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Abstract

Untangling the relationship between network complexity and ecological

stability under climate change is an arduous challenge for theoretical and

empirical ecology. Even more so, when considering extreme climatic events.

Here, we studied the effects of extreme climatic events (heatwaves) on the

complexity of realistic freshwater ecosystems using topological and quantita-

tive trophic network metrics. Next, we linked changes in network complexity

with the investigation of four stability components (temporal stability, resis-

tance, resilience, and recovery) of community’s functional, compositional, and

energy flux stability. We found reduction in topological network complexity to

be correlated with reduction of functional and compositional resistance.

However, temperature-driven increase in link-weighted network complexity

increased functional and energy flux recovery and resilience, but at the cost of

increased compositional instability. Overall, we propose an overarching

approach to elucidate the effects of climate change on multidimensional stabil-

ity through the lens of network complexity, providing helpful insights for pre-

serving ecosystems stability under climate change.
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INTRODUCTION

Species composing ecological communities are inter-
connected in intricate networks of interactions, which
may comprise competition, predation, mutualism, and par-
asitism (Pilosof et al., 2017; Thomas et al., 2009). Species
embedded in an ecological network exchange signals,
materials, and energy (Montoya et al., 2006). The way eco-
logical networks are organized (that is, their structure and
complexity) depends on the type of interactions linking

the nodes of the network, on the strength and allocation of
those interactions, and on a wide array of biotic and
abiotic factors. The overall structure and complexity of
the network determine how an ecosystem functions
(Thébault & Fontaine, 2010).

How network complexity influences ecosystem’s
stability has been hotly debated in ecology over the
past half-century (MacArthur, 1955; May, 1972; McCann
et al., 1998, 2000; Montoya et al., 2006; Pimm, 1984). Both
theoretical (Allesina & Tang, 2012; Grilli et al., 2016) and
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empirical (Neutel et al., 2002, 2007) evidence have
provided insights on the relationship between stability and
network complexity. Yet, how network complexity corre-
lates with stability remains divisive (Landi et al., 2018;
MacArthur, 1955; May, 1973; Toju et al., 2017).

Ecological stability is the core notion to understand
ecosystem’s potential to withstand and/or to recover
from perturbations. It underlies our ability to understand
today’s ecosystem responses to disturbance and to predict
future ecosystem dynamics. Ecological stability may be
the key to an effective ecosystem management and to the
development of meaningful policies against rapid envi-
ronmental change (Donohue et al., 2016; Kéfi et al.,
2019). With the increasing pressure exerted by human
activities upon ecosystems, understanding whether and
how ecological network properties are related to stability
in face of disturbance has become a central matter in
ecology (Nagelkerken et al., 2020; Yuan et al., 2021).
At the same time, ecological stability has recently emerged
as a multidimensional construct (Donohue et al., 2013,
2016). That is, several metrics (including temporal variabil-
ity, resistance, resilience, and rate of recovery) are needed
to fully describe the stability of a system in response to a
given disturbance, as no single metric can adequately cap-
ture the different response aspects composing stability
(Hillebrand et al., 2018; Polazzo & Rico, 2021).

Global climate change is one of the most pervasive
anthropogenic disturbances to our planet (IPCC, 2013).
Global surface temperature has risen by roughly 1�C since
the pre-industrial era, and it is projected to increase an
additional 1.5–4.5�C (depending on the Representative
Concentration Pathway scenario) above the reference
period’s temperature by the end of the century (IPCC,
2021). Owing to its profound implication for species
metabolism and ecological dynamics, temperature affects
all levels of biological organization (Brown et al., 2004).
Increasing temperature is, thus, expected to deeply alter
ecological network structure and the nature and intensity
of species interactions, influencing the overall stability of
ecosystems. Experimental (Nagelkerken et al., 2020), theo-
retical (Fussmann et al., 2014; Petchey et al., 2010), and
mixed approaches (O’Gorman et al., 2019) have investigated
the effects of warming on trophic networks structure,
interaction strengths, and stability. Results showed that con-
sumers, due to a temperature-driven increase in metabo-
lism, exert stronger top-down control on the biomass
stocks of lower trophic levels, increasing the overall
consumer-resource biomass ratio (Fussmann et al., 2014;
O’Connor et al., 2009; O’Gorman et al., 2019). However,
consumers might struggle to meet their rising energy
demands under warming (Fussmann et al., 2014; O’Connor
et al., 2009). This constrain may lead to shorter and simpler
food webs (Fussmann et al., 2014; O’Gorman et al., 2019),

reduced energy fluxes efficiency (Barneche et al., 2021),
altered distribution of biomass and interaction strengths
throughout the food web (Nagelkerken et al., 2020), and
potentially to a food web collapse (Ullah et al., 2018).

Most of the experimental and theoretical work done
in this area has dealt with the effects of increasing mean
temperature on ecological stability and network struc-
ture. Yet, climate change is composed of different pro-
cesses and phenomena (IPCC, 2021), including extreme
climatic events, such as heatwaves (HWs; Jentsch et al.,
2007). HWs are of particular concern because their mag-
nitude, duration, and frequency are predicted to increase
in the future (Meehl & Tebaldi, 2004; Woolway et al.,
2021, 2022). Still, how HWs affect trophic networks and
ecological stability has received little attention (Polazzo,
Roth, et al., 2022). The few empirical evidence of the
effects of HWs on multitrophic systems reported that
HWs may affect both compositional and functional
stability of freshwater communities, particularly in the
absence of top predators (Ross et al., 2021).

Here, we used an outdoor pond mesocosm experiment
to explore how heatwaves alter network complexity and
community stability. Specifically, our main research ques-
tions were: (a) whether and how do extreme climatic events
impact trophic network complexity; (b) whether and how
do extreme climatic events influence multidimensional
stability; and (c) whether and how changes in trophic
network complexity are related to altered community
multidimensional stability. To answer these questions, we
recorded the abundance and biomass of all major compo-
nents of the food web over time (that is, periphyton,
phytoplankton, zooplankton, and macroinvertebrates).
We then studied the dynamics of trophic network com-
plexity using unweighted/topological metrics (based only
on presence/absence of species) and link-weighted met-
rics (considering interaction strength). Finally, the rela-
tionship between those dynamics with four stability
components (temporal variability, resistance, resilience,
and recovery) of community’s functional, compositional,
and energy flux stability were studied. The term
“network” is here used for simplicity since our research
only focused on trophic interactions, and was hence lim-
ited to trophic networks (e.g., food webs).

MATERIALS AND METHODS

Mesocosm experiment

We performed an outdoor mesocosm experiment at the
facilities of the IMDEA Water Institute (Alcal�a de
Henares, Madrid, Spain) between April and August of
2021. The 12 mesocosms used in this study were filled
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with approximately 40 cm of sediments and 850 L of
water from an artificial lagoon. The biological commu-
nity of the mesocosms was composed of basal species
(periphyton and phytoplankton), zooplankton, and
macroinvertebrates, and was allowed to establish and
homogenize among experimental units for 2 months
prior to the start of the experiment.

Eight of the test mesocosms were used to simulate
two HW scenarios (n = 4): a long moderate HW and
three strong repeated HWs (Figure 1); while four
mesocosms were kept at ambient temperature for the
whole experimental duration and were used as controls.
The long HW lasted for 40 days and was characterized
by a temperature increase of +4�C above the control
temperature, whereas the reoccurring HWs treatment
consisted of three HWs lasting 7 days each and separated
one another by 7 days of ambient temperature. In the
reoccurring HWs treatment, the temperature was +8�C
above the control temperature. During the temperature
manipulation phase, the mean recorded temperature in
the ambient control treatment was 19.7�C (±3.29�C), in
the long HW treatment it was 24.1�C (±3.21�C), and in
the reoccurring HWs treatment it was 24.3 (±5.06�C).
After the end of the temperature manipulation phase, we

monitored the recovery of the systems for 40 days.
All temperature manipulations and recordings were car-
ried out using a transportable temperature and heatwave
control device (TENTACLE) applicable for aquatic micro-
and mesocosm experiments (Hermann et al., 2022).

Sampling of the freshwater community

The whole community was sampled on days �4, +10,
+24, +38, +52, +66, and + 80 relative to the start of the
HWs. Samplings of phytoplankton, zooplankton, and
macroinvertebrates composing the freshwater commu-
nity were done following Polazzo et al. (2021). Briefly,
the planktonic community was sampled by taking depth-
integrated water samples with a polyvinyl chloride (PVC)
tube (six sub-samples per mesocosm mixed in a bucket).
Next, for phytoplankton samples, 250 ml of this water
sample were introduced into glass amber bottles and 10%
Lugol’s iodine was added for preservation. For zooplank-
ton, 5 L of the collected water sample were passed
through a zooplankton net (55 μm) and concentrated to
an approximate volume of 100 ml. The concentrated sam-
ples were fixed with Lugol’s iodine solution and stored in

F I GURE 1 Experimental temperature manipulations and timeline. Measured temperature in the different treatments over the

experiment, and different experimental phases. Red arrows indicate biological samplings. HW, heat wave; REC1, Recovery period 1; REC2,

Recovery period 2.
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dark conditions at room temperature until identification
and counting. In order to sample pelagic and benthic
macroinvertebrates individuals, three sampling methods
were used. First, a net (mesh size: 0.5 mm) was passed
twice through the side of the mesocosms (in both direc-
tions) to catch the animals that were swimming or resting
on the mesocosm’s wall. Second, two pebble baskets posi-
tioned over the sediment surface were collected, and third,
two traps filled with macrophyte shots (Elodea sp.),
Populus sp. leaves and stones were collected from the sedi-
ment’s surface using a net. The invertebrates sampled from
each mesocosm with the three sampling methods were
pooled together, identified, and counted. Periphyton colo-
nization in substrates (25 cm2) was measured using trans-
parent polypropylene strips placed in an upright position
at 20 cm from the water surface. Strips were taken using a
tube of 50 ml filled with water. Samples were stored at 4�C
in the dark until they were analyzed, which happened the
same day.

Quantification of the biomass

Every basal, zooplankton, and macroinvertebrate node was
digitally photographed with scale reference using a camera
Samsung 12 mp (4032 � 3024, JPG format), and measured
using Image J software (Schneider et al., 2012). The
biovolume (μm3/org) of the basal, zooplankton, and
macroinvertebrate individuals was calculated using geo-
metric models according to Sun and Liu (2003), Hillebrand
et al. (1999), Ruttner-Kolisko (1977), Alcaraz et al. (2003),
and Bernardini et al. (2000). Biovolume was transformed to
fresh weight (FW) using the following ratio 1 μg = 106 μm3,
assuming specific weight of water = 1. Colonized
periphyton was washed and concentrated by centrifuga-
tion (Ependorf 5810R at 3500 rpm during 20 min, 4�C).
Fresh pellets were weighed using a balance: Denver
instrument (precision = 0.005 g). Results were
expressed as g/cm2. Finally, fresh biomass of every com-
munity (i.e., periphyton, phytoplankton, zooplankton,
and macroinvertebrates) was calculated per mesocosm
(g/mesocosm).

Trophic network construction

We used publications, personal observations, and the
database built by Gray et al. (2015), which represents the
largest standardized collection of trophic links for fresh-
water organisms, to establish the trophic interactions
among the species of the experimental mesocosms.
The resulting interaction list comprised 1202 possible links
and 142 trophic species (91 basal species, 23 zooplankton

species, 23 benthic macroinvertebrates and 3 predators).
Eighty-four networks were built (3 treatments including
control � 7 sampling days � 4 replicates) considering the
biomass for each node.

Unweighted and weighted trophic network
properties

Two types of networks were used to characterize the food
webs for each mesocosm: topological or unweighted,
formed by the presence or absence of nodes and relative
interactions, and quantitative or link-weighted, where
interaction strengths were also considered. For the first,
we calculated the following unweighted network proper-
ties: number of species, number of links (L), link density
(L/S, where S is the number of species), connectance (C),
generality, vulnerability, number of basal and top species,
mean trophic level, maximum trophic level, omnivory,
path length, and clustering coefficient. We used the
R package multiweb (Saravia, 2022) to obtain these prop-
erties. For a complete overview of the calculated network
properties and their ecological meaning, please refer to
Appendix S1: Table S2.

As for the weighted food webs, we used a bioenergetic
modeling approach to estimate interaction strengths
(as energy fluxes), which enabled us to calculate three
link-weighted properties: connectance, generality, and vul-
nerability (Kortsch et al., 2021). We here used the bioener-
getic food web model developed by Gauzens et al. (2019)
as implemented in the R package fluxweb. Briefly, this
approach considers allometric scaling laws to quantify
individual metabolic rates that are dependent on body
mass and temperature, which together with losses to pre-
dation and assimilation efficiencies are used to quantify
incoming fluxes (due to consumption) and outcoming
fluxes (due to predation) for each species. The main
assumption of this approach is the system’s equilibrium or
steady state (Barnes et al., 2018), implying that the total
amount of energy lost by a species, either by predation or
physiological processes, is exactly compensated by the
metabolized energy it gains from consumption. That is,
species loss to predation and metabolism are completely
balanced by energetic gains, which are defined as incom-
ing fluxes multiplied by assimilation efficiencies (Jochum
et al., 2021).

To calculate the metabolism of each node,
species-specific metabolic rates were derived from body
mass metabolic relationships using the allometric
equation developed by Brown et al. (2004).

Xi ¼ X0�Ma
i �e � E

BTð Þ� �
�Bi,
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where Xi is the metabolic loss of species i, X0 is the
organism-specific normalization constant, Mi the body
mass of species i (individual/g), a is the allometric scaling
constant (a=�0.29), E is the activation energy (0.69 eV,
Brown et al., 2004), B is the Boltzmann’s Constant
(8.61� 10�5 eV/K), T is the temperature (K), and Bi is
the biomass of species i (g/m3). The X0 normalization
constants are the intercepts of the body mass-metabolism
scaling relationship for invertebrates and vertebrates
presented in Brown et al. (2004), which correspond to
15.85 for unicellular organism, 17.17 for invertebrates
and 18.47 for vertebrates. Since our study only involved
unicellular basal species and invertebrates, we used the
normalization constants for these specific classes of
organisms.

The metabolic rate increases exponentially with tem-
perature (Brown et al., 2004). Thus, temperature differ-
ence between different temperature treatments were
accounted for in the bioenergetic model. We did that by
using the average temperature recorded in each treat-
ment in the time interval separating one sampling point
from another. For the sampling point (e.g., before the
beginning of the temperature manipulation), we took the
average temperature measured in the 3 weeks before
the start of the temperature treatments. Finally, we esti-
mated the different assimilation efficiencies depending
on prey type: 0.906 for animal preys (Gauzens et al.,
2019) and 0.77 for basal or primary producer preys
(Landry et al., 1984). The biomass of each taxon was cal-
culated in grams per m3. As such, the units of the calcu-
lated energy flux are joules per m3 per second.

Please note that the calculated energy fluxes are a
modeled proxy for energy flow, but that dietary analysis
(which was not carried out in this study) would be
required to definitively quantify the flow of energy
through a network.

Stability properties

We quantified four stability properties: resistance, recov-
ery, resilience, and temporal stability. We calculated the
four stability properties for composition, function, and
energy flux. Compositional stability was calculated using
the Bray–Curtis similarity as a state variable (Donohue
et al., 2013; Radchuk et al., 2019), whereas functional sta-
bility was based on total biomass (Hillebrand et al., 2018;
White et al., 2020). The stability of energy flux was calcu-
lated using the total energy flux derived from the bioener-
getic model. To account for potential differences in
sensitivity to the temperature manipulations of the differ-
ent organism groups, we calculated the four stability
properties separately for three different organism groups:

basal (phytoplankton and periphyton), zooplankton and
macroinvertebrates.

Resistance is defined as the ability of a system to
withstand disturbance (Hillebrand et al., 2018). Hence,
resistance was measured as:

Resistance¼ THW3�CHW3

CHW3

� �
,

where THW3 and CHW3 are the treatment and control
values of the variable measured right after the end of the
temperature manipulation phase (Figure 1), which
corresponded to day 38 relative to the start of the tempera-
ture manipulations. Resistance values of 0 reflect maximum
resistance (i.e., biomass, energy flux, or Bray–Curtis dis-
tances in treatment and control are the same). A negative
resistance value means low resistance as compared to the
control. Resistance higher than 0 indicates overperformance
(increase in biomass or energy flux).

Recovery is here defined as the capacity of a system
to return to undisturbed state following a disturbance
(Ingrisch& Bahn, 2018).We quantified recovery as:

Recovery¼ TRec3�CRec3

CRec3

� �
,

where TRec3 and CRec3 are the treatment and control
state variables measured at the end of the recovery
period, which corresponded to day 80 relative to the start
of the temperature manipulations. The interpretation of
the recovery values follows that of resistance.

We defined resilience following the definition of Pimm
(1984), also known as engineering resilience. This resilience
conception measures the speed of recovery after perturba-
tion, and was quantified for each replicate as the slope of
the ln-response ratio (LRR) of the value in a treatment (T)
compared to control (C) over time (Hillebrand et al., 2018):

Resilience¼ ln T=Cð Þþ i
t

,

where i= intercept, t= time.
We could use linear regression given the

ln-transformation of the response variable, which linear-
ized the trend of the recovery even in the case of an expo-
nential growth after heat stress (Hillebrand et al., 2018).
The interpretation of the resilience values depend on the
initial response after disturbance. If the resistance is <0,
then a positive resilience means recovery over time,
whereas a negative value describes a further deviation
from the control. If the resistance is >0, then a positive
resilience value means lack of resilience, and a negative
resilience value means recovery over time.
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The temporal stability of each replicate was calculated
as the inverse of the coefficient of temporal variation in
biomass (functional), Bray–Curtis distances (composi-
tional), or energy flux.

Temporal stability¼ 1
Xcv

,

where Xcv is the variable coefficient of variation (ratio of
the standard deviation to the mean of the variable).
Larger values equate to a higher temporal stability. The
value was biomass in case of functional recovery,
Bray–Curtis distances in case of compositional recovery,
and energy flux in case of energy flux recovery.

We quantified the overall functional, compositional, and
energy flux stability of each organism group following
Pennekamp et al. (2018). This is a more integrative approach
which, similarly to ecosystem multifunctionality, integrates
variation in multiple stability components into a single
measurement. Overall, functional, compositional, and
energy flux stability were calculated using the same
methodology, which follow the same procedure used to
calculate multifunctionality with the averaging method
(Maestre et al., 2012):

Overall stability¼ scale resistanceð Þþ scale resilienceð Þ
þ scale recoveryð Þþ scale temporal stabilityð Þ:

The function “scale” subtracts the mean and divides by
the standard deviation. In this way, all stability compo-
nents were standardized. Standardization before sum-
ming implies that all stability components have the same
weight in the overall stability calculation.

Statistical analyses

Analysis of unweighted and link-weighted network prop-
erties was performed using linear regression models,
with the reoccurring HWs and long HW as predictors.
To check that linear model assumptions were met, we
visually examined for the homogeneity of variances and
normality using the R function check_model of the
R package performance (Lüdecke et al., 2020), and found
the resulting models to effectively follow these assump-
tions. The linear models were constructed using R with
the lm function of the package stats (R Core Team, 2021).

Analysis of single stability components and of overall
functional, compositional, and energy flux stability
was performed using linear mixed-effects models, with
reoccurring HWs (factor, two levels: present/absent) and
long HW (factor, two levels: present/absent) as fixed effects.

Mesocosm identity and organism group (phytoplankton,
zooplankton, and macroinvertebrates) were included as
random effects to account for potential idiosyncratic
effects of experimental units (mesocosms) and for poten-
tial different responses between organism groups,
respectively. We used the package nlme for all the linear
mixed-effects model calculations (Pinheiro et al., 2021).
Again, the R function check_model of the R package per-
formance was used to visually examine for the homoge-
neity of variances and normality, finding that models’
assumptions were met.

To assess whether communities undergoing different
HW treatments were different in the different phases of
the experiment, we performed two non-parametric mul-
tivariate analysis of dissimilarity, permutational multi-
variate analysis of variance (PERMANOVA, function
adonis2 of the R package vegan (Oksanen et al., 2022))
and analysis of similarity (ANOSIM, function anosim of
the R package vegan (Oksanen et al., 2022)), both with
999 permutations and based on Bray–Curtis distances.

Finally, to analyze the relationship between stability
components and between stability components and
network properties we calculated Pearson correlation
coefficients.

All statistical analyses and trophic networks construc-
tion were conducted using the R software (version 4.1.2,
R Core Team, 2021).

RESULTS

Before the start of the temperature manipulations, commu-
nity composition was indistinguishable between control
and treatments (PERMANOVA, Long HW: F1,11 = 1456,
p = 0.086; reoccurring HW: F1,11 = 1.362, p = 0.094), and
so was biomass (linear mixed-effects model, LMM, Long
HW: t = �1.017, p = 0.335; reoccurring HW: t = �1.760,
p = 0.112) and total energy flux (LMM, Long HW:
t = 1.341, p = 0.213; reoccurring HW: t = 0.321, p = 0.755).
Consistently, all unweighted and link-weighted network
proprieties were not different between the control and the
treatments.

At the end of the temperature manipulation phase
(Figure 1), number of species (linear Model, LM, t = �2.282,
p = 0.048), number of links (LM, t = �2.49, p = 0.018),
number of basal species (LM, t = �2.93, p = 0.016),
unweighted generality (LM, t = �2.83, p = 0.019) and
link-weighted vulnerability (LM, t = �3.366, p = 0.008)
were significantly decreased by the reoccurring HWs treat-
ments, whereas unweighted mean trophic level was
increased (LM, t = �2.801, p = 0.020) (Figure 2c). By con-
trast, the long HW treatment did not affect any unweighted
network property right after the end of the temperature
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manipulation phase, but it did significantly decline the
link-weighted vulnerability (Figure 2d).

At the end of the recovery period, no significant differ-
ence between controls and any of the two treatments was
found for any unweighted network property (Figure 2c).
Yet, the reoccurring HWs treatment significantly increased
link-weighted generality (LMM, t = 2.518, p = 0.032),
while the long HW increased both link-weighted

generality (LMM, t = 2.296, p = 0.047) as well as
link-weighted connectance (LMM, t = 2.625, p = 0.027)
(Figure 2d). The reoccurring HWs significantly affected
multiple aspects of compositional, functional and energy
flux stability (Figure 3). Resistance of function (LMM,
t = �2.58, p = 0.015) and of composition (LMM,
t = �5.43, p < 0.001) were reduced by the reoccurring
HWs (Figure 3a,f). Compositional recovery (LMM,
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t = �5.00, p < 0.001, Figure 3h) and functional temporal
stability (LMM, t = �3.22, p = 0.003, Figure 3d) were also
reduced by the reoccurring HWs, whereas the resilience of
function (LMM, t = 3.71, p = 0.001, Figure 3b) and recov-
ery of energy flux (LMM, t = 2.80, p = 0.009, Figure 3m)
were significantly increased.

Although the long HW generally decreased biomass
in the temperature manipulation phase (Appendix S1:
Figure S1), it only caused a significant increase in func-
tional resilience (LMM, t = 2.75, p = 0.01, Figure 3b).
The long HW also reduced compositional recovery (LMM,
t = 3.35, p = 0.002, Figure 3h), whereas it increased energy
flux resistance (LMM, t = 4.75, p < 0.001, Figure 3k), recov-
ery (LMM, t = 3.77, p = 0.001, Figure 3m), and resilience
(LMM, t = 2.96, p = 0.006).

Two additional non-parametric tests (i.e., PERMANOVA
and ANOSIM) confirmed that the reoccurring HWs treat-
ment modified community composition at the end of the
temperature manipulation phase, and that both HWs treat-
ments significantly modified community composition by the
end of the experiment (Appendix S1: Table S1).

Neither of the HW treatments affected the overall
ecosystem functional stability (Figure 3e), whereas both
the long HW (LMM, t = �2.91, p = 0.007) and the
reoccurring HWs (LMM, t = �5.21, p < 0.001) decreased

overall community compositional stability (Figure 3j).
Both treatments also significantly increased overall com-
munity energy flux stability (long HW, LMM: t = 8.38,
p < 0.001; Reoccurring HWs, LMM: t: 3.71, p = 0.001,
Figure 3o).

Analyzing the correlations between stability compo-
nents and the various descriptors of network complexity,
we found a positive and significant correlation between
functional and compositional resistance (Figure 4a).
Both compositional and functional resistance were also
positively and significantly correlated to the number of
species composing the network, number of links, and
unweighted generality (Figure 4a). Functional recovery
was positively and significantly correlated with energy flux
recovery, and both functional recovery and resilience were
positively correlated with link-weighted connectance and
generality (Figure 4b). On the other hand, compositional
recovery showed a negative and significant correlation
with link-weighted connectance and generality.

DISCUSSION

Our study shows that repeated extreme climate events
may reduce the complexity of the unweighted network
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structure in the short term. Yet, at least in our simplified
freshwater lentic ecosystem, those effects were short-lived.
At the end of the experiment, no single unweighted net-
work property was still affected by the reoccurring HWs,
suggesting that the food web’s unweighted structure may
be regained after extreme climatic events. The initial
reduction in unweighted network complexity, though, was
positively correlated with decreased functional resistance
(Figure 4). Topological network complexity after experi-
mental perturbation was also positively correlated with
compositional resistance. That is, compositional and func-
tional resistance were high where topological network
complexity remained high. Consistently, in the reoccurring
HWs treatment, a decline in unweighted network com-
plexity was reflected by a significant reduction in composi-
tional resistance.

Those results are in line with the body of theoretical and
empirical work that has linked reduced network complexity
to a decline in ecosystem functioning (Eisenhauer et al.,
2019; Morris, 2010; Sebasti�an-Gonz�alez et al., 2020; Yuan
et al., 2021). Additionally, a recent study has shown that an
experimental reduction in unweighted trophic network
complexity (removal of high-level consumers) can signifi-
cantly reduce both compositional and functional resis-
tance (White et al., 2020). As such, compositional and
functional resistance appear to be positively correlated
across ecosystem types and despite the nature of

disturbance applied (Hillebrand et al., 2018; Polazzo &
Rico, 2021; Urrutia-Cordero et al., 2022; White et al., 2020).
On the other hand, we did not find any correlation between
trophic network complexity and the resistance of energy
flux immediately after the temperature manipulations.

HWs may act essentially as pulse disturbances. A recent
synthesis of the effects of pulse disturbance on community
multidimensional stability has shown that community’s
functional responses might be initially severely impacted
by pulse perturbation, but function is generally recovered
within the experimental time (Hillebrand & Kunze, 2020).
Conversely, community multivariate composition appears
to recover substantially slower, or to not recover at all,
after a pulse perturbation (Hillebrand & Kunze, 2020),
suggesting that compositional and functional stability
dynamics may follow different pathways (Hillebrand &
Kunze, 2020; Ross et al., 2021; White et al., 2020).

In our study, we observed an overall increase in
link-weighted network complexity in both temperature
treatments by the end of the experiment (Figure 2). Most
of the studies to date have only investigated the effects of
chronic warming on topological network properties, and
they have found a general reduction in complexity
(Fussmann et al., 2014; O’Gorman et al., 2019). Yet, our
study aligns with the findings of Kortsch et al. (2021),
who found an increase in link-weighted network com-
plexity over more than three decades in the Baltic Sea,
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probably related to climate change and to the effect of
warming on species metabolism. In our study, this
increase in link-weighted complexity was found to be
negatively correlated with compositional recovery
(Figure 4). Consistently, both HW treatments significantly
reduced compositional recovery, and community composi-
tion was significantly modified by both treatments at the
end of the experiment. Previous studies have shown that
changes in composition may allow a complete functional
recovery after pulse disturbance (Hillebrand et al., 2018;
Polazzo, Marina, et al., 2022). Complete functional recov-
ery can be achieved because pulse disturbances may select
for different compositions which can maintain functional
level under disturbance if there is functional redundancy
(Yachi & Loreau, 1999). Yet, we also show that the compo-
sitional change promoted by both types of heatwaves is
associated with an increase in link-weighted network com-
plexity. Furthermore, the recovery of energy flux (a proxy
for interaction strengths) was negatively correlated with
compositional recovery (Figure 4). In other words, if total
energy flux increase over time, community composition
will further depart from control conditions, supporting the
hypothesis that changes in interactions strength are linked
to compositional divergence (Polazzo, Marina, et al., 2022).

All the different components of the energy flux
stability were negatively correlated with link-weighted
vulnerability, which declined in both treatments following
an increase in energy flux, although not significantly
(Appendix S1: Figure S6). Yet, excluding vulnerability, we
found no significant correlations between any other energy
flux stability property and link-weighted connectance
and generality. The absence of a significant relationship
between these link-weighted network properties and the
stability components of the energy flux suggests that both
link-weighted network complexity and total energy flux
might influence the community composition indepen-
dently. Therefore, the way interaction strength is organized
within the network (i.e., link-weighted network complex-
ity), and the intensity (i.e., total interaction strength) are
associated to changes in community composition after
pulse disturbance and influence functional levels. The rele-
vance of biotic interactions in determining community
structure and functional level under disturbance has been
already showed empirically in planktonic communities
(Gaedke et al., 2010; Murphy et al., 2020). Our results, align
with these previous findings, showing that the reoccurring
HW disturbance caused an initial significant decline in
functional resistance and modified community composi-
tion. Still, this HW-driven shift in community composition
was associated to an increase in link-weighted generality
(Kortsch et al., 2021). Such increase in link-weighted
network complexity consequently increased functional
resilience through which functional recovery could be

achieved within the experimental time (Polazzo, Marina,
et al., 2022).

Finally, our analysis of the overall functional,
compositional, and of energy flux stability summarizes
our findings obtained when studying the different stabil-
ity components. It shows that overall functional stability
was not affected by either treatment. Still, the retainment
of functional stability was linked to a significant reduc-
tion of the overall compositional stability in both temper-
ature treatments. This is, even though compositional
stability was significantly reduced, functional stability
could be maintained. The changes in overall composi-
tional stability were also paired to an increase in overall
flux stability. Hence, HWs modify community composi-
tion and increase the overall energy flux within the
food web, boosted by the temperature-induced increase
in metabolism. This increase in energy flux produces an
increase in the trophic network complexity and preserves
functional stability (biomass stock).

Our findings have important implications for ecosys-
tem management and for projecting the effects of (future)
extreme climatic events and climate change on trophic
networks and community stability. First, preserving the
topology/structure of the network appears crucial to pro-
tect both compositional and functional stability, as reduc-
tions in topological complexity were associated with a
reduction in functional as well as compositional resis-
tance. The topology of a network is fragile, and can be
modified in several ways, for example, by a species loss
(and the relative reduction of links and link density), by
the introduction of alien species, or by the reduction in
connectivity between patches in a landscape. Second,
functional recovery and resilience were positively associ-
ated to an increase in link-weighted network complexity,
which however, came at the cost of increased compositional
dissimilarity (e.g., reduced compositional recovery). Given
the different management goals of different stakeholders
(e.g., agriculture or aquaculture managers will likely privi-
lege functional stability over compositional stability,
whereas managers of natural protected areas might want to
maintain compositional stability), tailoring specific protec-
tion measures to different objectives does seem a promising
way, although needing careful planning. Finally, even
though the effects of the reoccurring HWs on compositional
and functional stability were somehow stronger compared
to the long, moderate heatwave, the latter had a larger effect
on the stability of energy flux and network complexity.
These observations suggest that constant warming, via its
effects on metabolism, causes a larger increase in the indi-
vidual energetic demand compared to intermittent heat
pulses. This higher energetic demand under constant
warming is translated into stronger energy flux over time
and increased network link-weighted complexity.
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This study shows that all the nuances of climate change
are likely to have profound implications for community sta-
bility and trophic network complexity. Yet, here we present
an overarching approach to investigate the effects of envi-
ronmental change on multidimensional stability through
the lens of trophic network complexity. The results of this
study can be used to evaluate policy-targeted endpoints and
provides helpful insights for the preservation of ecosystems
stability under global change.
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T. Yoshida, and J. N. Thompson. 2017. “Species-Rich Networks
and Eco-Evolutionary Synthesis at the Metacommunity Level.”
Nature Ecology & Evolution 1: 24.

Ullah, H., I. Nagelkerken, S. U. Goldenberg, and D. A. Fordham.
2018. “Climate Change Could Drive Marine Food Web
Collapse through Altered Trophic Flows and Cyanobacterial
Proliferation.” PLoS Biology 16: 1–21.

Urrutia-Cordero, P., S. Langenheder, M. Striebel, D. G. Angeler,
S. Bertilsson, P. Eklöv, L. A. Hansson, et al. 2022. “Integrating
Multiple Dimensions of Ecological Stability into a Vulnerability
Framework.” Journal of Ecology 110: 374–86.

White, L., N. E. O’Connor, Q. Yang, M. C. Emmerson, and
I. Donohue. 2020. “Individual Species Provide Multifaceted
Contributions to the Stability of Ecosystems.” Nature Ecology
and Evolution 4: 1594–601.

Woolway, R. I., C. Albergel, T. L. Frölicher, and M. Perroud. 2022.
“Severe Lake Heatwaves Attributable to Human-Induced
Global Warming.” Geophysical Research Letters 49: 1–10.

Woolway, R. I., E. Jennings, T. Shatwell, M. Golub, D. C. Pierson,
and S. C. Maberly. 2021. “Lake Heatwaves under Climate
Change.” Nature 589: 402–7.

Yachi, S., and M. Loreau. 1999. “Biodiversity and Ecosystem
Productivity in a Fluctuating Environment: The Insurance
Hypothesis.” Proceedings of the National Academy of Sciences
of the United States of America 96: 1463–8.

Yuan, M. M., X. Guo, L. Wu, Y. Zhang, N. Xiao, D. Ning, Z. Shi,
et al. 2021. “Climate Warming Enhances Microbial Network
Complexity and Stability.” Nature Climate Change 11: 343–8.

SUPPORTING INFORMATION
Additional supporting information can be found online in
the Supporting Information section at the end of this article.

How to cite this article: Polazzo, Francesco,
Markus Hermann, Melina Crettaz-Minaglia, and
Andreu Rico. 2023. “Impacts of Extreme Climatic
Events on Trophic Network Complexity and
Multidimensional Stability.” Ecology 104(2): e3951.
https://doi.org/10.1002/ecy.3951

14 of 14 POLAZZO ET AL.

https://doi.org/10.5281/zenodo.7310916
https://doi.org/10.5281/zenodo.7310916
http://www.r-project.org
https://github.com/lsaravia/multiweb
https://doi.org/10.1002/ecy.3951

	Impacts of extreme climatic events on trophic network complexity and multidimensional stability
	INTRODUCTION
	MATERIALS AND METHODS
	Mesocosm experiment
	Sampling of the freshwater community
	Quantification of the biomass
	Trophic network construction
	Unweighted and weighted trophic network properties
	Stability properties
	Statistical analyses

	RESULTS
	DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES


