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Abstract
Background: Type 2 Diabetes (T2D) diagnosis is based solely on glycaemia, even 
though it is an endpoint of numerous dysmetabolic pathways. Type 2 Diabetes 
complexity is challenging in a real-world scenario; thus, dissecting T2D heteroge-
neity is a priority. Cluster analysis, which identifies natural clusters within multi-
dimensional data based on similarity measures, poses a promising tool to unravel 
Diabetes complexity.
Methods: In this review, we scrutinize and integrate the results obtained in most 
of the works up to date on cluster analysis and T2D.
Results: To correctly stratify subjects and to differentiate and individualize a pre-
ventive or therapeutic approach to Diabetes management, cluster analysis should 
be informed with more parameters than the traditional ones, such as etiologi-
cal factors, pathophysiological mechanisms, other dysmetabolic co-morbidities, 
and biochemical factors, that is the millieu. Ultimately, the above-mentioned 
factors may impact on Diabetes and its complications. Lastly, we propose an-
other theoretical model, which we named the Integrative Model. We differenti-
ate three types of components: etiological factors, mechanisms and millieu. Each 
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1   |   INTRODUCTION

In diabetes, glucose metabolism is affected due to individ-
ual or simultaneous changes in insulin secretion, action 
or metabolism. Diabetes is diagnosed based on glycaemia 
and cut-off values were defined based on the presence 
of microvascular complications, namely retinopathy.1 
However, dysglycaemia, or the glucose altered metab-
olism, is not an all-or-nothing phenomenon, and on the 
contrary, it occurs continuously. Prediabetes (PD) is a less 
severe hyperglycemic state that depicts a higher risk of 
progression to diabetes. Importantly, individuals with PD 
can develop diabetes complications, whereas others with 
diabetes may never develop them, showing the limitations 
of the current clinical classification.2 Therefore, glycemic 
levels are not sufficient to inform about the onset and se-
verity of the condition.

Notwithstanding all investment in diabetes, specifi-
cally in Type 2 diabetes mellitus (T2D), it is still one of 
the main noncommunicable diseases, and its mortality 
increased by 70% since 2000.3 T2D is extremely heteroge-
nous,4,5 both in its initial presentation and complications' 
development, which is crucial to explain the sustained 
morbidity and increased mortality attributable to this 
condition.3,6 The empirical individualisation of therapy 
in diabetes dates back to 19th century,7,8 and is still prac-
tised. The latest therapeutic guidelines for T2D include 
several recent drugs that are giving better results regard-
ing cardiometabolic complications9 and start to have an 
increased focus on the patient's comorbidities.10 The con-
cept of precision medicine has been proposed, aiming at 
defining the most effective approach for a similar group 
of patients regarding genetic, environmental, lifestyle 
and clinical factors, among others.6 However, further ad-
vances in the ability to define precise therapies for diabe-
tes also depend on the acquired knowledge regarding the 
heterogeneity of the condition.

As early as 1965, two major groups were acknowledged 
in diabetes pathophysiology: insulin-resistant and insulin-
deficient individuals.11 The two pathophysiological mech-
anisms associated with these groups were assumed to be 

related to two main organs: insulin secretion impairment 
in the pancreas; and insulin resistance in the skeletal mus-
cle. Since then, much more complexity was added to dia-
betes pathophysiology, especially to T2D.12 More recently, 
it has been shown that other organs and factors, such as 
the lung and microbiome, can impact on T2D onset and 
progression.13–15 Additionally, it is currently accepted that 
T2D aetiology encompasses thousands of low impactful 
genes, as well as environmental and lifestyle factors, that 
interact with each other.16

Glucose metabolism is part of an intricate metabolic 
network where carbohydrates, lipids and other meta-
bolic pathways should be considered as a whole and, 
when affected, result in dysmetabolism and/or haemo-
dynamic alterations. Thus, depending on the affected 
mechanisms, diabetes can appear in distinct dysmet-
abolic contexts. Interestingly, there are lipodystrophic 
phenotypes in which the inability of white adipose tis-
sue to expand, despite diverse BMI values, causes ectopic 
fat deposition.17 These subjects are exposed to athero-
genic dyslipidemia,18 and in the liver, the development 
of fatty liver may progress to steatohepatitis19 that can 
be further impacted by different adipose tissue amounts 
and functions. Despite showing similar patterns re-
garding hyperglycaemia and hyperlipidemia, subjects 
with lipodystrophy might require distinct treatment.20 
Another example relates to diabetes and hypertension 
bidirectional association. Both conditions have several 
common pathophysiological mechanisms, namely hy-
perinsulinemia, increased sympathetic nervous activity, 
activation of the renin–angiotensin–aldosterone system, 
endothelial dysfunction, etc.21 The onset of hyperten-
sion in subjects with Type 1 diabetes (T1D) has been 
related to the onset of kidney dysfunction; however, in 
subjects with T2D, it can appear before22 and they can 
show a prehypertensive profile some years earlier.23 
The causal association of T2D in hypertension was de-
picted in a Mendelian Randomization (MR) study but 
does not explain the onset of T2D in hypertensive sub-
jects.24 However, a higher incidence of T2D in hyperten-
sive subjects as compared with normotensive subjects 

component encompasses several factors to be projected in separate 2D planes al-
lowing an holistic interpretation of the individual pathology.
Conclusion: Fully profiling the individuals, considering genomic and environ-
mental factors, and exposure time, will allow the drive to precision medicine and 
prevention of complications.
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is evident.24 The above-described complexity, although 
easy to understand in concept, is very hard to demon-
strate and tackle in clinical practice. Dissecting and un-
derstanding T2D heterogeneity is a priority to reverse the 
current scenario.25

To tackle the overly complex clinical challenges, in-
volving multiple aetiological factors, organs and mecha-
nisms, classical statistical analyses are frankly insufficient. 
Recent progress in memory and computation power al-
lowed for the development and implementation of more 
complex algorithms, including a collection of tools that 
can learn from data, named machine learning (ML). 
Specifically, cluster analyses, using unsupervised learning 
algorithms (algorithms that deal with observations that do 
not have a label to learn from26), are promising tools to 
unravel diabetes complexity.

We will critically review distinct cluster analysis meth-
odologies currently used to study diabetes and integrate 
results from different studies. Since all analyses aimed at 
understanding diabetes/T2D pathophysiology, we antici-
pate their conclusions to fit as pieces in a puzzle. Finally, 
we suggest a model that can be applied to diabetes preci-
sion medicine and from a wider perspective to dysmetab-
olism overall.

2   |   ADVANCEMENT OF DIABETES 
MANAGEMENT—TRAVELLING 
ON THE ROAD TO PRECISION 
MEDICINE

The word diabetes (‘to go through’ or siphon) is attrib-
uted to Apollonius of Memphis in Greece around 250 BC. 
However, its clinical description and some complications 
date back to 3500 years ago in Egypt.27 Interestingly, two 
types of diabetes—congenital and late onset—and their 
relationship to heredity, obesity, sedentariness and diet, 
were already recognized in medical treatments in an-
cient India.8,28 At the time diabetes resulted in death and 
preventing it was the main goal. Additionally, complica-
tions of diabetes, such as peripheral neuropathy, gangrene 

and erectile dysfunction, were described by an Arab doc-
tor, Avicenna (AD 960–1037).27 Centuries later Matthew 
Dobson (1732–1784) and Michel Chevreul (1786–1889), 
through the application of chemistry to diagnosis, iden-
tified glucose as the sugar that was increased both in 
urine and serum of these patients.8 Arguing that glu-
cose appeared in the urine because the body was unable 
to assimilate it, Dobson considered diabetes a systemic 
disease rather than kidney disease, as it was considered 
until then.28 These findings led to the research on the me-
tabolism of carbohydrates. However, insulin was not yet 
available and treatments were based on individualisation 
of diets, rest or other lifestyle changes,7 unable to prevent 
death from acute complications. Neurological complica-
tions were also quite frequent, the association of neurop-
athy, vascular disease, plantar ulcers and gangrene with 
diabetes was also described, rising the hypothesis that mi-
crovascular disease was the cause of some complications.28

In 1921–22 Banting and Best isolated insulin, one of 
the great discoveries in medicine, which has allowed most 
people with insulin-dependent diabetes to be treated to 
this day. On the contrary, it led to the distinction of T1D, 
in which people needed insulin, from T2D, in which in-
sulin was present but ineffective.27 Since the problem in 
question was hyperglycaemia, other therapeutic strategies 
would be developed based on glycemic control.27 In the 
1950s, the first sulfonylurea appeared—the first oral an-
tidiabetic drug (OAD) for people with T2D.29 Metformin, 
the most used OAD, appeared a few years later with its 
mechanism of action only recently fully understood.30 
Since then, other groups have been made available as 
the involvement of other organs and mechanisms is 
known.10,12,29 In a paradigm of therapy, which in the 
meantime has become evidence-based clinical guidelines 
began to be published, with the main therapeutic focus 
on glycemic control.31 It was also recognized that the re-
duction in complications implied simultaneous treatment 
of other diseases that represent risk factors for the same 
complications, such as dyslipidemia and hypertension.31

The aetiologic classification of diabetes recognizes 
several types besides Type 1, Type 2 and gestational 

F I G U R E  1   Cluster analysis scheme. 
A heterogenous population regarding 
characteristics of interest is stratified 
by a chosen algorithm that places them 
in a hyperplane, differentiating natural 
homogenous groups.
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diabetes.1 The recognition that there is still a high degree 
of heterogeneity leads to an effort to adapt the numerous 
drugs with distinct mechanisms to the patients who ben-
efit most from them.32 Weight control, hypertension and 
dyslipidemia, among others, have gained increasing rel-
evance along with glycemic control.10 Nowadays, these 
diseases are recognized as comorbidities but treated as in-
dependent conditions.

3   |   CLUSTER ANALYSIS

Cluster analysis is an ML methodology that uses a group 
of algorithms that can deal with nonlabelled data, named 
unsupervised learning (Figure 1). Cluster analysis aims to 
stratify population observations' in natural groups/clus-
ters without needing a priori categorization. Within each 
cluster observations, similarity is maximized whilst mini-
mized between clusters.33

Distinct clustering algorithms have advantages and 
drawbacks related to computation time, the need for an 
a priori knowledge regarding the number of groups, and 
cluster shape in a multidimensionality space that they 
can find (Table 1).26 In (dys)glycaemia, specifically in the 
resolution of T2D heterogeneity, one should consider sev-
eral parameters with distinct and specific characteristics 
(e.g. genes, environmental factors, biochemical analysis, 
omics, etc.). Therefore, it is natural that the best result is 
obtained using an ensemble of algorithms.

Cluster analysis workflow implies taking several de-
cisions (e.g. choosing the algorithm, variables to inform 
the cluster, similarity and distance measures, etc.). When 
algorithms are not able to find the best number of clus-
ters (Table  2), there is the need to determine a priori a 
number of clusters.34 Still, different measures can give a 
distinct optimal number of clusters and therefore should 
be carefully selected and interpreted. Of note, the found 
groups should be clinically relevant. Furthermore, aside 
from finding natural groups in data, cluster analysis is a 
powerful tool in data exploration and visualization. In the 
context of (dys)glycaemia heterogeneity, by profiling the 
found groups, we can explore what characterizes them, 
posing a promising tool to explore and tackle (dys)glycae-
mia complexity.

4   |   CLUSTER ANALYSIS 
ALGORITHM IMPACT ON 
FOUNDED CLUSTERS

To perform a cluster analysis, impactful decisions must 
be made: inclusion and exclusion criteria, choice of vari-
ables and the algorithm to perform the analysis, among 
others. Additionally, indexes that define the best num-
ber of clusters and distance metrics have to be selected.26 
Cluster analysis used to date to tackle T2D and dysme-
tabolism have a dissimilar methodology that must be 
considered when interpreting and integrating the results 
(Table 2).35–38

Hierarchical clustering and k-means are two of the 
most well-known clustering algorithms. Agglomerative 
hierarchical clustering26 is a simple algorithm that hi-
erarchically joins nested clusters in a bottom-up way, 
with its agglomerative process visualized in a dendro-
gram. This process does not need the prespecification 
of the optimal number of clusters, though it requires an 
a posteriori cut-off to define them. Furthermore, data 
can be analysed at different cut-off values, allowing us 
to understand how observations aggregate. However, 
it can only find clusters with specific shapes, it gives 
distinct solutions depending on the chosen aggregation 
methodology to join the observations and has a high 
computation cost.26 k-means is a simple and efficient 
algorithm. Besides not dealing well with categorical 
variables, the final solution is highly impacted by its 
random initialization, requires an a priori specification 
of the number of clusters, and importantly, it is prone 
to find spherical clusters, even if this is not their natu-
ral shape.26 The latter can limit its use. Partition around 
medoids (PAM) is a k-medoids algorithm, that is less 
sensitive to noise than k-means, but with a higher com-
putational cost.26

k-means, PAM and hierarchical clustering have been 
used mainly when few parameters are used to tackle 
T2D.39 To perform more complex analyses, self-organizing 
maps (SOMs) and topological-based analyses have proven 
to be more efficient and able to find clusters that have 
nonspherical shapes.26,40

Hierarchical SOMs, followed by hierarchical cluster-
ing,41 have been used to solve multiple intricate problems, 

Hierarchical Partitioning

•	 Agglomerative26,41 •	 Hard clustering
-	 k-means41

-	 k-medoids (Partition around medoids—PAM)52

-	 Self-organizing maps (SOM)37,41

•	 Soft clustering
-	 Fuzzy c-mean59

T A B L E  1   Clustering algorithms used 
in diabetes studies
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including clustering analysis of T1D complications.40 
SOM is a neural network-based algorithm, which maps 
observations to neurons in a grid that at the end will rep-
resent the cluster (cluster centroid).42 In summary, the 
first algorithm allows data dimensionality reduction, 
whereas the second enables the stratification and under-
standing of how the units agglomerate together. Aside 
from dealing with large and complex data, SOMs can find 
different cluster formats. Nonetheless, it has drawbacks 
as requiring too many parameters to be set and opti-
mized, its computational cost and the number of clusters 
must be set a priori.42 Network analysis is a graph-based 
method that assesses subjects (nodes) in relation to each 
other (edges).36

The abovementioned algorithms are classified as 
hard clustering algorithms, i.e. they group the popula-
tion to assign one subject only to one cluster. Contrarily, 
soft clustering uses algorithms that define the probabil-
ity of one observation belonging to distinct clusters43,44; 
thus, one subject can belong to multiple clusters at a 
given time. Despite computational cost and convergence 
drawbacks, soft clustering algorithms are extremely use-
ful when an item can belong to more than one cluster, 
as is the case of clustering T2D-related genes/SNPs and 
mechanisms.38

5   |   POPULATION AND 
PARAMETER SET TO RESOLVE 
TYPE 2 DIABETES

Clusters analyses to resolve T2D heterogeneity are also di-
verse regarding the analysed population and set of param-
eters used to inform the cluster,40,43–45 thus impacting on 
the groups found. Methodological heterogeneity reveals 
the authors' distinct perspectives on diabetes definition, 
where it stands within the wider dysmetabolism concept, 
and the number and type of parameters that allows a pre-
cision medicine approach to T2D.

Although T2D is classically considered an affection 
of glucose metabolism, glucose metabolism occurs in-
tegrated with other substrates'.45 Glucose metabolism-
related parameters though informing about groups with 
different conditions, do not give a broader perspective on 
metabolism nor account for the overall metabolic hetero-
geneity. T2D impact relies mainly on its complications' de-
velopment that, in turn, relate to other factors.46 Herein, 
we distinguish aetiological factors (e.g. time, genes, en-
vironmental factors, lifestyle factors), pathophysiolog-
ical mechanisms (e.g. overall or organ-specific insulin 
resistance, insulin secretion, overall or organ-specific in-
sulin clearance), other dysmetabolic comorbidities (e.g. 

T A B L E  2   Advantages and drawbacks of clustering algorithms (Adapted from26)

Clustering Algorithm Advantages Disadvantages

Hierarchical •	 Does not need prespecification of the 
number of clusters

•	 Accepts any kind of distance function
•	 Visualization of number of clusters
•	 Agglomerative good at identifying small 

clusters, divisive better identifying large 
clusters

•	 High computational cost, it does not scale properly
•	 Difficult to alter once the analysis starts
•	 Different clusters form according to the linkage 

function
•	 More prone to identify spherical and convex clusters
•	 Need to define the cophenetic distance cut-off
•	 Sensitive to outliers

k-means •	 Simple to implement and understand
•	 Fast and efficient for large datasets

•	 Require specification of the number of clusters
•	 Sensitive to the randomly chosen seeds
•	 Some implementations use only
•	 More prone to identify spherical and convex clusters

PAM •	 Simple to understand and implement
•	 Less sensitive to noise and outliers than 

k-means
•	 Allows using general dissimilarities of 

objects

•	 Require specification of number of clusters
•	 Sensitive to random initialization of medoids
•	 Higher computational cost than k-means
•	 More prone to identify spherical and convex clusters
•	 Does not scale well for large datasets

SOM •	 Easy to understand and interpret
•	 Deals with large and complex datasets
•	 Finds different clusters formats

•	 Many parameters to be set and optimized
•	 Computational expensive
•	 When initialized randomly, it is sensitive to the 

initial seeds
•	 The number of clusters must be previously defined

b-NMF •	 Best results for an overlapped dataset
•	 Datapoint may belong to more than one 

cluster.

•	 Require specification of the number of clusters
•	 Computational cost

Abbreviations: PAM, partition around medoids; SOM, self-organizing maps.
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hypertension, dyslipidemia), biochemical and other inter-
nal environment factors present in the organism or that 
the organism is exposed to, that is its milieu (e.g. glycae-
mia, insulinemia, free fatty acids, blood pressure, body 
weight).

Ahlqvist et al performed a cluster analysis on a popu-
lation of individuals recently diagnosed with diabetes.35 
The analysis considered six clinical parameters: the pres-
ence of GAD antibodies (GADA), age at diagnosis, HbA1c, 
BMI, HOMA-IR and HOMA-B. The analysis does not rely 
only on glycaemia nor on insulin levels. Nevertheless, the 
population solely includes individuals that were diagnosed 
based on current criteria. The authors found five optimal 
clusters using the silhouette index and hierarchical clus-
tering. One of these clusters, named severe autoimmune 
diabetes (SAID), included GADA+ subjects. Afterwards, 
GADA+ subjects were excluded and the k-means al-
gorithm was used to define the other 4 clusters: severe 
insulin-deficient diabetes (SIDD); severe insulin-resistant 
diabetes (SIRD); mild obesity-related diabetes (MOD); and 
mild age-related diabetes (MARD). These clusters were 
replicated in other northern European cohorts.35 In brief, 
SAID subjects showed an early-onset condition, low BMI 
and poor metabolic control. Subjects in the SIDD cluster 
were similar to SAID but GADA; these subjects showed 
a higher risk of having diabetic retinopathy. A variant in 
human leukocyte antigen (HLA) locus (rs2854275) was 
found to be associated with SAID but not with SIDD.

Interestingly, Zaharia et al showed that, in a German 
population, individuals that were GADA- at baseline 
could be GADA+ after 5 years, determining that for bet-
ter classification of autoimmune diabetes other antibod-
ies should be used.47 SIRD cluster included individuals 
with marked insulin resistance, high BMI and a high 
prevalence of nonalcoholic fatty liver disease (NAFLD). 
Of note, this cluster also revealed to have the highest β-
cell function. Additionally, individuals in the SIRD clus-
ter were at the highest risk of developing chronic kidney 
disease (CKD) and diabetic kidney disease (DKD, defined 
by persistent macroalbuminuria), despite proper glycemic 
control. Finally, subjects in MOD showed higher values 
of BMI but not insulin resistance, whereas MARD sub-
jects were older, with only modest metabolic affection, 
and were not associated with the evaluated diabetes 
complications. These last two clusters included most of 
the population and still have a considerable proportion 
of subjects with diabetes complications. Furthermore, 
not all diabetes complications were evaluated. In fact, it 
has been suggested that borderline diabetes is associated 
with an increased risk of dementia and Alzheimer's dis-
ease, which is potentiated when hypertension is present. 
Regarding gene loci, rs7903146 (a TCF7L2 SNP associated 
with T2D) was associated with SIDD, MOD and MARD; 

whereas rs10401969 (a TM6sf2 gene variant associated 
with NAFLD) was associated with SIRD but not with 
MOD.35 The abovementioned four subgroups of T2D have 
been overall replicated, using the same methodology as 
Ahlqvist et al., in distinct geographical locations and eth-
nicities. This further confirms the already known associ-
ation of diabetes with younger subjects, with lower BMI 
and more insulin deficiency in Asian and Indian popu-
lations.48,49 Moreover, 23% of subjects changed cluster in 
the 5-year follow-up.47 Particularly, people in the insulin-
deficient cluster (SIDD) were changed to clusters with bet-
ter insulin secretion (MOD and MARD).

Li et al. performed a topology-based cluster analysis of 
2552 T2D subjects from several ethnicities, informed by 
73 mixed features from electronic medical records derived 
from clinical data.36 These features included biochemical 
and clinical parameters besides glycaemia, thus approach-
ing T2D in a wider (dys)metabolic context. This was a 
landmark study and one of the first studies to show the 
ability to deal with a high number of variables to strat-
ify subjects with T2D. However, the stratification results 
depend on the parameters selected to inform the cluster 
rather than the chosen population. It is not clear whether 
the authors have found three diabetes subtypes or three 
subtypes of patients that have diabetes, considering the 
highly mixed chosen parameters to inform the analysis 
that also included several disease codes and medications. 
The chosen methodology renders it difficult to validate it 
in different populations.

To extend clusters' evaluation to subjects with normo-
glycaemia and PD, we accounted for age as a surrogate of 
time exposition, anthropometry and biochemical parame-
ters (glycaemia, insulin, c-peptide and free fatty acids) in 
three-time points of an OGTT.37 In this study, we used a 
hierarchical SOM, followed by a hierarchical clustering al-
gorithm. Subjects were then profiled concerning the above-
mentioned parameters and several mechanism's surrogate 
indexes, including overall and tissue-specific insulin re-
sistance, insulin secretion, insulin clearance, NAFLD and 
glomerular filtration rate (GFR). The sample had a limited 
number of subjects with nontreated T2D. Nonetheless, 
none of the subjects had diabetes 5 years earlier. In this 
work, we found two main clusters: one that includes sub-
jects with a median metabolic phenotype compared with 
the overall population; and the other with elevated insulin 
resistance and insulin secretion. However, these 2 clusters 
were highly heterogeneous when they were evaluated for 
a higher number of clusters. For example, despite the pres-
ence of a main insulin-resistant group that comprised sub-
jects with normoglycaemia and dysglycaemia, it included 
subgroups that could be differentiated by their adipose 
tissue insulin resistance. Moreover, even though groups 
with lower estimated GFR (eGFR) were insulin-resistant, 
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not all insulin-resistant groups showed this association. 
Additionally, we found that clusters including individu-
als with normo/dysglycaemia and low eGFR could be fur-
ther profiled and showed insulin resistance and NAFLD. 
Consistently, other groups have also shown that both high 
insulin resistance and NAFLD are related to kidney dys-
function in subjects with or without T2D.50 In Ahlqvist 
et al. the group of individuals that had the highest risk of 
developing CKD/DKD, even considering proper glycemic 
control, was the most insulin-resistant one.35

Furthermore, these subjects had the lowest GFR at 
baseline (when they had less than 12 months from di-
agnosis) in the German Diabetes Study cohort.47 The 
impact of insulin resistance and NAFLD on GFR seems 
to be, at least partially, independent from glycaemia. 
Importantly, both conditions can be associated with hy-
perinsulinemia and insulin is a known trigger and a tar-
get of kidney (dys)function that may have a role in the 
pathophysiology of T2D.51 Interestingly, the heterogene-
ity of affected mechanisms was not exclusive to people 
with T2D, including also subjects with PD and normo-
glycaemia. Our work would benefit from being validated 
in other cohorts. Nevertheless, we highlight that T2D di-
agnosis should consider other parameters besides glycae-
mia. In fact, glucose level impact is differently perceived 
by each individual. Therefore, it should include subjects 
with different ranges of glycemic values together with 
other parameters.

An interesting complementary approach to dissect T2D 
heterogeneity is the use of genetic markers. Reasoning that 
genetic variants remain constant despite disease progres-
sion and treatment, unlike clinical variables, thus being 
more likely to reveal T2D causal mechanisms, a cluster 
analysis including T2D gene-traits associations, including 
94 genetic variants and 47 traits was performed.38 Aside 
from genetic data the analysis was informed with clinical 
parameters, including surrogate indexes of insulin secre-
tion and insulin resistance, as well as lipid parameters, that 
allowed for the identification of other insulin resistance-
related groups. Importantly, in this work b-NMF, a soft 
clustering algorithm was used, allowing an SNP to be as-
sociated with more than one mechanism and one cluster. 
The authors identified five clusters of genetic loci-traits 
associations: two with variant-trait associations related to 
reduced β-cell function, distinct in pro-insulin levels; and 
three insulin resistance-related, namely obesity-mediated, 
lipodystrophy-like fat distribution and disrupted liver lipid 
metabolism. Of note, this is also a potentially complex ap-
proach. As more than 100 loci were already found to be 
associated with T2D, each one with a very slight impact 
on the increased risk of the disease and in dysmetabolism 
aetiology, we should consider, along with genetic factors, 

their interactions with environmental and lifestyle fac-
tors. Interestingly, Udler et al. evaluated the Genetic Risk 
Score (GRS) association with relevant outcomes in each 
cluster. Coronary artery disease (CAD) was mostly associ-
ated with lipodystrophy and Beta-cell clusters. The beta-
cell cluster was also associated with ischaemic stroke. 
Increased blood pressure was only associated with lipo-
dystrophy cluster, which also showed an association with 
higher urine albumin–creatinine ratio (UACR). Liver/
Lipid cluster was associated with decreased renal function 
and diminished UACR. GRS outcomes were validated in 
T2D cohorts by profiling subjects' characteristics in top 
quantile GRS's subjects.38

More recently, Wagner et al. focussed on a german pop-
ulation considered at risk of developing diabetes based on 
BMI, previous history and family history (TUEF/TULIP 
cohort).52 Besides OGTT-based measures reflecting blood 
glucose, insulin resistance and insulin secretion, liver, 
subcutaneous and visceral fat values measured by MRI 
and HDL levels, polygenic risk scores for diabetes were 
also included. The defined six clusters were then evalu-
ated in a larger cohort (Whitehall II). However, to assign 
the latter individuals to the clusters, the authors used less 
profiling variables, still based on OGTT measurements. 
The authors reported a relocation rate of only 60% in the 
original cohort, which suggests that MRI fat measure-
ments do not appear to be superior to measurements such 
as BMI and waist circumference.37 Importantly, progres-
sion to diabetes, CKD, CV events and all-cause mortality 
were assessed.52 Consistent with our findings,37 Wagner 
et al. demonstrated that pathophysiological affection is al-
ready present before diabetes diagnosis.52 Within the six 
defined clusters, three that were older and/or more obese 
showed higher glycaemia (clusters 3, 5 and 6); one related 
to insulin deficiency and raised genetic risk (cluster 3); 
and two with insulin resistance (clusters 5 and 6). Cluster 
6 showed a dissociation of both risks of progression to di-
abetes and CKD in Whitehall II cohort. However, consid-
ering that GFR is not depicted in TULIP/TULIF and CKD 
progression models in Whitehall II were not adjusted to 
GFR at the baseline these results should be carefully inter-
preted. Cluster 4 is consistent with a metabolically healthy 
obese profile that includes younger subjects than the most 
dysmetabolic groups and did not show protected profile 
overtime, namely regarding CV events. In fact, although 
clusters in TULIP/TULIF cohort differ in intima-media 
thickness, in the Whitehall II cohort, the clusters did 
not differ in CV outcomes risk, after adjustment for BMI 
and age, except for Cluster 2 that had a protected profile. 
Considering the relevance of CV events in diabetes, this 
highlights the importance of an enriched milieu to better 
stratification.37
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6   |   WHAT CAN WE LEARN FROM 
CLUSTER ANALYSIS?

Insulin secretion and resistance have been included in pa-
rameters informing cluster analyses. However, there can 
be different mechanisms that lead to insulin deficiency 
and resistance.37 It has been suggested that insulin resist-
ance can be considered a defensive mechanism against el-
evated insulin secretion due to a highly nutritional load in 
a sensitive β-cell.53 In distinct cluster analysis, most of the 
groups found to be insulin-resistant were the ones with the 
highest insulin secretion.35,37 Nevertheless, the amount of 
circulating insulin depends not only on the cells' secretion 
capacity but on overall insulin metabolism and on insulin 
clearance.54 Changes in insulin clearance have also been 
linked to hyperinsulinemia.37,54 Insulin resistance has 
been associated with age and BMI. Interestingly, in work 
by Alqhvist et al., MARD and MOD groups differ from 
the SIRD in that they are less fat or younger, respectively, 
showing better metabolic control.35

Several questions remain to be clarified concerning the 
mechanisms leading to insulin resistance. One concerns 
the mechanisms through which age and BMI impact on 
insulin resistance and whether this implies a different 
therapeutic approach. Secondly, in the setting of insulin 
resistance, it is known the association between liver and 
adipose tissue but whether insulin resistance develops 
through distinct pathways, implying distinct therapeutic 
approaches, remains elusive. Thirdly, when it comes to di-
abetes complications, the majority of the results were ob-
tained using patients undergoing treatments, which may, 
in its turn, promote the complication's onset.55 Finally, 
cluster analysis showed the association between GFR and 
albuminuria with insulin-resistant states40,45,52,56; how-
ever, the presence of an association does not necessarily 
imply homogeneity between clusters, when it comes to 
kidney function, making this an aetiological factor of the 
uttermost importance in diabetes stratification.

Udler using SNP and traits, in addition to HOMA-IR 
and HOMA-B, namely lipid profile, found three groups 
of insulin-resistant subjects that showed involvement of 
different mechanisms and organs.38 We and others have 
shown that distinct insulin resistance patterns can be 
present in subjects with normoglycaemia and PD.37,52

Altogether these support the view that, in order to 
stratify subjects to differentiate a preventive or therapeutic 
approach to diabetes, one should inform the cluster anal-
ysis with more parameters reflecting other mechanisms 
metabolites and factors (e.g. lipids, blood pressure, insu-
lin). Additionally, diabetes pathophysiology occurs con-
tinuously and people without diabetes can already have 
diabetes complications, hinting at different susceptibili-
ties to glycemic levels. This may be due to concomitant 

exposure to other factors such as hypertension or dyslipid-
emia or due to the common underlying pathophysiologic 
mechanisms.

7   |   NEW MODELS FOR AN 
APPROACH TO DIABETES IN 
PRECISION MEDICINE

Cluster analysis is contributing to uncover the heteroge-
neity of diabetes.35,37,38,47 However, its superiority over 
simple predictive models (e.g. predicting complications 
such as renal dysfunction) is being questioned.56

McCarthy proposed the palette model to resolve T2D 
heterogeneity.57 The model defined component planes, 
such as mechanisms, aetiological factors and others, that 
can be affected, comparing them to a palette hue. The 
characterization of subjects by their component planes 
places them in a bidimensional plane where the path from 
normoglycaemia to diabetes can be assessed for each in-
dividual. Importantly this model includes subjects with 
normoglycaemia and dysglycaemia, which have different 
affected mechanisms. Ahlqvist et al. suggested a model 
based on the assumption that there is a dominant pathway 
that gives at least to the majority of patients with diabetes 
a well-defined ‘palette colour’.58 Additionally, few clinical 
parameters render larger groups.

In our view, a precision medicine model to approach 
diabetes must consider glycaemia and glucose metabo-
lism, as well as other substrates and factors, that impact 
on dysglycaemia and/or diabetes complications onset and 
progression. Diabetes complications occur for different 
values of glycaemia, impacted by the metabolic context 
of the individual. In fact, dysmetabolic factors interaction 
might potentiate the risk for specific conditions, as is the 
case of glycaemia and blood pressure interaction in the 
development of Alzheimer's disease.55 Finally, the model 
must be holistic and applicable to different ethnicities. 
There are ethnicities that show a higher risk for the onset 
of T2D at younger ages and for lower BMI.48 Interestingly, 
subjects with an Asian genetic background seem to have 
diminished insulin secretory capacity, but one cannot ex-
clude the environmental and culture-related factors.

We propose to paint another picture, the integrative 
model (Figure 2). We consider that the approach can only 
be attained by being detailed in the metabolic characteri-
zation of the individuals and by placing it in a wider con-
text of dysmetabolism. Thus, we consider the path from 
normometabolism to dysmetabolism, in which dysglycae-
mia is one axis among other factors that can impact on 
complications onset/progression and organ dysfunction. 
Therefore, the metabolic condition of each subject is ap-
proached in an integrated way. Also, we differentiate three 
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types of components: aetiological factors, mechanisms 
and milieu. Each encompasses several factors or axis that 
are projected in separate 2D planes. We postulate that, by 

deeply profiling a subject for one type of component, we 
can place him in the corresponding plan. Furthermore, 
we postulate that we can predict where the individual is in 

F I G U R E  2   Integrative model of diabetes. (A) Subjects are deeply characterized regarding aetiological factors (including genes, lifestyle 
and environmental factors), underlying physiopathological mechanisms and metabolic and haemodynamic factors that they are exposed to. 
They are placed correspondingly onto the aetiology, mechanisms and milieu plan. The location of a subject in each plan can be predicted 
by knowing their position in the others. Ultimately, aetiology, mechanisms and milieu project the subject onto the metabolic phenotype 
plan where its health condition is assessed also considering diabetes complications as nephropathy, retinopathy and cardiovascular 
complications. Each subject path through time in the metabolic phenotype plan can be analysed but also predicted, leveraging therapeutic 
and preventive strategies. (B) Aetiology, mechanisms and milieu for each subject can be summarized and more easily visible on a radarplot.

F I G U R E  3   From the palette model to the proposed integrative model. The integrative model that we propose was based on the 
McCarthys' palette model57 but differs essentially in the path and in the component planes of the model.
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one plan by knowing the others. Ultimately it will allow 
placing each individual in a last plan where his metabolic 
state is known. It is natural that there are groups in the 
data. However, given the possible combinations of af-
fected mechanisms and organs, it is clear that their num-
ber is too high for human understanding.

This model differs from McCarthy's palette model in 
two main points: (1) it considers the path to dysmetabo-
lism and not to hyperglycaemia; (2) it separates the dif-
ferent aetiological factors from the affected mechanisms 
and from the internal environment to which the person is 
exposed on different levels (Figure 3). The different planes 
are thus projected among themselves, giving us the pos-
sibility to know one when we fully evaluate the others. 
This differentiation can be relevant to prioritize the clin-
ical approach to the individual and to delineate distinct 
integrated therapeutic and preventive strategies to be ad-
opted in the different planes that nonetheless should be 
validated in clinical studies.

Currently, in therapeutic individualization, therapy is 
first prescribed to hyperglycaemia and then adapted ac-
cording to the individual characteristics of each patient. By 
contrast, in precision medicine, the therapeutic approach is 
chosen after assigning the patient to a group that already 
considers the individual specificities. For example, in the 
individualized treatment of T2D, a subject without athero-
sclerotic disease or CKD but with hypertension and poorly 
controlled glycaemia, when on metformin, can be medi-
cated with one of five drugs (DPP4, GLP-1, SGLT-2, thiazo-
lidinediones, sulfonylureas). This will be chosen by each 
doctor considering some characteristics of the patient, such 
as weight. In addition, an antihypertensive is associated. In 
real life, situations are not so clear as in the guidelines. For 
instance, what to do with a patient with T2D on metformin, 
with good glycemic control (average HbA1c 6.8%) but with 
evidence of early DKD and without other metabolic risk 
factors? How intensive and with which agents should he be 
treated to have the best health outcome? Is it better to use 
an SGLT-2 inhibitor or/and start an ACE2 inhibitor? Is this 
the best treatment for all patients in this condition? Or what 
to do with another patient with 15 years of T2D, mostly with 
poor control (HbA1c >8.5%) under different antihypergly-
cemic medication, without other risk factors or evidence of 
diabetes complications? Should we keep trying to put him 
in a good track of glycemic control? For what purpose? In a 
precision medicine approach, he would first be assigned to 
a group of people sharing common features of the overall 
metabolic condition, already accounting with all his speci-
ficities (including milieu, mechanisms and aetiological fac-
tors) for which the optimal treatment of that group would 
be already tested, defined and can then be prescribed for 
that individual.

In order to train and validate this theoretical model, 
datasets that consider the overall metabolism and deep 
phenotyping subjects in the distinct proposed planes are 
needed. Ultimately this model may be implemented in a 
decision support system that predicts where people are in 
their overall metabolism. This would assign the individual 
to a homogeneous group, eventually unravelling his met-
abolic footprint.

8   |   CONCLUSION

Precision medicine allows tailoring an approach or treat-
ment to different individuals. In other words, a population 
is stratified into similar groups, considering relevant char-
acteristics to the condition (e.g. T2D). Doing so for each 
group an appropriate therapeutic approach is defined. 
Although precision medicine approaches can make use of 
genetic data, they can also be based on many other types 
of clinical data. Observed complexity is solved with the 
help of mathematical algorithms that stratify individuals 
into groups by similarity.

In the era of omics and digital health, in which we 
can extract and deal with thousands of features and use 
them to tailor care to diabetes, it is not prudent to limit 
cluster analysis to a few already preestablished common 
mechanisms. Furthermore, these new strategies allow 
us to deal with blood glucose levels as a continuum, to-
gether with the overall milieu, surpassing the artificial 
glycaemia-based cut-off approach. By fully profiling sub-
jects regarding genomics, environmental factors and time 
exposition, we will be able to know which mechanism(s) 
is(are) affected and is(are) responsible for a dysmeta-
bolic condition. This enables the use of drugs in a pre-
cise manner and the discovery of new ones. Additionally, 
the prevention of complications, such as cardiovascular 
events, may be earlier and more effective. The great big 
challenge will be identifying which features are relevant 
to consider precise care and gather the data to perform 
these analyses. In a global village such as our world, we 
should gather robust clinical data working in a world-
wide consortium.
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