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1   |   INTRODUCTION

Fast and accurate motor responses are crucial for sur-
vival and successful task performance in countless situ-
ations. While both speed and accuracy are widely studied 
in psychological and neuroscience experiments, they 

exhibit considerable within-subject variability, which 
is commonly accredited to neural noise during sensory 
processing, decision-making, and response generation 
(Dmochowski & Norcia,  2015; Hanes & Schall,  1996; 
Luce,  2008; MacDonald et al.,  2006; Wood,  1977). More 
and more, however, research is starting to explain parts 
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Abstract
Recently, numerous studies have revealed 4–12 Hz fluctuations of behavioral per-
formance in a multitude of tasks. The majority has utilized stimuli near detection 
threshold and observed related fluctuations in hit-rates, attributing these to per-
ceptual or attentional processes. As neural oscillations in the 8–20 Hz range also 
feature prominently in cortical motor areas, they might cause fluctuations in the 
ability to induce responses, independent of attentional capabilities. Additionally, 
different effectors (e.g., the left versus right hand) might be cyclically prioritized 
in an alternating fashion, similar to the attentional sampling of distinct locations, 
objects, or memory templates. Here, we investigated these questions via a be-
havioral dense-sampling approach. Twenty-six participants performed a simple 
visual discrimination task using highly salient stimuli. We varied the interval be-
tween each motor response and the subsequent target from 330 to 1040 ms, and 
analyzed performance as a function of this interval. Our data show significant 
fluctuations of both RTs and sensitivity between 12.5 and 25 Hz, but no evidence 
for an alternating prioritization of left- versus right-hand responses. While our re-
sults suggest an impact of motor-related signals on performance oscillations, they 
might additionally be influenced by perceptual processes earlier in the processing 
hierarchy. In summary, we demonstrate that behavioral oscillations generalize to 
situations involving highly salient stimuli, closer to everyday life. Moreover, our 
work adds to the literature by showing fluctuations at a high speed, which might 
be a consequence of both low task difficulty and the involvement of sensorimotor 
rhythms.
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of this variability, including its underlying physiolog-
ical mechanisms (e.g., Benedetto et al.,  2021; Bompas 
et al.,  2015; Helfrich et al.,  2018; Johnson et al.,  2015; 
Lakatos et al., 2008; Paraskevopoulou et al., 2021; Ribeiro 
et al.,  2016). In the present study, we consider the idea, 
that particularly variability in reaction times (RTs) might 
be explained by ongoing rhythmic fluctuations of neural 
excitability in motor areas and the resulting capacity to 
initiate manual responses.

Overall, accumulating evidence suggests that human 
neural processing capacity is subject to cyclic fluctuations 
over time (Benedetto et al., 2019; Fiebelkorn et al., 2013; 
Fiebelkorn & Kastner, 2019; Landau & Fries,  2012; 
Pomper & Ansorge, 2021; VanRullen, 2016). For instance, 
electrophysiological studies have demonstrated that per-
ception depends on the phase of ongoing low frequency 
(<14 Hz) oscillatory neural activity prior to the onset 
of a stimulus (Busch et al.,  2009; Davis et al.,  2020; Ng 
et al.,  2012; Sokoliuk & VanRullen,  2011; VanRullen & 
McClelland,  2013; Wyart et al.,  2012). As neural oscil-
lations reflect the excitability of the underlying tissue, 
stimuli occurring at a high excitability phase are more 
likely to be processed in a fast and accurate manner than 
stimuli occurring at a low excitability phase (Fries, 2015; 
Schroeder & Lakatos, 2009).

Recently, these findings were corroborated via purely 
behavioral studies, in which task performance is shown 
to fluctuate rhythmically over time (Benedetto et al., 2018; 
Fiebelkorn et al., 2013; Landau & Fries, 2012; Pomper & 
Ansorge, 2021; VanRullen et al., 2007; Wang et al., 2020). 
Such experiments usually employ a so called “dense sam-
pling” approach, in which performance is assessed at 
many close-spaced intervals following a salient “reset” 
event. For example, Landau and Fries  (2012) presented 
their participants with a Posner spatial cuing paradigm, 
and systematically varied the delay between an unin-
formative left or right cue and a subsequent left or right 
target. They observed that target detection performance 
fluctuated rhythmically at 4–10  Hz as a function of the 
cue-to-target delay interval, suggesting that the salient 
cue reset ongoing oscillations in neural excitability. 
Interestingly, this and other studies have observed that 
during tasks which require the simultaneous monitoring 
of two locations or objects, the observed fluctuations in 
performance at each location or object are out of phase 
with each other, suggesting they are processed in alter-
nation (Fiebelkorn et al., 2013; Landau & Fries, 2012; Re 
et al., 2019). Beyond attention toward external stimuli, we 
have recently demonstrated that representations in visual 
working memory are also subject to ~6 Hz rhythmic fluc-
tuations in fidelity, and that two simultaneously memo-
rized representations seem to be prioritized in alternation 
(Pomper & Ansorge, 2021).

Overall, this suggests that cyclic variations in informa-
tion processing capacity may be a general characteristic 
of the brain, potentially linked to limited processing re-
sources, such as during attentional monitoring or short-
term maintenance of task-relevant information.

However, little is known regarding whether manual 
RTs are likewise contingent upon rhythmic excitability 
fluctuations in motor-related brain areas, independent 
of preceding perceptual or attentional processes (cf. Tan 
et al., 2016). While a number of behavioral dense-sampling 
studies have reported rhythmic fluctuations in RTs, virtu-
ally all of them employed difficult detection or discrimina-
tion tasks with target stimuli close to perceptual threshold 
(e.g., Benedetto & Morrone, 2017; Diederich et al., 2012; 
Drewes & VanRullen,  2011; Helfrich et al.,  2018; Peters 
et al., 2021). As such, these experiments were optimized 
to detect variability at the perceptual and/or attentional 
rather than at the response level. Consequently, their re-
sults are commonly interpreted as reflecting perceptual or 
attentional fluctuations, leaving it unclear whether and 
to what degree they are additionally affected by temporal 
variability in response initiation.

Importantly, the presence and functional relevance 
of neural oscillations in the range of 8–13 Hz (alpha/mu 
rhythm) and 14–30 Hz (beta rhythm) in cortical motor 
areas during movement preparation and execution is well 
established (Desideri et al.,  2019; Hussain et al.,  2019; 
Kilavik et al.,  2013; McFarland et al.,  2000; Pogosyan 
et al.,  2009; Stolk et al.,  2019; Tzagarakis et al.,  2010). 
Assuming that these oscillations also constitute patterns 
of waxing and waning neural excitability, it seems reason-
able that the speed of overt behavioral responses is partly 
contingent on the phase of these ongoing fluctuations.

While evidence for such a mechanism from electro-
physiological studies is mixed and not unambiguously at-
tributable to the motor system (e.g., Bompas et al., 2015; 
Diederich et al., 2014; Drewes & VanRullen, 2011), recent 
strong support comes from animal studies (e.g., Lacey 
et al.,  2014) and experiments in humans directly prob-
ing ongoing changes in the excitability of cortical motor 
areas via transcranial magnetic stimulation (TMS) (Berger 
et al.,  2014; Keil et al.,  2014; Khademi et al.,  2018). For 
instance, Khademi et al. (2018) found that the amplitude 
of TMS-evoked motor potentials depends on the phase of 
14–24 Hz oscillations in motor areas, prior to TMS pulse 
application.

Taken together, previous research supports the assump-
tion that the commonly observed intraindividual variability 
in RTs can be partly explained by cyclic fluctuations of ex-
citability in cortical motor areas. Additionally, an intrigu-
ing possibility is that in situations, in which the brain has 
to simultaneously prepare for a speeded motor response 
with just one of two possible effectors (e.g., the left or right 
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hand), the capacity to do so might cyclically alternate be-
tween them. Such a mechanism would be in line with the 
alternating attentional sampling of spatial locations, objects 
or working memory items discussed above (Fiebelkorn 
et al., 2013; Landau & Fries, 2012; Pomper & Ansorge, 2021) 
and reflect an efficient response preparation strategy in the 
light of limited resources. In the present study, we set out 
to further investigate these possibilities by employing a sim-
ple and straightforward speeded RT task along with a highly 
salient, above threshold target stimulus, aiming to reduce 
the potential impact of perceptual or attention related fluc-
tuations. Specifically, we were interested in two research 
questions: (1) Can we observe systematic fluctuations in 
RTs (predominantly related to motor processes) indepen-
dent of fluctuations in sensitivity (i.e., related to perceptual 
or attentional processes)? (2) If so, are RT fluctuations for 
concurrently expected left- and right-hand responses in 
counterphase, indicative of a cyclic alternating preparation 
of two potentially task relevant effectors?

Our participants were asked to provide speeded re-
sponses regarding the direction of large, high-contrast ar-
rows. By densely varying the interval between each motor 
response and the presentation of the next target stimulus, 
we were able to estimate ongoing fluctuations of both RTs 
and sensitivity over time, independently for the two hands.

We observed motor-induced rhythmic fluctuations of 
both RTs and sensitivity at 12–20 Hz and 14–25 Hz, respec-
tively, but no evidence for an alternate prioritization of left- 
and right-hand responses. Thus, our results demonstrate 
an impact of motor signals on behavioral oscillations, but 
might be additionally shaped by perceptual or attentional 
mechanisms earlier in the target processing hierarchy.

2   |   MATERIALS AND METHOD

2.1  |  Participants

Twenty-six participants (including the first author) took 
part in the experiment, either in exchange for course 
credits or monetary compensation. Our sample size was 

based on previous studies on attentional sampling, which 
commonly incorporated between 15 and 25 participants 
(e.g., Fiebelkorn et al.,  2013; Ho et al.,  2017; Landau & 
Fries, 2012; Pomper & Ansorge, 2021).

All participants (five males; Mage  =  21.9 years, 
SDage  =  4.1) had normal or corrected to normal vision 
and were naive to the purpose of the experiment. All gave 
written informed consent, and the study was conducted 
in accordance with the standards of the Declaration of 
Helsinki. We further followed the Austrian Universities 
Act, 2002 (UG2002, Article 30 § 1), which states that only 
medical universities or studies conducting applied medi-
cal research are required to obtain an additional approval 
by an ethics committee. Thus, no additional ethical ap-
proval was required for our study.

2.2  |  Experimental setup and task

Stimuli were displayed on a 24.5-inch LCD monitor with 
a resolution of 1280 by 1024 pixels and a refresh rate of 
100 Hz. The experiment was run via OpenSesame (Version 
3.2.8; Mathôt et al.,  2012) on a PC running Windows 7. 
Participants sat inside a dimly lit room 57 cm away from 
the screen, with their heads supported by a chin- and fore-
head rest, and wearing earmuffs to cover potential click-
ing sounds elicited by their button presses. Visual stimuli 
were presented against a gray background (luminance: 
11.6 cd/m2) and a central fixation dot (0.19° diameter) was 
displayed throughout the experiment.

At the beginning of each trial (Figure  1), a black 
equilateral triangle (side-length: 1.48° diameter; lumi-
nance: 2.2  cd/m2), was presented centrally for 50 ms, 
pointing either to the left or to the right. The task was 
to provide a speeded response with the index finger of 
the hand (left or right), toward which the triangle was 
pointing. Responses were given via the “y” and “:” keys 
of a conventional “qwert” keyboard and were deemed 
valid when given within 1 s following the offset of the 
triangle. Each motor response was followed by a vari-
able inter-trial interval (ITI) of 330 to 1040 ms duration 

F I G U R E  1   Experimental design. Participants were presented with a sequence of visual triangles, pointing either to the left or right. The 
task was to provide a speeded response with the index finger of hand toward which the triangle was pointing (left or right). Each button-
press then triggered a variable delay interval ranging from 330–1040 ms, after which the next triangle was presented
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(in steps of 10 ms), after which the next target triangle 
was presented. We tested if the motor response acts as a 
resetting event to ongoing rhythmic fluctuations in neu-
ral excitability, so that the variable ITI would allow us 
to estimate periodical fluctuations in performance with 
high temporal resolution.

Each participant completed two experimental ses-
sions on separate days, split into 10 to 12 blocks with 
sufficient breaks in between. An average of 2994.2 trials 
(SD  =  135.2, range  =  2664 to 3096) was presented per 
participant, resulting in an average of 41.6 trials per time 
window (SD = 1.9, range = 37 to 43). Note that unequal 
trial numbers were due to technical difficulties during the 
experiment (N = 4), as well as the decision to increase trial 
numbers from 2904 to 3106 (N = 15), as one experimental 
session turned out to last less than the scheduled 60 min.

An equal number of trials requiring left- and right-
handed responses was presented. The order of trials was 
randomized, with the restriction that no more than four 
trials with the same target direction were presented in 
succession. The latter led to an overall higher number of 
trials requiring a different (incongruent condition) rather 
than the same (congruent condition) response than the 
previous trial (1768 versus 1462, respectively, on average). 
Prior to the main experiment, each participant completed 
a short training block. Participants were instructed to re-
spond as fast as possible and keep errors at a minimum.

2.3  |  Data analysis

All analyses were performed using Matlab (2018, 
Mathworks inc., Natick MA) and the CircStat toolbox 
(Berens,  2009). First, for each participant, we removed 
outlier trials with response times (RTs) deviating more 
than 2.5 SDs from the mean (M  =  3.1% SD  =  0.67%). 
Sensitivity (d’) was computed as the difference between 
the z-transformed hit-rate minus the z-transformed false 
alarm rate. For descriptive purposes, we then calculated 
mean RTs (for correct trials only) and d’ pooled across all 
trials, as well as separately for the congruent and incon-
gruent condition. The latter two were further compared 
using paired t-tests.

To estimate rhythmic fluctuations in performance over 
time, we investigated the time course of RTs and d’ as a 
function of ITI, starting from the button-press to the pre-
vious target stimulus. Thus, for each participant, we first 
sorted all trials according to the duration of the ITI. Using a 
moving-window approach with a 10 ms step-size, we then 
computed the average RT and d’ within bins of five consec-
utive delay-period intervals (i.e., within 50 ms) (Fiebelkorn 
et al., 2013; Pomper & Ansorge, 2021). This was done for 
data pooled across all trials, as well as separately across 

trials from the congruent and incongruent condition. As 
an example, we first computed the performance for trials 
with an ITI between 330 to 380 ms. Then, we shifted the 
time window by 10  ms and computed performance for 
trials with an ITI between 360 to 390 ms. This procedure 
was performed throughout the entire duration of possible 
ITIs. In order to maximize the length of the timeseries 
and the resulting frequency resolution of the spectral de-
composition, we included the final four ITIs from 1000 to 
1040 ms, which due to the nature of the moving-window 
procedure, comprised fewer datapoints than the preced-
ing intervals. While all other ITIs contained a mean of 
204.4 trials per participant, the last four contained a mean 
of 182.0, 160.2, 133.3, and 111.0 trials, respectively. Next, 
we de-trended and normalized the resulting single-subject 
RT and d’ time courses by subtracting the second order 
polynomial fit and performed Fast Fourier Transform to 
estimate their spectral composition. This resulted in both 
power and phase values of 19 frequency bins from 0 to 
25 Hz, separately for each participant.

To statistically test for the presence of rhythmic tem-
poral fluctuations in the performance time courses (i.e., 
peaks in their power spectra), we applied a nonparamet-
ric resampling procedure. We randomly reshuffled RTs as 
well as hits and misses across all ITIs within each partic-
ipant. Then we performed the same analysis steps on the 
reshuffled data as described above for the empirical data 
and repeated this procedure 1000 times. This created a 
distribution of 1000 power values for each frequency bin, 
from which we determined the statistical thresholds at 
p = .05, and applied FDR correction for all frequency bins 
(Benjamini & Hochberg, 1995). Thus, only spectral peaks 
in the empirical data exceeding 95% of the surrogate data 
peaks were considered significant. As an additional, inde-
pendent assessment of the spectral properties of our data, 
we also performed a logistic regression analysis, by fitting a 
series of sines and cosines to each participant's time series 
data (e.g., Tomassini et al., 2017). The details and outcomes 
of this procedure, which corroborate our main analysis, are 
reported in the Supplementary Materials (Figure S1).

Finally, we were interested in a potential phase consis-
tency of performance fluctuations across participants. As 
each datapoint in the time-series indicates a target onset, 
the phase angle of the time-series reflects the performance 
at target onset. For any observed significant spectral peak, 
we computed a Rayleigh test for non-uniformity of cir-
cular data (Berens,  2009), which assesses whether the 
phase angles from the individual participants are distrib-
uted uniformly around the unit circle or not. This test was 
again performed on both the empirical and the surrogate 
data, and statistical significance was assumed if the p 
value from the empirical data exceeded 95% of p values in 
the surrogate data.
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3   |   RESULTS

Participants performed well overall, with an average 
RT of 278 ms and d’ of 3.24 (Figure  2). Responses were 
both significantly faster (t1,25 = −4.98, p < .001) and had a 
higher sensitivity (t1,25 =  4.62, p < .001) for incongruent-
compared to congruent trials.

Figure  3 illustrates the grand-average time-course 
(pooled across all trials) of both RTs and d’ (power spec-
tra for each individual participant are shown in Figure S2). 
Fluctuations depending on the ITI are evident in both mea-
sures. Looking at the spectral representation (Figure  4), 
we observed significant peaks for RTs at 12.5 Hz, 18.1 Hz, 
19.4  Hz, and 20.8  Hz (p  =  .030, p < .001, p  =  .030, and 
p = .019, resp.). For sensitivity, the analysis yielded signifi-
cant peaks at 13.9 Hz (p = .048), 20.8 Hz (p = .019), 23.6 Hz 
(p  =  .025), and 25 Hz (p < .001). Thus, for both RTs and 
sensitivity grand-average time courses, we observed signifi-
cant spectral peaks at around 12–14 Hz (i.e., the alpha-band 
range) and around 18–25 Hz (i.e., the beta-band range).

Next, we looked at the spectral data separately for trials 
with a motor response that was spatially congruent versus 
incongruent with the one in the previous trial (Figure 5).

While the overall spectral pattern was similar to the 
grand-average, we observed no significant peaks, neither 
in the RT nor in the sensitivity data (all ps > .417).

Finally, we investigated the phase consistency across 
participants for all significant spectral peaks (Figure  6). 
For the grand-average RT time course, the Rayleigh test 
yielded significant results for all observed spectral peaks, 

that is, at 12.5 Hz (p =  .015), 18.1 Hz (p < .001), 19.4 Hz 
(p < .001), and 20.8 (p < .001), indicative of a non-uniform 
distribution of phase angles around the circle. For the sen-
sitivity time course, we observed significant results for the 
peaks at 20.8 Hz (p = .049) and 25 Hz (p < .001).

Note that to investigate a potential impact of the visual 
target on subsequent behavioral oscillations, we addition-
ally analyzed our data time-locked to the current target 
(rather than the preceding button press). This analysis did 
not yield any significant spectral peaks (see Figure S3).

4   |   DISCUSSION

Our study set out to investigate cyclic fluctuations in the 
capacity for response initiation as potential origin of the 
commonly observed intraindividual RT variability. While 
we observed such fluctuations in RTs in the alpha/mu and 
beta frequency range (12–20 Hz) relative to the most recent 
motor output as a reset signal, the concurrently present 
fluctuations in sensitivity suggest the underlying presence 
of additional perceptual- or attentional mechanisms.

4.1  |  Motor action induces 12–20 Hz 
oscillations in response times

In line with our expectations, we found significant peaks 
in the spectral energy of RT time-courses, relative to the 
preceding button press. In other words, the speed of a 

F I G U R E  2   Overall behavioral 
results. Left: Response times (RTs) pooled 
across conditions, as well as separately for 
trials with response sides congruent (con) 
or incongruent (Inc) with the previous 
trial. Right: Same as left, for sensitivity (d 
prime). Con: Congruent; Inc: Incongruent
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given response fluctuated cyclically as a function of the 
time since the last response. With a frequency of 12–
20 Hz, these fluctuations cover the range of sensorimo-
tor rhythms (alpha/mu and beta), whose involvement 
in the preparation and execution of motor output is well 
known (Desideri et al., 2019; Hussain et al., 2019; Kilavik 
et al., 2013; McFarland et al., 2000; Pogosyan et al., 2009; 
Stolk et al., 2019; Tzagarakis et al., 2010). This could in-
dicate that our RT finding reflects patterns of waxing 
and waning neural excitability in cortical motor areas, 

instantiated by sensorimotor rhythms. As such, our results 
would be in line with the aforementioned TMS studies, 
which reported modulations in motor-evoked potentials 
dependent on the pre-stimulation sensorimotor oscilla-
tory phase (Berger et al., 2014; Keil et al., 2014; Khademi 
et al., 2018), by demonstrating this phase can be reset by a 
preceding motor output.

Importantly, unlike virtually all previous dense-
sampling studies (e.g., Benedetto & Morrone,  2017; 
Diederich et al., 2012; Drewes & VanRullen, 2011; Helfrich 
et al., 2018; Peters et al., 2021), our experiment employed 
a decidedly simple discrimination task using highly salient 
stimuli. Arguably, this avoids that results depend on more 
complex task representations and brings the situation much 
closer to the most basic motor-response situations, in which 
humans quickly and accurately respond to sudden, salient 
and potentially threatening external events. The fact that 
cyclic fluctuations in performance are nevertheless readily 
observable under such circumstances, thus, provides im-
portant novel support for the generality of the phenome-
non. Moreover, while both fluctuations in RTs relative to 
an external sensory stimulus (Benedetto & Morrone, 2017; 
Diederich et al., 2012; Drewes & VanRullen, 2011; Helfrich 
et al., 2018) and fluctuations in hit rates relative to a motor 
response (Benedetto et al., 2016, 2018; Hogendoorn, 2016; 
Nakayama, 2019; Tomassini et al., 2017; Zhang et al., 2019) 
have previously been reported in separate experiments, our 
present study links these phenomena and demonstrates 
oscillations in RTs reset by the preceding button press (cf. 
Bellet et al., 2017). However, we note that our data do not 
discriminate whether these oscillations reflect motor pro-
cessing in the narrowest sense (e.g., activity in pyramidal 
cells in M1; cf. Lacey et al., 2014), to the sensory feedback 
provided by motor execution (cf. Tan et al., 2016), or to the 
preparation of a motor response, that is, to motor process-
ing in a broader sense.

4.2  |  Concurrent (14–25 Hz) oscillations 
in sensitivity hint at sensory contribution

Commonly, variability of behavioral outcomes in 2-AFC 
tasks are accredited to noise during (1) sensory process-
ing, (2) decision-making, and (3) motor response genera-
tion (Dmochowski & Norcia, 2015; Hanes & Schall, 1996; 
Luce,  2008; MacDonald et al.,  2006; Wood,  1977). Out 
of those three, noise in (1) and (2) can affect both RTs 
and sensitivity, while noise in (3) should only affect RTs 
(see, e.g., Huang et al.,  2015; Lingnau & Vorberg,  2005; 
Sumner & Brandwood, 2008; for effects of motor priming). 
Thus, by itself, our result of significant RT fluctuations 
could be considered as evidence for cyclic fluctuations 
in motor excitability, independent of perceptual- or 

F I G U R E  3   Grand-average performance time course. Average 
response times (RTs, yellow trace) and sensitivity (green trace) as 
a function of the variable inter-trial interval (ITI), pooled across all 
trials. Shaded areas indicate SEM. Norm.: Normalized
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F I G U R E  4   Grand average spectral representation of individual 
performance time courses. Yellow traces indicate the power 
spectrum for fluctuations in response times, green traces for 
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attentional mechanisms, especially considering the pres-
ently used simple task and salient stimuli. However, on 
the one hand, we concurrently observed significant spec-
tral peaks in the time-course of sensitivity, in frequency 
bands largely overlapping with those found in RT results 
(14–25 Hz). On the other hand, they could have an ori-
gin in perceptual processing, and might more readily be 
explained by oscillations of excitability in sensory areas. 
Indeed, similar fluctuations in sensitivity or hit rates, al-
beit lower in frequency (~4–10 Hz), have been reported in 
previous studies using more difficult tasks titrated to be 
close to perceptual threshold, and were commonly attrib-
uted to perceptual or attentional mechanisms (Fiebelkorn 
et al.,  2013; Helfrich et al.,  2018; Landau & Fries,  2012; 
Re et al., 2019). Therefore, it is possible that ongoing fluc-
tuations in the ability to process incoming sensory input 
may lead to sensory variations in both, whether or not a 
stimulus is categorized accurately and how long that cat-
egorization takes.

However, the fact that we did not observe significant 
performance fluctuations time-locked to the visual target 
stimulus (see Figure S2) indicates that trial-by-trial vari-
ations in the sensory noise were small, presumably due 
to the highly salient character of the stimulus. Moreover, 
our data do not show characteristics of a speed-accuracy 
trade-off: Participants were both faster and more accurate 
in incongruent compared to congruent trials, and the time 
series fluctuations for RTs and sensitivity at the significant 
spectral frequencies did not exhibit a consistent phase 
relationship (i.e., at any given moment, RTs do not cor-
relate either positively or negatively with sensitivity). This 
suggests, that our RT and sensitivity fluctuations did not 
arise within the same processing stage (i.e., either at the 
sensory or decisional level), but more likely at different 
stages, likely involving motor areas.

Finally, the lack of a priming effect (incongruent tri-
als being faster and more accurate than congruent ones) 

may indicate that our task is not optimal to investigate 
sensory processes linked with perceptual sensitivity but 
results more likely reflected motor or decisional processes. 
Indeed, there is evidence that biases rather than sensi-
tivity oscillates in the alpha–beta range (e.g., Benedetto 
et al., 2019; Ho et al., 2017; Zhang et al., 2019).

A recent series of studies has started to shed light on the 
possible origins of such fluctuations in behavioral perfor-
mance linked to motor actions (Benedetto et al., 2016, 2021; 
Benedetto & Morrone, 2017; Tomassini et al., 2015, 2017; 
see Benedetto et al., 2019, for a review). For instance, using 
electroencephalography (EEG), Tomassini et al.  (2017) 
demonstrated that theta oscillations in visual cortex are 
both aligned to the initiation of an upcoming hand move-
ment up to 1500 ms later and predictive of task performance 
in a visual task unrelated to the movement. Along with 
other studies (Bellet et al., 2017; Hogendoorn, 2016; Wutz 
et al., 2016), this finding indicates that already the prepara-
tion of a motor output, even if task-irrelevant, can modulate 
the phase of ongoing neural oscillations in sensory areas, 
presumably via corollary discharge signals (Benedetto 
et al.,  2019; Rolfs et al.,  2013; Schroeder et al.,  2010; 
Tomassini et al.,  2017). Alternatively, the causality might 
be reversed, and a sensory rhythm might define cyclic win-
dows of facilitated action preparation, in synchrony with 
attentional sampling (Benedetto et al., 2019; Nakayama & 
Motoyoshi,  2019). Regardless of the actual neural imple-
mentation, such a tight temporal coordination between 
motor and sensory processing is an integral prerequisite for 
the action-perception loops proposed in models of action 
control (Hommel, 2004; Wolpert et al., 1995) and embod-
ied cognition(Benedetto et al., 2019; Gibson, 1962; Melloni 
et al., 2009; Schroeder et al., 2010), and is necessary for the 
joint representation of stimuli and motor responses in task 
representations (e.g., Frings et al., 2020; Hommel, 2004).

In summary, while the present data are well in line with 
these previous studies and theoretical considerations, one 

F I G U R E  5   Grand average spectral representation of performance separately for congruent and incongruent trials. (a) Spectra for response 
times: Yellow traces indicate the power spectrum for fluctuations in congruent trials, green traces for fluctuations in incongruent trials. Solid 
lines represent the empirical data, dashed lines the resampled surrogate data. Shaded areas indicate SEM. (b) Same as (a), for sensitivity
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limitation of our design is, that despite the simple task and 
highly salient stimuli, response initiation is still depended 
on preceding perceptual and attentional processes, mak-
ing it difficult to unambiguously disentangle the contribu-
tion of motor- versus sensory processes.

4.3  |  No evidence for alternate 
prioritization of left- and right-hand  
responses

One aim of our study was to investigate whether RT fluc-
tuations in congruent and incongruent trials might be in 

counterphase, indicating an alternating prioritization of 
left- and right-hand responses over time. Such a mecha-
nism is conceivable, given the previously demonstrated 
alternating prioritization of attended locations (Landau & 
Fries, 2012), objects (Fiebelkorn et al., 2013), or memory 
templates (Pomper & Ansorge, 2021).

While we observed significant fluctuations of behav-
ioral performance pooled across all trials, separate anal-
yses of congruent and incongruent trials revealed no 
significant peaks, thus, prohibiting any subsequent in-
vestigation of their phase relationship. A likely reason for 
this null finding might be that splitting the data into con-
gruent and incongruent responses resulted in an insuffi-
cient signal-to-noise ratio for the detection of behavioral 
oscillations (Fiebelkorn, 2021). As an alternating prioriti-
zation between different motor outputs on sensorimotor 
rhythmic temporal scale is indicated by previous electro-
physiological work (Pfurtscheller et al., 2006; Takamatsu 
et al.,  2021), future behavioral dense-sampling studies 
using higher trial numbers might successfully uncover 
this phenomenon.

On a trial-by trial level, however, our data show pro-
nounced sequential effects, with incongruent responses being 
both faster and more accurate than congruent responses.

Due to the constraint of not presenting more than four 
trials requiring the same response in succession, eventually 
incongruent trials were more likely than congruent trials. 
Thus, this result suggests that participants established a 
bias for response alternation on a slower temporal scale, in-
dicative of their higher subjective expectancies for response 
switches or “incongruent trials” in the current article's ter-
minology (Bertelson, 1961; Cho et al., 2002; Ho et al., 2019).

4.4  |  Speed of performance fluctuations 
likely reflects task characteristics

With frequencies from 12–25 Hz, our observed fluctua-
tions are about twice as fast as many of those reported 
in the past, which commonly found spectral peaks at 
4–10  Hz (Benedetto et al.,  2019; Fiebelkorn et al.,  2013; 
Fiebelkorn & Kastner, 2019; Landau & Fries,  2012; 
Pomper & Ansorge, 2021; VanRullen, 2016).

One obvious possibility would be the involvement 
of faster sensorimotor mu and beta neural oscilla-
tions in our study, given that the relevant reset event 
is a motor output rather than an external stimulus as 
used in most previous works(but see Bellet et al., 2017). 
However, several other studies nevertheless reported 
slower behavioral oscillations in the theta and lower 
alpha (4–7 Hz and 8–12 Hz, respectively) range, despite 
also analyzing the data relative to a preceding motor 
output (Benedetto et al., 2016, 2018; Hogendoorn, 2016; 

F I G U R E  6   Phase angles for significant fluctuations. Phase 
angles of response-time (left column) and sensitivity (right column) 
fluctuations for all significant peaks in the spectrum. Dots indicate 
individual participants, vectors represent the mean phase across 
participants
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Nakayama & Motoyoshi,  2019; Tomassini et al.,  2017; 
Zhang et al., 2019).

Alternatively, the increase in the speed of performance 
fluctuations could be related to our decidedly simple 
task design and salient target stimulus. More difficult 
tasks likely require more complex and thorough stimu-
lus processing, potentially resulting in lower attentional 
sampling rates and increased motor response criteria as-
sociated with slower fluctuations in motor excitability. 
Indeed, studies have demonstrated proportionate reduc-
tions in the speed of performance fluctuations related to 
increasing task difficulty (Chen et al., 2017; Holcombe & 
Chen, 2013; Re et al., 2019).

Notably, our data do feature peaks at a lower fre-
quency range (<10 Hz, particularly at 5.6 Hz for RT data 
and at 2.8 Hz for sensitivity data), albeit not statistically 
significant. Out of those, the peak at 2.8 Hz is lower than 
most previous observations of behavioral oscillations and 
outside of the presently hypothesized relevant frequen-
cies, particularly in the alpha and beta, but also the theta 
range. However, it is possible that a subset of participants 
exhibited rhythmic fluctuations in RTs in the lower fre-
quency range, at around 6 Hz (see also Figure S2), in line 
with either a sub-harmonic of the significant alpha peak 
at 12.5 Hz, or an additional independent oscillatory pro-
cess at a frequency closer to most recent reports of be-
havioral rhythms (e.g., Fiebelkorn et al., 2013; Landau & 
Fries, 2012; Pomper & Ansorge, 2021).

Finally, it is worth mentioning that a recent evalua-
tion of several dense-sampling experiments has partic-
ularly questioned the relevance of reported fluctuations 
in the lower frequency range, which might artefactually 
result from spectral decomposition of non-oscillatory 
components in the behavioral performance time-course 
(Brookshire,  2021). According to this account, the pres-
ently observed higher frequency peaks (> 12 Hz) are more 
likely to be of physiological than artefactual origin, com-
pared to previously reported lower frequency fluctuations.

5   |   CONCLUSIONS

Our present study reports cyclic fluctuations in RTs 
and sensitivity relative to a preceding motor action. 
Importantly, unlike previous dense sampling experiments, 
we used a simple task combined with highly salient stim-
uli and demonstrate that the phenomenon generalizes to 
less complex, cognitively less demanding protocols closer 
to everyday life. Moreover, our work further adds to the 
literature by demonstrating behavioral fluctuations at a 
relatively high speed, which might be a consequence of 
both low task difficulty and the involvement of sensori-
motor rhythms.

While the observed RT fluctuations of 12–20 Hz fit 
well with neural mu and beta oscillations reflecting cyclic 
changes in motor excitability, our concurrently observed 
peaks in the spectrum of the response sensitivity time-
course suggest at least a partial dependence on perceptual 
or attentional mechanisms.
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