimulate ini-
tiation, then mass action would explain dissociation of SP factors
upon transcriptional repression of SP genes. Previous studies link
SP1 to transcriptional initiation through interaction with the
TFIID general TF (Gill et al. 1994). The observed changes in RNA
polymerase composite profiles between 40 and 60min at AP-1 tar-
get genes are explained by 1.27- to 1.39-fold increases in initiation
rate and 0.85- to 0.93-fold decreases in pause release rate (Fig. 5B,
right). These relative changes in kinit and krel for AP-1 targets do re-
sult in gene activation, but it was unexpected that the profiles are
explainedbya decrease in krel. Because composite profiles represent
the average of all included genes, it is possible that the composite
represents a diverse set of genes that are regulated by different AP-1
family members. We speculate that we could gain a more clear in-
sight if we were able to deconstruct the AP-1 targets and identify
gene targets of specific AP-1 factors. The above analyses indicate
that we can deconvolve complex transcriptional networks to iden-
tify gene targets of individual TFs anddeterminewhich steps in the
transcription cycle each TF preferentially regulates.

We applied this model and approach to a separate PRO-seq
data set of the C7 B cell line treated with dexamethasone to deter-
mine whether GR regulates pause release within a different system
in which GR is specifically activated. We identified 70 genes acti-
vated by dexamethasone treatment. The PI of 80% of these genes
decreases between 0 and 60 min (Supplemental Fig. S5A).
Compartment modeling of these genes showed that an approxi-
mately 1.33-fold increase in pause release rate explained the
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Figure 4. Constrained networks downstream from AP-1, GR, and SP
identify genes regulated by individual factors. Simplified networks high-
light the number of REs and genes that are combinatorially or individually
regulated by AP-1 (A), GR (B), and SP (C). Factors bind/dissociate from REs
(purple circles) and regulate genes (blue squares). Colored arrows and
numbers indicate the contribution of nonlead factors to RE activity.
Combinatorially regulated REs are bound by the lead TF and either one
or more of the other TFs. The composite PRO-seq signal is plotted relative
to the promoter-proximal pause peak of 1224 genes solely regulated by
AP-1 (D), 174 genes regulated by GR (E), and 1127 genes regulated by
SP (F ). Inset violin plots illustrate the change in pause index for the gene
set for the indicated time points. Each data point is a gene, and all genes
were input from the composite.
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observed changes in Pol II density at the activated genes
(Supplemental Fig. S5B,C). These validation results support the
role of GR regulating pause release and highlight the power of pre-
dicting themolecular function of TFswithin complicated regulato-
ry cascade networks generated from kinetic PRO and ATAC data.

TFs cooperate to bind REs and activate gene expression

AP-1, CEBP, GR, and KLF bind REs either individually or in combi-
nation in order to activate expression. We classify REs based on the
combination of factors that bind and drive accessibility changes.
Likewise, we classify genes based on which TFs are immediately up-
stream in the network. Genes activated by the same combination of
factors can be downstream from different classes of REs. We
use genes activated by all four of AP-1, CEBP, GR, and KLF to illus-
trate potential regulatory scenarios. These genes may be down-
stream from a single RE that binds all factors (Fig. 6A, orange).
Alternatively, the gene may be downstream from a pair of
REs, each binding two factors (Fig. 6A, purple), three and one (Fig.
6A, blue), or more complicated regulatory schemes (Fig. 6A, green).
All 15 possible classes of REs contribute to activation of the 82 genes
downstream from AP-1, CEBP, GR, and KLF (Fig. 6B; Supplemental
Fig. S6A). The largest population of RE classes is isolated AP-1 peaks
with 8794, whereas peaks bound by all activating factors are the
smallest category with 74. The distribution of gene classes generally
mirrors the distribution of RE classes, with isolated AP-1 genes being
the largest class. As discussed above, all factors activate more genes
in combination than in isolation. There are comparatively few com-
binatorially-regulated genes without AP-1 contribution (1924 with
AP-1 vs. 149 without). This finding, along with the high number

of genes regulated by AP-1, underscores the importance of the
AP-1 family in the network. Although the bulkof negatively regulat-
ed genes are downstream from either SP or TWIST, ∼20% are affect-
ed by both TWIST-mediated repression and SP-mediated
attenuation (Supplemental Fig. S6B).

We did not observe a significant relationship betweenmagni-
tude of RE accessibility change and number of regulatory factors
(Supplemental Fig. S6C). We found that the relative change in
transcription positively correlates with the number of immediate
upstream activators in the network (Supplemental Fig. S6D).
Normalizing transcriptional change by local accessibility change
eliminates the observed correlation between transcription and
number of regulatory factors (Supplemental Fig. S6E). We con-
firmed this observation by plotting the transcription of all predict-
ed target genes against the total local accessibility stratified by the
number of regulatory factors and peaks (Supplemental Fig. S7).We
find thatmore local regulatory peaks, which corresponds to greater
total local accessibility, correlate with a greater magnitude of tran-
scription. However, the number of regulatory factors largely does
not affect transcription. Therefore, we find that transcription is
positively correlated with total local accessibility change, regard-
less of the number of factors effecting that change. We conclude
that if a gene is regulated in the network, themagnitude of expres-
sion change is independent from the number of upstream TFs.

Because the degrees of activation and repression are unrelated
to the number of upstream factors, we asked if havingmultiple TFs
upstream in the network influences whether a gene is dynamic. To
determine whether two TFs cooperate with one another, we con-
sidered genes close to dynamic peaks with either a single TF motif
or both TF motifs. We determine if the fraction of dynamic and
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nondynamic genes proximal to a TF is influenced by the presence
of another TF. We define TF-proximal genes as genes that are close
to dynamic ATAC peaks containing the TF motif. We find that
there is no difference between the fraction of GR-proximal activat-
ed genes in the absence of AP-1. However, there is an increase in
the fraction of activated genes proximal to GR in the presence of
AP-1 (Fig. 6C). The reciprocal analysis shows that AP-1 is a more ef-
fective activator in the presence of GR (Fig. 6D). These results sup-
port the model that AP-1 and GR coordinate with one another to
increase the likelihood of gene activation. The repressive factors
TWIST and SP do not seem to work together in this way. The frac-
tion of repressed genes proximal to TWIST increases regardless of
the presence of SP (Fig. 6E). This suggests that TWIST functions
largely independently of SP, supporting our hypothesis that the
two TFs result in gene repression through unrelated mechanisms
(Supplemental Fig. S3B,C).We find a lower proportion of repressed

genes proximal to SP motifs in both the presence and absence of
TWIST (Fig. 6F).We speculate that these genes tolerate dissociation
of SP andmaintain their expression levels despite local decreases in
chromatin accessibility. In support of this explanation, we find
higher basal transcription and lower magnitude of repression in
genes proximal to SP, suggesting these genes are more actively
transcribed before loss of SP (Supplemental Fig. S6F,G). These re-
sults highlight the complexity of gene regulatory control and
how kinetic networks reveal coordinate and independent relation-
ships between TFs.

Multiwave networks incorporate molecular dynamics and kinetic

information

We further interrogate the adipogenesis gene regulatory network
by leveraging temporal information to infer multiple waves of
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(purple); three factors bind one RE and one factor binds another (blue); and a more complex combination with redundant factor contributions at multiple
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accessibility and transcriptional changes throughout the time
course. The importance of TFs can be inferred by the number of pre-
dicted direct target genes (Fig. 6) or the total number of connected
downstream genes. The latter is captured by temporal multiwave
network depictions. We assembled a representative multiwave
deep network (Fig. 7A). The differentiation cocktail induces AP-1
and GR binding to thousands of REs to activate thousands of genes;
binding at four of these REs results in activation of the Twist2 gene
(Fig. 7A,B). The resulting TWIST2 protein returns to the nucleus and
binds hundreds of REs and represses its target genes. Among the
hundreds of repressed TWIST2 target genes are the late-acting
(40+min) factors Sp1 and Sp3 (Fig. 7C). The decreased occupancy
of SP TFs from the genome leads to decreases in RE accessibility
and attenuation of gene expression. Our network suggests that
SP1/3 dissociation and TWIST2 binding lead to repression of Srf
(Fig. 7D).We hypothesize that if we were to extend the time course,
we would identify the SRF bindingmotif in REs decreasing in acces-
sibility beyond 4 h as result of attenuated transcription.

Many genes activated in the early phase of the time course are
repressed later on, through either active repression or factor dissoci-
ation. We detect these negative feedback loops for each activating
TF (Supplemental Fig. S8A). About 63% of AP-1, 74% of CEBP,
and 80% of GR cis-edges are transient. Only 27% of KLF cis-edges
are attenuated, suggesting that KLF-mediated activation is less tran-
sient and less dependent on the extracellular stimuli found in the
adipogenic cocktail. Similarly, a minority of TWIST cis-edges and
no SP cis-edges are attenuated, indicating that SP and TWIST factors
mediate sustained repression. A much smaller proportion of trans-
edges are attenuated, implying that accessibility changes down-
stream from factor binding and dissociation are more stable
(Supplemental Fig. S8B) than are changes in nascent transcription.

We find that regulatory potential for each TF varies greatly
throughout the time course. AP-1, CEBP, and GR activate the
most genes during the initial phase of the time course, indicating
that these TFs precipitate the initial wave of signaling during the
first 20 min. Transcriptional activation of TWIST and KLF family
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genes by the initial factors leads to the next wave of signaling after
20min (Fig. 7B; Supplemental Fig. S8C).We begin to detect chang-
es in accessibility at KLF- and TWIST-bound REs as early as 20 min
(Supplemental Fig. S8D); however, these presumptive binding
events do not manifest as detectable changes in nascent transcrip-
tion until 40 min (Fig. 7E). Although we had originally expected
changes in accessibility and transcription to be observed concom-
itantly, these data show that we have the sensitivity to detect
changes in RE accessibility before changes in transcription.

In addition to the TFs whose activity is stimulated by the adi-
pogenesis cocktail, we identify transcriptionally regulated TF
genes that are highly connected nodes within the network. The
Twist2 gene is themost highly connected node and directly affects
accessibility and transcription of thousands of downstream nodes
by binding REs and repressing proximal genes (Fig. 7F). TWIST2
acts through intermediate factors, such as SP, AP-1, GR, to repress
thousands of additional genes. In the case of SP, TWIST2-mediated
repression of Sp1 and Sp3 results in SP dissociation and activation
attenuation of downstream genes. TWIST2-mediated repression of
AP-1 factors causes AP-1 dissociation and attenuation of AP-1-me-
diated activation. The cumulative result from both direct TWIST2

action and indirect dissociation/attenuation of TWIST2-targeted
TF families affects accessibility at 12,662 REs and 4574 genes. We
believe that TWIST2 may have been overlooked as an important
adipogenic TF because Twist2 is only transiently activated
(Supplemental Fig. S3C), but this kinetic network implicates
TWIST2 as a critical intermediary in the adipogenesis cascade.

TWIST2 represses predicted target genes

We tested whether inferred TWIST2-repressed target genes from
the network increase expression upon Twist2 depletion. We used
two different shRNA sequences (v1 and v2) to knockdown
Twist2 and harvested RNA for RNA-seq at 0, 1, 2, and 4 h after
switching cells into differentiation media. We observed a ∼50%–

75% reduction of Twist2 expression before differentiation (Fig.
8A; Supplemental Fig. S9A). Unlike PRO-seq, RNA-seq requiresma-
ture mRNA accumulation above the baseline signal to detect acti-
vation, and RNA degradation to detect repression. Therefore,
many observed transcriptional changes at the nascent RNA level
take much longer to be detected at the mature RNA level. To this
point, we find 32,094 total genes expressed in the control RNA-
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type. Scale bars indicate 200 µm. (H) Hematoxylin and eosin staining of interscapular brown fat shows reduced fat droplets (large white/light colored cir-
cles) in P14 Twist2−/− mice compared with the wild type. Images taken at either 40× (top) or 63× (bottom) magnification.
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seq data set compared with 13,122 in the PRO-seq data set. This
suggests that of all the genes detected by RNA-seq, only ∼40%
are actively transcribed. Furthermore, we identify 285 dynamic
genes over the first hour of differentiation by RNA-seq versus
9201 by PRO-seq, underscoring the sensitivity of PRO-seq for de-
tecting transcription changes over short time intervals. For RNA-
seq analysis, we only focused on the 520 predicted TWIST2 targets
that are significantly repressed in both the PRO-seq and RNA-seq
time courses. The other 547 predicted TWIST2 target genes from
the network are not detected as repressed by conventional RNA-
seq, so we would have no power to detect derepression upon
Twist2 depletion. Approximately 66% of the examined genes
were expressed at higher levels at the baseline in the Twist2 knock-
down compared with the control, supporting our hypothesis that
TWIST2 directly represses themajority of our predicted targets (Fig.
8B; Supplemental Fig. S9B). This result is likely an underestimate of
the specificity of our network, because the cells can compensate
for chronic RNAi-mediated depletion of Twist2.

We then measured the effect of chronic Twist2 depletion on
differentiation-induced transcription. Twist2 was activated in both
the control and the knockdown samples, supporting our PRO-seq re-
sults (Fig. 8A; Supplemental Fig. S3C). Twist2wasmore strongly acti-
vated in the knockdown sample than in the control (approximately
3.1-fold to approximately twofold). This is likely because the RNAi
machinery cannot keep up with the dynamic accumulation of
Twist2 transcripts in thehours following treatmentwith thedifferen-
tiation cocktail. Because we inferred that TWIST2 represses target
genes in this system, we would expect a greater degree of repression
over the timecourse in theknockdownsamplesowing to the relative-
ly greater accumulation of TWIST2 protein. This analysis more
directly tests the accuracy of predicting TWIST2-target genes
compared with chronic knockdown. We find that ∼75% of the pre-
dicted targets are repressed to a greater magnitude in the shTwist2
samples compared with the control knockdown (Fig. 8C). We ob-
serve supporting results with a second, less effective knockdown
(Supplemental Fig. S9C).Theabove findings support theconclusions
from the network and indicate that TWIST2 is a transcriptional re-
pressor of predicted target genes in 3T3-L1 differentiation.

TWIST2 influences differentiation of 3T3-L1s and primary

preadipocytes

To test TWIST2’s effect on differentiation of preadipocytes, we de-
pleted TWIST2, induced differentiation of 3T3-L1s, and measured
lipid uptake after 6 d of differentiation. We stained differentiated
adipocytes with Oil Red O and measured absorbance at 540 nm
to quantify lipid uptake. Lipid accumulation is a cellular pheno-
type that acts as a proxy measurement for adipogenesis. Lipid up-
take increased with shTwist2 treatment compared with shControl
within each experiment, suggesting that TWIST2 expression neg-
atively regulates differentiation in the 3T3-L1 system (Fig. 8D).
As an orthogonal approach, we designed and transduced a tetracy-
cline-inducible 3xFLAG-tagged human Twist2 construct into 3T3-
L1 cells (Supplemental Fig. S9D). After 6 d of differentiation, 3T3-
L1s overexpressing Twist2 showed decreased Oil Red O staining
(Fig. 8E; Supplemental Fig. S9E), supporting our previous finding
that TWIST2 expression reduces 3T3-L1 differentiation.

Next, we extracted preadipocytes from inguinal white adi-
pose tissue (WAT) of 3 d old Twist2+/− pups. We induced differen-
tiation in the primary preadipocytes and found that preadipocytes
derived from heterozygous mice differentiated to a greater extent
than those derived from wild-type mice (Fig. 8F; Supplemental

Fig. S9F). The 3T3-L1 and primary cultured preadipocyte results in-
dicate that TWIST2 opposes induced differentiation in both in vi-
tro and ex vivo contexts.

We found thatTwist2+/−mice have a deficiency of dermal and
subcutaneousWAT in the skin (Fig. 8G). Twist2−/−mice have fewer
and smaller fat droplets within interscapular brown adipose tissue
(BAT) deposits (Fig. 8H). Other groups have reported loss of subcu-
taneous fat and a paucity of fat storage in Twist2−/− mice (Šošic ́
et al. 2003; Tukel et al. 2010; Kim et al. 2022). We postulate that
TWIST2 acts as a “brake” on adipogenesis, preventing cell exhaus-
tion and apoptosis during the differentiation process. Regulated
braking of adipogenesis may be necessary to allow supportive adi-
pose tissues to sufficiently develop in the mouse. Isolated preadi-
pocytes may be able to overcome the additional stress in vitro,
but not within their native tissue context.

Discussion

Kinetic accessibility and nascent transcriptional profiling of devel-
opmental cascades can identify key regulatory nodes that may be
transiently active, but are nonetheless necessary for proper cellular
differentiation.We present an extremely rapid and precise capture
of chromatin and transcription changes induced by an adipogenic
cocktail. These changes represent the first few waves of differenti-
ation signaling and precipitate the cellular transition process. RE
accessibility and gene transcription change within minutes of ini-
tiating adipogenesis. By focusing only on dynamically accessible
REs, we can infer TF binding and dissociation events that drive adi-
pogenesis without performing hundreds of genomic ChIP experi-
ments. We find a multitude of enriched TF family motifs, many of
which have been previously associated with adipogenic REs, in-
cluding AP-1, GR, KLF, and CEBP (Siersbæk et al. 2014). We do
not identify PPARG, the master regulator of adipogenesis (Rosen
et al. 2002; Lefterova et al. 2014), as a driver of adipogenic signal-
ing. This agrees with previous conclusions that PPARGdoes not in-
fluence adipogenesis until several days into the process (Nielsen
et al. 2008). Stable PPARG activity is indispensable for adipogene-
sis and maintaining adipocyte identity, but other factors may be
critically important and overlooked because their role is transient.

Our method implicates TWIST2 as a novel contributor to adi-
pogenesis. The TWIST subfamily of bHLH TFs homo- and heterodi-
merize with other bHLH proteins to affect gene expression.
Although TWIST family factors all recognize the same DNA motif,
different members can act as either activators or repressors. TWIST
proteins can repress transcription by nonproductive dimerization
with TWIST family activators, competingwith TWIST family activa-
tors for DNA motifs, or by recruiting chromatin condensers like
HDACs to the genome (Hamamori et al. 1999; Gong and Li 2002;
Lee et al. 2003; Šošić et al. 2003; Bialek et al. 2004; Hayashi et al.
2007; Koh et al. 2009). Previous studies have implicated TWIST2’s
role in targeting corepressors (Fu et al. 2011; Kim et al. 2022).
Although multiple mechanisms may be at play in our system, we
hypothesize that our observed repressive effects are downstream
from increased TWIST2 binding. TWIST1 and TWIST2 negatively
regulate multiple developmental pathways, including myogenesis,
osteogenesis, and myeloid differentiation (Murray et al. 1992;
Hebrok et al. 1994; Spicer et al. 1996; Gong and Li 2002; Bialek
et al. 2004; Sharabi et al. 2008). The role of the TWIST TF family
in adipogenesis is less clear. Although TWIST1 and TWIST2 are
known regulators of mature adipose tissue homeostasis, TWIST1
does not affect adipogenesis (Lee et al. 2003; Pan et al. 2009;
Dobrian 2012). Homozygous Twist2 mutations cause Setleis
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syndrome, a disease characterized by facial lesions lacking subcuta-
neous fat (Tukel et al. 2010). Twist2 knockout mice develop such le-
sions and lack lipid droplets within the liver and brown fat tissue
(Fig. 8G,H; Šošić et al. 2003; Tukel et al. 2010). Our in vitro and ex
vivo data indicate that TWIST2 acts as a negative regulator of adipo-
genesis. TWIST2’s immediate activation in 3T3-L1 differentiation
therefore indicates a negative feedbackmechanism to slow differen-
tiation. The TWIST family is a key regulator of the epithelial–mesen-
chymal transition, further supporting our observation that TWIST2
prevents 3T3-L1 differentiation (Yang et al. 2004). The loss of this
negative feedback may result in cell death, leading to the absence
of adipose tissue observed in vivo. Even with a well-studied system
suchas adipogenesis, thesemethodswere able to identifyTwist2 as a
novel regulator of the differentiation cascade.

Our networks define gene sets that are predominantly regu-
lated by a single TF.We can track changes in RNA polymerase den-
sity within the gene sets to identify the target regulatory steps of
individual TFs. Stimulated pause release is an established cause
of early gene activation in adipogenesis (Wang et al. 2021). We
find that GR is largely responsible for the observed increase in
pause release. GR is a well-established activator of gene expression
(Vockley et al. 2016), often in combination with AP-1 (Biddie et al.
2011). Other activating factors, including AP-1, increase RNApoly-
merase recruitment to the gene. By acting on separate steps, GR
and AP-1 provide nonredundant stimuli to target genes. We find
GR and AP-1 are conditionally dependent upon one another in
their potential to activate local genes. A recent study suggests
that both AP-1 and CEBP act as pioneer factors that prime the ge-
nome for GR-induced transcription activation (Wissink et al.
2019). We find all three of these factor families activate the initial
wave of transcription changes, both in combination and in
isolation.

We confidently differentiate primary, secondary, and tertiary
transcriptional changes by examining multiple, closely spaced
time points upon induced adipogenesis. ATAC-seq, ChIP-seq, or
chromatin conformation assays alone can only suggest functional
relationships between REs and genes (Ren et al. 2000; Lieberman-
Aiden et al. 2009). Similarly, PRO-seq and RNA-seq return tran-
scription changes with little information regarding upstream regu-
lation. We define cis-regulatory relationships between REs and
their target genes by focusing only on ATAC peaks that signifi-
cantly change accessibility over the time course; likewise, putative
target genes are only considered in our network if they change ex-
pression over the same time intervals. If REs and genes are proxi-
mal to one another and covary in the same direction (i.e.,
increase in both accessibility and in expression), then we can con-
fidently infer regulatory interactions between TF binding at REs
and changes in transcription of the nearby gene. Our bipartite-di-
rected graph networks are unique in the gene regulation field
because each edge represents a functional interaction as opposed
to an abstract relationship between linked nodes. Trans-edges rep-
resent binding of TF proteins to cognate DNA elements, and cis-
edges describe regulatory interactions between REs and target
genes. These networks can define gene sets that are predominantly
regulated by a single TF and identify the target regulatory steps of
the TF. Highly connected nodes in the network are candidate key
regulatory hubs in the differentiation cascade. Moreover, these
networks ascribe time attributes to each edge, so subgraphs that re-
spect the flow of time are easily extracted from the larger graph.
This integrative genomics approach to network construction can
be applied to a multitude of cellular responses and transitions to
uncover novel biology and new hypotheses.

Methods

3T3-L1 culture and differentiation

3T3-L1 cells were provided by Thurl Harris. 3T3-L1 cells were cul-
tured in high-glucose DMEM (Gibco) supplemented with 10%
newborn calf serum, 1% fetal bovine serum (FBS), 100 U/mL pen-
icillin G, and 100 µg/mL streptomycin. We induced adipogenesis
∼3 d after cells reached confluency by switching cells into high-
glucose DMEM supplemented with 0.25 µM dexamethasone, 0.5
mM 3-isobutyl-1-methylxanthine, 2.5 U/mL insulin, 10% FBS,
100 U/mL penicillin G, and 100 µg/mL streptomycin (Green and
Kehinde 1974; Bernlohr et al. 1984). We collected enough cells
at the indicated time points for three replicates of ATAC-seq and
PRO-seq.

ATAC-seq library preparation

We prepared ATAC-seq libraries as previously described (Corces
et al. 2017). We trypsinized and collected cells in serum-free
growth media. We counted approximately 5 ×104 cells per repli-
cate and transferred them to 1.5-mL tubes. We centrifuged cells
at 500g for 5 min at 4°C and resuspended the pellet in 50 µL
cold lysis buffer (10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl2,
0.1% NP-40, 0.1% Tween-20, 0.01% Digitonin, adjusted to pH
7.4) and incubated on ice for 3 min. We washed the samples
with 1 mL cold wash buffer (10 mM Tris-HCl, 10 mM NaCl,
3 mM MgCl2, 0.1% Tween-20). We centrifuged at 500g for
10 min at 4°C, resuspended cells in the transposition reaction
mix (25 µL 2× TD buffer (Illumina), 2.5 µL TDE1 Tn5 transposase
(Illumina), 16.5 µL PBS, 0.5 µL 1% digitonin, 0.5 µL 10% Tween-
20, 5 µL nuclease-free water), and incubated for 30 min at 37°C.
We extracted DNAwith theMinElute kit (Qiagen).We attached se-
quencing adapters to the transposed DNA fragments using the
Nextera XT index kit (Illumina) and amplified libraries with six cy-
cles of PCR. We performed PEG-mediated size fractionation (Lis
1980) on our libraries by mixing SPRIselect beads (Beckman)
with our sample at a 0.55:1 ratio and then placing the reaction ves-
sels on a magnetic stand. We transferred the right-side selected
sample to a new reaction vessel and added more beads for a final
ratio of 1.8:1. We eluted the final size-selected sample into nucle-
ase-free water.

ATAC-seq analyses

We aligned reads to the mm10 mouse genome assembly with
Bowtie 2, sorted output BAM files with SAMtools, and converted fi-
les to bigWig format with seqOutBias (Li et al. 2009; Langmead and
Salzberg 2012; Martins et al. 2018). We called accessibility peaks
with MACS2 (Zhang et al. 2008; Gaspar 2018). We sorted reads
into peaks using the bigWig R package (https://github.com/
andrelmartins/bigwig, v0.2.9) and identified differentially accessible
REs with DESeq2 (Love et al. 2014). We cluster dynamic peaks into
response groups using DEGreport (https://bioconductor.org/
packages/release/bioc/html/DEGreport.html, v1.34.0). We per-
formeddenovomotif extractionondynamicREswithMEME (e-val-
ue cutoff of 0.01) and used TOMTOM (e-value cutoff of 0.05) to
match motifs to the HOMER, JASPAR, and UniPROBE TF binding
motif databases (Heinz et al. 2010; Bailey et al. 2015; Khan et al.
2018). We use FIMO to identify genome-wide motif occurrences
(Cuellar-Partida et al. 2012). We generated DNA sequence logos
with ceqLogo (Bailey et al. 2015). We use the bigWig package to as-
sess motif enrichment around ATAC-seq peak summits (https://
github.com/andrelmartins/bigwig, v0.2.9).
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PRO-seq library preparation

We performed cell permeabilization as previously described
(Mahat et al. 2016). We trypsinized and collected cells in 10 mL
ice-cold PBS followed by washing in 5 mL buffer W (10 mM Tris-
HCl at pH 7.5, 10 mM KCl, 150 mM sucrose, 5 mM MgCl2, 0.5
mMCaCl2, 0.5mMDTT, 0.004U/mL SUPERaseIN RNase inhibitor
[Invitrogen], protease inhibitors [cOmplete, Roche]). We permea-
bilized cells by incubating with buffer P (10 mM Tris-HCl at pH
7.5, KCl 10 mM, 250 mM sucrose, 5 mM MgCl2, 1 mM EGTA,
0.05% Tween-20, 0.1% NP-40, 0.5 mM DTT, 0.004 U/mL
SUPERaseIN RNase inhibitor [Invitrogen], protease inhibitors
[cOmplete, Roche]) for 3 min. We washed cells with 10 mL buffer
W before transferring into 1.5-mL tubes using wide-bore pipette
tips. Finally, we resuspended cells in 500 µL buffer F (50 mM
Tris-HCl at pH 8, 5 mM MgCl2, 0.1 mM EDTA, 50% glycerol, and
0.5 mM DTT). After counting nuclei, we separated cells into 50
µL aliquots with approximately 3 ×105 to 5×105 cells each. We
snap-froze our aliquots in liquid nitrogen and stored them at
−80°C. We prepared PRO-seq libraries as previously described
(Sathyan et al. 2019). We included a random eight-base unique
molecular identifier (UMI) at the 5′ end of the adapter ligated to
the 3′ end of the nascent RNA. We did not perform any size selec-
tion in an attempt to not bias our libraries against short nascent
RNAs. Raw PRO-seq sequencing files and processed bigWig files
were obtained from the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE133147.

PRO-seq analyses

First we used cutadapt to remove adapters from our reads (Martin
2011).We used fqdedup and the 3′ UMIs to deduplicate our libraries
(https://github.com/guertinlab/fqdedup, v1.1.0). Next we removed
UMIs and converted reads to their reverse complement with
the FASTX-Toolkit (https://github.com/agordon/fastx_toolkit,
v0.0.12). As with the ATAC-seq samples, we used Bowtie 2,
SAMtools, and seqOutBias to align, sort, and convert reads to
bigWig files, respectively (Li et al. 2009; Langmead and Salzberg
2012; Martins et al. 2018). We used primaryTranscriptAnnotation
to adjust gene annotations based on our PRO-seq data (Anderson
et al. 2020). We queried the bigWig files within the adjusted geno-
mic coordinates with the bigWig R package (https://github.com/
andrelmartins/bigwig, v0.2.9) and UCSC Genome Browser
Utilities (Kent et al. 2010). We identified differentially expressed
geneswithDESeq2 (Love et al. 2014).We used dREG to define peaks
of bidirectional transcription from our bigWig files (Wang et al.
2019). Aswith the ATAC-seq samples,we identified overrepresented
motifs in dREG-defined REswithMEME and TOMTOM(Bailey et al.
2015). We evaluate motif enrichment around peak summits and
polymerase density in the gene body and pause region with
the bigWig package (https://github.com/andrelmartins/bigwig,
v0.2.9). We define the summit of the pause peak for genes by first
identifying the point of maximum density within 1 kb of the TSS.
We define the pause region as the 50-bp window around the
summit.

Network construction

The bipartite directional networkswith gene andREnodeswere in-
ferred using a data-driven rules-based approach. The first rule to in-
fer trans-edges from TF families to individual REs is that the RE
must contain the cognate motif for the TF family. The second is
that the peak must be dynamically accessible over some part of
the time course. The third is that at least one gene encoding a
member of the TF family must be expressed and activated (or in

the case of SP, repressed) over the same time range. We restrict
trans-edges attributed to GR to the first 40 min of the time course
for reasons discussed in the text. Similarly, we do not draw edges
from SP before 40 min. Next, we drew cis-edges between REs and
proximal genes based on a different rule set. First, REs need to be
within 10 kb of gene bodies as defined by primary transcript anno-
tation of our PRO-seq data. We used BEDTools to find gene–RE
pairs that satisfied this rule (Quinlan and Hall 2010). Next, the
peak and the gene need to covary in accessibility and transcription
during the same time range. For example, a genemust be activated
at the same time as its local RE is increasing in accessibility. We re-
fined the distance requirements by incorporating constraints from
our CDF analysis. For each activating factor (AP-1, CEBP, GR, KLF),
we find a set of pairwise comparisons within the time course for
which factor REs are significantly closer to activated than nondy-
namic genes. We find a similar set of comparisons for repressive
factors (SP, TWIST). For a gene to be linked to a factor RE with a
cis-edge, we require that the gene must be dynamic in at least
one of the comparisons identified by the CDF analysis for that fac-
tor. In addition, our CDF analysis also identifies themaximumdis-
tance between a factor RE and a regulated gene for each
comparison. The RE and the gene’s TSS must be within the rele-
vant distance threshold defined by the CDF.

Data access

All raw and processed sequencing data generated in this studyhave
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession numbers
GSE150492 (3T3-L1 ATAC-seq), GSE219041 (C7 cells + dexame-
thasone PRO-seq), and GSE219051 (shTwist2 3T3-L1 RNA-seq).
All code used for data analysis can be found at GitHub (https
://github.com/guertinlab/adipogenesis) and as Supplemental
Code.

Competing interest statement

The authors declare no competing interests.

Acknowledgments

This work was funded by the Center for Scientific Review: R35-
GM128635 to M.J.G.; T32-LM012416 supported A.B.D.; K00-
CA253732 supported R.K.P.; R50-CA265089 supported L.W. We
thank John Lukens for hosting animals. We thank Thurl Harris
for providing 3T3-L1 cells and technical guidance. We
thank Kevin Janes for providing reagents and suggestions. We
thank Sathyan Mattada, Thomas Scott, Jacob Wolpe, Sailasree
Rajalekshmi, and Theresa Gibney for critical feedback.

Author contributions: A.B.D., B.N., and M.J.G. analyzed the
data. N.M.W. and F.M.D. performed the 3T3-L1 ATAC-seq and
PRO-seq experiments. A.B.D. and D.S.L. performed the 3T3-L1
and primary cell adipogenesis assays. R.P., P.P., and A.B.D. per-
formed the mouse tissue harvesting and preadipocyte extraction.
L.W. designed and cloned the TWIST2 overexpression construct.
A.B.D. and M.J.G. conceptualized and developed the project.
A.B.D. and M.J.G. wrote the manuscript.

References

Ahmad B, Serpell CJ, Fong IL, Wong EH. 2020. Molecular mechanisms of
adipogenesis: the anti-adipogenic role of AMP-activated protein kinase.
Front Mol Biosci 7: 76. doi:10.3389/fmolb.2020.00076

Dutta et al.

328 Genome Research
www.genome.org

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://github.com/guertinlab/fqdedup
https://github.com/guertinlab/fqdedup
https://github.com/guertinlab/fqdedup
https://github.com/agordon/fastx_toolkit
https://github.com/agordon/fastx_toolkit
https://github.com/agordon/fastx_toolkit
https://github.com/andrelmartins/bigwig
https://github.com/andrelmartins/bigwig
https://github.com/andrelmartins/bigwig
https://github.com/andrelmartins/bigwig
https://github.com/andrelmartins/bigwig
https://github.com/andrelmartins/bigwig
https://github.com/andrelmartins/bigwig
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://github.com/guertinlab/adipogenesis
https://github.com/guertinlab/adipogenesis
https://github.com/guertinlab/adipogenesis
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277559.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277559.122/-/DC1


AndersonWD,Duarte FM,CivelekM,GuertinMJ. 2020. Defining data-driv-
en primary transcript annotations with primaryTranscriptAnnotation in
R. Bioinformatics 36: 2926–2928. doi:10.1093/bioinformatics/btaa011

Ardehali MB, Lis JT. 2009. Tracking rates of transcription and splicing in
vivo. Nat Struct Mol Biol 16: 1123–1124. doi:10.1038/nsmb1109-1123

Bailey TL, Johnson J, Grant CE, Noble WS. 2015. The MEME suite. Nucleic
Acids Res 43: W39–W49. doi:10.1093/nar/gkv416

Banerjee SS, Feinberg MW, Watanabe M, Gray S, Haspel RL, Denkinger DJ,
Kawahara R, Hauner H, Jain MK. 2003. The Krüppel-like factor KLF2 in-
hibits peroxisome proliferator-activated receptor-γ expression and adi-
pogenesis. J Biol Chem 278: 2581–2584. doi:10.1074/jbc.M210859200

Benner C, Konovalov S, Mackintosh C, Hutt KR, Stunnenberg R, Garcia-
Bassets I. 2013. Decoding a signature-based model of transcription co-
factor recruitment dictated by cardinal cis-regulatory elements in prox-
imal promoter regions. PLoS Genet 9: e1003906. doi:10.1371/journal
.pgen.1003906

Bernlohr DA, Angus CW, Lane MD, Bolanowski MA, Kelly TJ Jr. 1984.
Expression of specific mRNAs during adipose differentiation: identifica-
tion of an mRNA encoding a homologue of myelin P2 protein. Proc Natl
Acad Sci 81: 5468–5472. doi:10.1073/pnas.81.17.5468

Bialek P, Kern B, Yang X, Schrock M, Sosic D, Hong N, Wu H, Yu K, Ornitz
DM, Olson EN, et al. 2004. A Twist code determines the onset of osteo-
blast differentiation. Dev Cell 6: 423–435. doi:10.1016/S1534-5807(04)
00058-9

Biddie SC, John S, Sabo PJ, Thurman RE, Johnson TA, Schiltz RL, Miranda
TB, Sung M-H, Trump S, Lightman SL, et al. 2011. Transcription factor
AP1 potentiates chromatin accessibility and glucocorticoid receptor
binding. Mol Cell 43: 145–155. doi:10.1016/j.molcel.2011.06.016

Birsoy K, Chen Z, Friedman J. 2008. Transcriptional regulation of adipogen-
esis by KLF4. Cell Metab 7: 339–347. doi:10.1016/j.cmet.2008.02.001

Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, Furey TS,
Crawford GE. 2008. High-resolution mapping and characterization of
open chromatin across the genome. Cell 132: 311–322. doi:10.1016/j
.cell.2007.12.014

Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. 2015. ATAC-seq: a method
for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol
109: 21–29. doi:10.1002/0471142727.mb2129s109

Chen J, Zhang Z, Li L, Chen B-C, Revyakin A, Hajj B, Legant W, Dahan M,
Lionnet T, Betzig E, et al. 2014. Single-molecule dynamics of enhanceo-
some assembly in embryonic stem cells. Cell 156: 1274–1285. doi:10
.1016/j.cell.2014.01.062

Corces MR, Trevino AE, Hamilton EG, Greenside PG, Sinnott-Armstrong
NA, Vesuna S, Satpathy AT, Rubin AJ, Montine KS, Wu B, et al. 2017.
An improved ATAC-seq protocol reduces background and enables inter-
rogation of frozen tissues. Nat Methods 14: 959–962. doi:10.1038/
nmeth.4396

Core LJ, Waterfall JJ, Lis JT. 2008. Nascent RNA sequencing reveals wide-
spread pausing and divergent initiation at human promoters. Science
322: 1845–1848. doi:10.1126/science.1162228

Core LJ,Martins AL, DankoCG,Waters CT, Siepel A, Lis JT. 2014. Analysis of
nascent RNA identifies a unified architecture of initiation regions at
mammalian promoters and enhancers. Nat Genet 46: 1311–1320.
doi:10.1038/ng.3142

Cuellar-Partida G, Buske FA, McLeay RC, Whitington T, Noble WS, Bailey
TL. 2012. Epigenetic priors for identifying active transcription factor
binding sites. Bioinformatics 28: 56–62. doi:10.1093/bioinformatics/
btr614

Danko CG, Hah N, Luo X, Martins AL, Core L, Lis JT, Siepel A, Kraus WL.
2013. Signaling pathways differentially affect RNA polymerase II initia-
tion, pausing, and elongation rate in cells.Mol Cell 50: 212–222. doi:10
.1016/j.molcel.2013.02.015

Distel RJ, RoHS, Rosen BS, GrovesDL, Spiegelman BM. 1987. Nucleoprotein
complexes that regulate gene expression in adipocyte differentiation:
direct participation of c-fos. Cell 49: 835–844. doi:10.1016/0092-8674
(87)90621-0

Dobrian AD. 2012. A tale with a Twist: a developmental gene with potential
relevance for metabolic dysfunction and inflammation in adipose tis-
sue. Front Endocrinol 3: 108. doi:10.3389/fendo.2012.00108

Duarte FM, Fuda NJ, Mahat DB, Core LJ, Guertin MJ, Lis JT. 2016.
Transcription factors GAF and HSF act at distinct regulatory steps to
modulate stress-induced gene activation. Genes Dev 30: 1731–1746.
doi:10.1101/gad.284430.116

Farrar M. 2006. Striped Smith–Waterman speeds database searches six times
over other SIMD implementations. Bioinformatics 23: 156–161. doi:10
.1093/bioinformatics/btl582

Flodby P, Barlow C, Kylefjord H, Åhrlund-Richter L, Xanthopoulos KG.
1996. Increased hepatic cell proliferation and lung abnormalities in
mice deficient in CCAAT/enhancer binding protein α. J Biol Chem
271: 24753–24760. doi:10.1074/jbc.271.40.24753

Freytag SO, Paielli DL, Gilbert JD. 1994. Ectopic expression of the CCAAT/
enhancer-binding protein alpha promotes the adipogenic program in

a variety of mouse fibroblastic cells. Genes Dev 8: 1654–1663. doi:10
.1101/gad.8.14.1654

Fu J, Qin L, He T, Qin J, Hong J, Wong J, Liao L, Xu J. 2011. The TWIST/Mi2/
NuRD protein complex and its essential role in cancer metastasis. Cell
Res 21: 275–289. doi:10.1038/cr.2010.118

FudaNJ, Ardehali MB, Lis JT. 2009. Definingmechanisms that regulate RNA
polymerase II transcription in vivo. Nature 461: 186–192. doi:10.1038/
nature08449

Gaspar JM. 2018. Improved peak-calling withMACS2. bioRxiv doi:10.1101/
496521

Ghaben AL, Scherer PE. 2019. Adipogenesis and metabolic health. Nat Rev
Mol Cell Biol 20: 242–258. doi:10.1038/s41580-018-0093-z

Gill G, Pascal E, Tseng ZH, Tjian R. 1994. A glutamine-rich hydrophobic
patch in transcription factor Sp1 contacts the dTAFII110 component
of the Drosophila TFIID complex and mediates transcriptional activa-
tion. Proc Natl Acad Sci 91: 192–196. doi:10.1073/pnas.91.1.192

Gong XQ, Li L. 2002. Dermo-1, a multifunctional basic helix-loop-helix
protein, represses MyoD transactivation via the HLH domain, MEF2 in-
teraction, and chromatin deacetylation. J Biol Chem 277: 12310–12317.
doi:10.1074/jbc.M110228200

GreenH, Kehinde O. 1974. Sublines of mouse 3T3 cells that accumulate lip-
id. Cell 1: 113–116. doi:10.1016/0092-8674(74)90126-3

Guertin MJ, Lis JT. 2010. Chromatin landscape dictates HSF binding to tar-
get DNA elements. PLoS Genet 6: e1001114. doi:10.1371/journal.pgen
.1001114

Guertin MJ, Lis JT. 2013. Mechanisms by which transcription factors gain
access to target sequence elements in chromatin. Curr Opin Genet Dev
23: 116–123. doi:10.1016/j.gde.2012.11.008

GuertinMJ, Martins AL, Siepel A, Lis JT. 2012. Accurate prediction of induc-
ible transcription factor binding intensities in vivo. PLoS Genet 8:
e1002610. doi:10.1371/journal.pgen.1002610

Hah N, Danko CG, Core L, Waterfall JJ, Siepel A, Lis JT, Kraus WL. 2011. A
rapid, extensive, and transient transcriptional response to estrogen sig-
naling in breast cancer cells. Cell 145: 622–634. doi:10.1016/j.cell.2011
.03.042

Hamamori Y, Sartorelli V, Ogryzko V, Puri PL,WuHY,Wang JY, Nakatani Y,
Kedes L. 1999. Regulation of histone acetyltransferases p300 and PCAF
by the bHLH protein twist and adenoviral oncoprotein E1A. Cell 96:
405–413. doi:10.1016/S0092-8674(00)80553-X

Hayashi M, Nimura K, Kashiwagi K, Harada T, Takaoka K, Kato H, Tamai K,
Kaneda Y. 2007. Comparative roles of Twist-1 and Id1 in transcriptional
regulation by BMP signaling. J Cell Sci 120: 1350–1357. doi:10.1242/jcs
.000067

HebrokM,Wertz K, Füchtbauer EM. 1994. M-twist is an inhibitor of muscle
differentiation. Dev Biol 165: 537–544. doi:10.1006/dbio.1994.1273

Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre
C, Singh H, Glass CK. 2010. Simple combinations of lineage-determin-
ing transcription factors prime cis-regulatory elements required formac-
rophage and B cell identities. Mol Cell 38: 576–589. doi:10.1016/j
.molcel.2010.05.004

Inuzuka H, Wakao H, Masuho Y, Muramatsu MA, Tojo H, Nanbu-Wakao R.
1999. cDNA cloning and expression analysis of mouse zf9, a Krüppel-
like transcription factor gene that is induced by adipogenic hormonal
stimulation in 3T3-L1 cells. Biochim Biophys Acta 1447: 199–207.
doi:10.1016/S0167-4781(99)00161-X

Jonkers I, Lis JT. 2015. Getting up to speed with transcription elongation by
RNA polymerase II. Nat Rev Mol Cell Biol 16: 167–177. doi:10.1038/
nrm3953

Kawamura Y, Tanaka Y, Kawamori R, Maeda S. 2006. Overexpression of
Kruppel-like factor 7 regulates adipocytokine gene expressions in hu-
man adipocytes and inhibits glucose-induced insulin secretion in pan-
creatic β-cell line. Mol Endocrinol 20: 844–856. doi:10.1210/me.2005-
0138

Kent WJ, Zweig AS, Barber G, Hinrichs AS, Karolchik D. 2010. BigWig and
BigBed: enabling browsing of large distributed datasets. Bioinformatics
26: 2204–2207. doi:10.1093/bioinformatics/btq351

Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der
Lee R, Bessy A, Chèneby J, Kulkarni SR, Tan G, et al. 2018. JASPAR 2018:
update of the open-access database of transcription factor binding pro-
files and its web framework. Nucleic Acids Res 46: D1284. doi:10.1093/
nar/gkx1188

Kim JY, Park M, Ohn J, Seong RH, Chung JH, Kim KH, Jo SJ, Kwon O. 2022.
Twist2-driven chromatin remodeling governs the postnatal maturation
of dermal fibroblasts. Cell Rep 39: 110821. doi:10.1016/j.celrep.2022
.110821

KohHS, Lee C, Lee KS, Park EJ, Seong RH, Hong S, Jeon SH. 2009. Twist2 reg-
ulates CD7 expression and galectin-1-induced apoptosis in mature T-
cells. Mol Cells 28: 553–558. doi:10.1007/s10059-009-0150-8

Kwak H, Fuda NJ, Core LJ, Lis JT. 2013. Precise maps of RNA polymerase re-
veal how promoters direct initiation and pausing. Science 339: 950–953.
doi:10.1126/science.1229386

Twist2 regulates adipogenesis

Genome Research 329
www.genome.org



Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2.
Nat Methods 9: 357–359. doi:10.1038/nmeth.1923

Lee YS, Lee HH, Park J, Yoo EJ, Glackin CA, Choi YI, Jeon SH, Seong RH, Park
SD, Kim JB. 2003. Twist2, a novel ADD1/SREBP1c interacting protein,
represses the transcriptional activity of ADD1/SREBP1c. Nucleic Acids
Res 31: 7165–7174. doi:10.1093/nar/gkg934

Lefterova MI, Lazar MA. 2009. New developments in adipogenesis. Trends
Endocrinol Metab 20: 107–114. doi:10.1016/j.tem.2008.11.005

Lefterova MI, Haakonsson AK, Lazar MA, Mandrup S. 2014. PPARγ and the
global map of adipogenesis and beyond. Trends Endocrinol Metab 25:
293–302. doi:10.1016/j.tem.2014.04.001

Li D, Yea S, Li S, Chen Z, Narla G, Banck M, Laborda J, Tan S, Friedman JM,
Friedman SL, et al. 2005. Krüppel-like factor-6 promotes preadipocyte
differentiation through histone deacetylase 3-dependent repression of
DLK1. J Biol Chem 280: 26941–26952. doi:10.1074/jbc.M500463200

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R, 1000 Genome Project Data Processing
Subgroup. 2009. The Sequence Alignment/Map format and SAMtools.
Bioinformatics 25: 2078–2079. doi:10.1093/bioinformatics/btp352

Li S, Chen K, Zhang Y, Barnes SD, Jaichander P, Zheng Y, HassanM,Malladi
VS, Skapek SX, Xu L, et al. 2019a. Twist2 amplification in rhabdomyo-
sarcoma represses myogenesis and promotes oncogenesis by redirecting
MyoD DNA binding. Genes Dev 33: 626–640. doi:10.1101/gad.324467
.119

Li H, Quang D, Guan Y. 2019b. Anchor: trans-cell type prediction of tran-
scription factor binding sites. Genome Res 29: 281–292. doi:10.1101/gr
.237156.118

Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T,
Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, et al. 2009.
Comprehensive mapping of long-range interactions reveals folding
principles of the human genome. Science 326: 289–293. doi:10.1126/sci
ence.1181369

Lis JT. 1980. Fractionation of DNA fragments by polyethylene glycol in-
duced precipitation. Methods Enzymol 65: 347–353. doi:10.1016/
s0076-6879(80)65044-7

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change
and dispersion for RNA-seq data with DESeq2. Genome Biol 15: 550.
doi:10.1186/s13059-014-0550-8

Madsen JGS, Madsen MS, Rauch A, Traynor S, Van Hauwaert EL,
Haakonsson AK, Javierre BM, Hyldahl M, Fraser P, Mandrup S. 2020.
Highly interconnected enhancer communities control lineage-deter-
mining genes in human mesenchymal stem cells. Nat Genet 52: 1227–
1238. doi:10.1038/s41588-020-0709-z

Mahat DB, Kwak H, Booth GT, Jonkers IH, Danko CG, Patel RK, Waters CT,
Munson K, Core LJ, Lis JT. 2016. Base-pair-resolution genome-wide
mapping of active RNA polymerases using precision nuclear run-on
(PRO-seq). Nat Protoc 11: 1455–1476. doi:10.1038/nprot.2016.086

Marshall NF, Price DH. 1995. Purification of P-TEFb, a transcription factor
required for the transition into productive elongation (∗). J Biol Chem
270: 12335–12338. doi:10.1074/jbc.270.21.12335

Martin M. 2011. Cutadapt removes adapter sequences from high-through-
put sequencing reads. EMBnet.journal 17: 10–12. doi:10.14806/ej.17.1
.200

Martins AL, Walavalkar NM, Anderson WD, Zang C, Guertin MJ. 2018.
Universal correction of enzymatic sequence bias reveals molecular sig-
natures of protein/DNA interactions. Nucleic Acids Res 46: e9. doi:10
.1093/nar/gkx1053

McKnight SL, Kingsbury R. 1982. Transcriptional control signals of a eu-
karyotic protein-coding gene. Science 217: 316–324. doi:10.1126/sci
ence.6283634

McNally JG, Müller WG, Walker D, Wolford R, Hager GL. 2000. The gluco-
corticoid receptor: rapid exchange with regulatory sites in living cells.
Science 287: 1262–1265. doi:10.1126/science.287.5456.1262

Moitra J, Mason MM, Olive M, Krylov D, Gavrilova O, Marcus-Samuels B,
Feigenbaum L, Lee E, Aoyama T, Eckhaus M, et al. 1998. Life without
white fat: a transgenic mouse. Genes Dev 12: 3168–3181. doi:10.1101/
gad.12.20.3168

Mori T, Sakaue H, Iguchi H, Gomi H, Okada Y, Takashima Y, Nakamura K,
Nakamura T, Yamauchi T, KubotaN, et al. 2005. Role of Krüppel-like fac-
tor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem
280: 12867–12875. doi:10.1074/jbc.M410515200

Murray SS, Glackin CA, Winters KA, Gazit D, Kahn AJ, Murray EJ. 1992.
Expression of helix-loop-helix regulatory genes during differentiation
of mouse osteoblastic cells. J Bone Miner Res 7: 1131–1138. doi:10
.1002/jbmr.5650071004

Muse GW, Gilchrist DA, Nechaev S, Shah R, Parker JS, Grissom SF, Zeitlinger
J, Adelman K. 2007. RNA polymerase is poised for activation across the
genome. Nat Genet 39: 1507–1511. doi:10.1038/ng.2007.21

Neumayr C, Haberle V, Serebreni L, Karner K, Hendy O, Boija A, Henninger
JE, Li CH, Stejskal K, Lin G, et al. 2022. Differential cofactor dependen-

cies define distinct types of human enhancers. Nature 606: 406–413.
doi:10.1038/s41586-022-04779-x

Nielsen R, Pedersen TÅ, Hagenbeek D, Moulos P, Siersbæk R, Megens E,
Denissov S, Børgesen M, Francoijs K-J, Mandrup S, et al. 2008.
Genome-wide profiling of PPARγ: RXR and RNA polymerase II occupan-
cy reveals temporal activation of distinct metabolic pathways and
changes in RXR dimer composition during adipogenesis. Genes Dev
22: 2953–2967. doi:10.1101/gad.501108

Pan D, FujimotoM, Lopes A,Wang Y-X. 2009. Twist-1 is a PPARδ-inducible,
negative-feedback regulator of PGC-1α in brown fat metabolism. Cell
137: 73–86. doi:10.1016/j.cell.2009.01.051

Pei H, Yao Y, Yang Y, Liao K, Wu J-R. 2011. Krüppel-like factor KLF9 regu-
lates PPARγ transactivation at the middle stage of adipogenesis. Cell
Death Differ 18: 315–327. doi:10.1038/cdd.2010.100

Ptashne M. 1967. Specific binding of the λ phage repressor to λDNA.Nature
214: 232–234. doi:10.1038/214232a0

Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for compar-
ing genomic features. Bioinformatics 26: 841–842. doi:10.1093/bioinfor
matics/btq033

Ramji DP, Foka P. 2002. CCAAT/enhancer-binding proteins: structure,
function and regulation. Biochem J 365: 561–575. doi:10.1042/
bj20020508

Rasmussen EB, Lis JT. 1993. In vivo transcriptional pausing and cap forma-
tion on three Drosophila heat shock genes. Proc Natl Acad Sci 90: 7923–
7927. doi:10.1073/pnas.90.17.7923

Rauch A, Haakonsson AK, Madsen JGS, Larsen M, Forss I, Madsen MR, Van
Hauwaert EL, Wiwie C, Jespersen NZ, Tencerova M, et al. 2019.
Osteogenesis depends on commissioning of a network of stem cell tran-
scription factors that act as repressors of adipogenesis. Nat Genet 51:
716–727. doi:10.1038/s41588-019-0359-1

Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J,
Schreiber J, Hannett N, Kanin E, et al. 2000. Genome-wide location
and function of DNA binding proteins. Science 290: 2306–2309.
doi:10.1126/science.290.5500.2306

Rosen ED, Spiegelman BM. 2006. Adipocytes as regulators of energy balance
and glucose homeostasis. Nature 444: 847–853. doi:10.1038/
nature05483

Rosen ED, Hsu C-H, Wang X, Sakai S, Freeman MW, Gonzalez FJ,
Spiegelman BM. 2002. C/EBPα induces adipogenesis through PPARγ: a
unified pathway. Genes Dev 16: 22–26. doi:10.1101/gad.948702

Rougvie AE, Lis JT. 1988. The RNA polymerase II molecule at the 5′ end of
the uninduced hsp70 gene of D. melanogaster is transcriptionally en-
gaged. Cell 54: 795–804. doi:10.1016/S0092-8674(88)91087-2

Rubin CS, Hirsch A, Fung C, RosenOM. 1978. Development of hormone re-
ceptors and hormonal responsiveness in vitro. insulin receptors and in-
sulin sensitivity in the preadipocyte and adipocyte forms of 3T3-L1
cells. J Biol Chem 253: 7570–7578. doi:10.1016/S0021-9258(17)34541-6

Sathyan KM, McKenna BD, Anderson WD, Duarte FM, Core L, Guertin MJ.
2019. An improved auxin-inducible degron systempreserves native pro-
tein levels and enables rapid and specific protein depletion. Genes Dev
33: 1441–1455. doi:10.1101/gad.328237.119

Scholes C, DePace AH, Sánchez Á. 2017. Combinatorial gene regulation
through kinetic control of the transcription cycle. Cell Syst 4: 97–
108.e9. doi:10.1016/j.cels.2016.11.012

Seila AC, Calabrese JM, Levine SS, Yeo GW, Rahl PB, Flynn RA, Young RA,
Sharp PA. 2008. Divergent transcription from active promoters. Science
322: 1849–1851. doi:10.1126/science.1162253

Sharabi AB, Aldrich M, Sosic D, Olson EN, Friedman AD, Lee S-H, Chen S-Y.
2008. Twist-2 controlsmyeloid lineage development and function. PLoS
Biol 6: e316. doi:10.1371/journal.pbio.0060316

Siersbæk R, Nielsen R, John S, SungM-H, Baek S, Loft A, Hager GL, Mandrup
S. 2011. Extensive chromatin remodelling and establishment of tran-
scription factor “hotspots” during early adipogenesis. EMBO J 30:
1459–1472. doi:10.1038/emboj.2011.65

Siersbæk R, Nielsen R,Mandrup S. 2012. Transcriptional networks and chro-
matin remodeling controlling adipogenesis. Trends Endocrinol Metab 23:
56–64. doi:10.1016/j.tem.2011.10.001

Siersbæk R, Rabiee A, Nielsen R, Sidoli S, Traynor S, Loft A, Poulsen LLC,
Rogowska-Wrzesinska A, Jensen ON, Mandrup S. 2014. Transcription
factor cooperativity in early adipogenic hotspots and super-enhancers.
Cell Rep 7: 1443–1455. doi:10.1016/j.celrep.2014.04.042

Šošic ́ D, Richardson JA, Yu K, Ornitz DM, Olson EN. 2003. Twist regulates
cytokine gene expression through a negative feedback loop that repress-
es NF-κB activity. Cell 112: 169–180. doi:10.1016/S0092-8674(03)
00002-3

Spicer DB, Rhee J, Cheung WL, Lassar AB. 1996. Inhibition of myogenic
bHLH and MEF2 transcription factors by the bHLH protein twist.
Science 272: 1476–1480. doi:10.1126/science.272.5267.1476

Spradling A, Penman S, Pardue ML. 1975. Analysis of Drosophila mRNA by
in situ hybridization: sequences transcribed in normal and heat shocked
cultured cells. Cell 4: 395–404. doi:10.1016/0092-8674(75)90160-9

Dutta et al.

330 Genome Research
www.genome.org



Steger DJ, Grant GR, SchuppM, Tomaru T, LefterovaMI, Schug J, Manduchi
E, Stoeckert CJ Jr, Lazar MA. 2010. Propagation of adipogenic signals
through an epigenomic transition state. Genes Dev 24: 1035–1044.
doi:10.1101/gad.1907110

Sue N, Jack BHA, Eaton SA, Pearson RCM, Funnell APW, Turner J, Czolij R,
Denyer G, Bao S, Molero-Navajas JC, et al. 2008. Targeted disruption of
the basic Krüppel-like factor gene (Klf3) reveals a role in adipogenesis.
Mol Cell Biol 28: 3967–3978. doi:10.1128/MCB.01942-07

Takahashi K, Yamanaka S. 2006. Induction of pluripotent stem cells from
mouse embryonic and adult fibroblast cultures by defined factors. Cell
126: 663–676. doi:10.1016/j.cell.2006.07.024

Tanaka T, Yoshida N, Kishimoto T, Akira S. 1997. Defective adipocyte differ-
entiation in mice lacking the C/EBPβ and/or C/EBPδ gene. EMBO J 16:
7432–7443. doi:10.1093/emboj/16.24.7432

Tang QQ, Jiang MS, Lane MD. 1999. Repressive effect of Sp1 on the C/EBPα
gene promoter: role in adipocyte differentiation.Mol Cell Biol 19: 4855–
4865. doi:10.1128/MCB.19.7.4855

Thompson B, Varticovski L, Baek S, Hager GL. 2016. Genome-wide chroma-
tin landscape transitions identify novel pathways in early commitment
to osteoblast differentiation. PLoS One 11: e0148619. doi:10.1371/jour
nal.pone.0148619

Tsankov AM, Gu H, Akopian V, Ziller MJ, Donaghey J, Amit I, Gnirke A,
Meissner A. 2015. Transcription factor binding dynamics during human
ES cell differentiation. Nature 518: 344–349. doi:10.1038/nature14233

Tukel T, Šošic ́D, Al-Gazali LI, ErazoM, Casasnovas J, Franco HL, Richardson
JA, Olson EN, Cadilla CL, Desnick RJ. 2010. Homozygous nonsensemu-
tations in TWIST2 cause Setleis syndrome.Am J HumGenet 87: 289–296.
doi:10.1016/j.ajhg.2010.07.009

Unamuno X, Gómez-Ambrosi J, Rodríguez A, Becerril S, Frühbeck G,
Catalán V. 2018. Adipokine dysregulation and adipose tissue inflamma-
tion in human obesity. Eur J Clin Invest 48: e12997. doi:10.1111/eci
.12997

van Kruijsdijk R, VanDerWall E, Visseren FLJ. 2009. Obesity and cancer: the
role of dysfunctional adipose tissue.Cancer Epidemiol Biomarkers Prev18:
2569–2578. doi:10.1158/1055-9965.EPI-09-0372

Vierstra J, Lazar J, Sandstrom R, Halow J, Lee K, Bates D, Diegel M, Dunn D,
Neri F, Haugen E, et al. 2020. Global reference mapping of human tran-
scription factor footprints. Nature 583: 729–736. doi:10.1038/s41586-
020-2528-x

Vockley CM, D’Ippolito AM, McDowell IC, Majoros WH, Safi A, Song L,
Crawford GE, Reddy TE. 2016. Direct GR binding sites potentiate clus-
ters of TF binding across the human genome. Cell 166: 1269–
1281.e19. doi:10.1016/j.cell.2016.07.049

Wang N-D, Finegold MJ, Bradley A, Ou CN, Abdelsayed SV, Wilde MD,
Taylor LR,Wilson DR, Darlington GJ. 1995. Impaired energy homeosta-
sis in C/EBPα knockout mice. Science 269: 1108–1112. doi:10.1126/sci
ence.7652557

Wang Z, Chu T, Choate LA, Danko CG. 2019. Identification of regulatory
elements from nascent transcription using dREG. Genome Res 29:
293–303. doi:10.1101/gr.238279.118

Wang X, Wang H-Y, Hu G-S, Tang W-S, Weng L, Zhang Y, Guo H, Yao S-S,
Liu S-Y, Zhang G-L, et al. 2021. DDB1 binds histone reader BRWD3 to
activate the transcriptional cascade in adipogenesis and promote onset
of obesity. Cell Rep 35: 109281. doi:10.1016/j.celrep.2021.109281

Westwood JT, Clos J, Wu C. 1991. Stress-induced oligomerization and chro-
mosomal relocalization of heat-shock factor. Nature 353: 822–827.
doi:10.1038/353822a0

Wissink EM, Vihervaara A, Tippens ND, Lis JT. 2019. Nascent RNA analyses:
tracking transcription and its regulation. Nat Rev Genet 20: 705–723.
doi:10.1038/s41576-019-0159-6

Wu C,Wong YC, Elgin SC. 1979. The chromatin structure of specific genes:
II. Disruption of chromatin structure during gene activity.Cell 16: 807–
814. doi:10.1016/0092-8674(79)90096-5

Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C,
Savagner P, Gitelman I, Richardson A,Weinberg RA. 2004. Twist, a mas-
ter regulator of morphogenesis, plays an essential role in tumor metas-
tasis. Cell 117: 927–939. doi:10.1016/j.cell.2004.06.006

Yeh WC, Cao Z, Classon M, McKnight SL. 1995. Cascade regulation of ter-
minal adipocyte differentiation by three members of the C/EBP family
of leucine zipper proteins. Genes Dev 9: 168–181. doi:10.1101/gad.9.2
.168

Yousfi M, Lasmoles F, Lomri A, Delannoy P, Marie PJ. 2001. Increased bone
formation and decreased osteocalcin expression induced by reduced
Twist dosage in Saethre-Chotzen syndrome. J Clin Invest 107: 1153–
1161. doi:10.1172/JCI11846

Zeitlinger J, Stark A, Kellis M, Hong J-W, Nechaev S, Adelman K, Levine M,
Young RA. 2007. RNA polymerase stalling at developmental control
genes in the Drosophila melanogaster embryo. Nat Genet 39: 1512–
1516. doi:10.1038/ng.2007.26

Zhang Y, Liu T,Meyer CA, Eeckhoute J, JohnsonDS, Bernstein BE, Nusbaum
C,Myers RM, BrownM, LiW, et al. 2008.Model-based Analysis of ChIP-
Seq (MACS). Genome Biol 9: R137. doi:10.1186/gb-2008-9-9-r137

Received December 1, 2022; accepted in revised form February 16, 2023.

Twist2 regulates adipogenesis

Genome Research 331
www.genome.org


