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Homeostasis in the blood system is maintained by the balance between

self-renewing stem cells and nonstem cells. To promote self-renewal, tran-

scriptional regulators maintain epigenetic information during multiple

rounds of cell division. Mutations in such transcriptional regulators cause

aberrant self-renewal, leading to leukemia. MOZ, a histone acetyltrans-

ferase, and MLL, a histone methyltransferase, are transcriptional regula-

tors that promote the self-renewal of hematopoietic stem cells. Gene

rearrangements of MOZ and MLL generate chimeric genes encoding

fusion proteins that function as constitutively active forms. These MOZ

and MLL fusion proteins constitutively activate transcription of their tar-

get genes and cause aberrant self-renewal in committed hematopoietic pro-

genitors, which normally do not self-renew. Recent progress in the field

suggests that MOZ and MLL are part of a transcriptional activation sys-

tem that activates the transcription of genes with nonmethylated CpG-rich

promoters. The nonmethylated state of CpGs is normally maintained dur-

ing cell divisions from the mother cell to the daughter cells. Thus, the

MOZ/MLL-mediated transcriptional activation system replicates the

expression profile of mother cells in daughter cells by activating the tran-

scription of genes previously transcribed in the mother cell. This review

summarizes the functions of the components of the MOZ/MLL-mediated

transcriptional activation system and their roles in the promotion of self-

renewal.

Introduction

Multicellular organisms achieve cellular homeostasis

by maintaining the balance between the self-

renewing proliferation of stem cells and the non-self-

renewing proliferation of nonstem cells. During

development when the cell population is rapidly

expanding, these two types of proliferation appear
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to be strictly controlled. The maintenance of epige-

netic information likely plays a critical role in self-

renewal. Epigenetic information is mainly transmit-

ted by chemical modifications of DNAs and his-

tones. For example, the nonmethylated state of

CpGs in CpG islands is maintained during cell divi-

sions and triggers gene expression in daughter cells

after each cell division to replicate the expression

profile of the mother cells. The transcription event

transmits epigenetic information such as the

trimethylation of histone H3 lysine 36 (H3K36me3),

which is recognized by transcriptional regulators in

every interphase of the cell cycle. By reading and

acting on epigenetic information, cells replicate the

expression of genes similar to that in the mother

cell, thereby promoting self-renewal. Mutations in

the transcriptional regulators of this transcriptional

activation system cause aberrant self-renewal in non-

stem cells, thereby leading to cancer.

The mixed lineage leukemia (MLL) gene (also

known as ALL-1, KMT2A, HRX, HTRX, or MLL1)

encodes a transcriptional maintenance factor for Hox

gene expression during development. MLL is a histone

methyltransferase (HMT) that induces the methylation

of histone H3 lysine 4 (H3K4) via its SET domain.

MLL rearrangements that occur via chromosomal

translocations cause aggressive leukemia (Fig. 1) [1–3],
accounting for approximately 5–10% of all acute leu-

kemia cases and most infant acute leukemia cases [4].

In addition, the clinical outcomes for MLL-rearranged

(MLL-r) leukemia patients are typically unfavorable

[5]. Therefore, the development of better therapeutic

strategies is urgently needed.

MLL gene rearrangements generate chimeric genes

encoding MLL fusion proteins, which function as con-

stitutively active transcriptional machinery that causes

the sustained expression of genes that are normally

expressed in immature progenitors such as hematopoi-

etic stem cells (HSCs). To date, more than 80 MLL

fusion partners have been identified, including the

components of the AF4 family/ENL family/P-TEFb

(AEP), DOT1L, and CBP/p300 histone acetyltrans-

ferase (HAT) complexes (Fig. 1) [4]. Similarly, gene

rearrangements of the monocytic leukemia zinc finger

(MOZ) gene (also known as MYST3 or KAT6A) gen-

erate chimeric genes encoding the fusion proteins of

MOZ and the CBP/p300 HAT complex components

causing aggressive leukemia [6]. MLL and MOZ have

recently been revealed as components of a common

transcriptional activation system that promotes self-

renewal [7]. This review focuses on the functional

cooperation between MOZ and MLL in the develop-

ment of leukemia.

MOZ is a HAT required for
development and hematopoiesis

MOZ belongs to the MYST HAT family that acety-

lates the histones—H3, H4, H2A, and H2B in vitro [8–
11]. Particularly, the MOZ HAT acetylates lysine 14 of

histone H3 (H3K14) and lysine residues 5, 8, 12, and

16 of histone H4 (H4K5/8/12/16) in vitro [12,13]. Dur-

ing embryogenesis, the acetylation of lysine 9 of his-

tone H3 (H3K9) was remarkably reduced in Moz-

knockout embryos [14], indicating that MOZ either

directly acetylates H3K9 or indirectly influences its

acetylation in vivo. In addition, MOZ is critically

required for embryogenesis as evidenced by in utero

death of homozygous knockout mice with severe

hematopoietic defects [15,16]. MOZ plays essential

roles in the activation and maintenance of Hox expres-

sion by counteracting the polycomb repressive complex

1 (PRC1) to confer segmental identity [14,17]. Hox

genes, such as Hoxa9, are necessary for the repopulat-

ing ability of HSCs [18–20]. MOZ maintains Hoxa9

expression during hematopoiesis to support the expan-

sion of hematopoietic progenitors [16,21].

MOZ forms a core complex with
BRPF1, ING5, and MEAF6 to target
specific chromatin

MOZ and its homolog MORF (also known as MYST4

or KAT6B) form a biochemically stable complex with

three other core components, including bromodomain-

PHD finger protein 1 (BRPF1), MYST/Esa1-

associated factor 6 (MEAF6), and inhibitor of growth

5 (ING5) (Fig. 2A) [11,13]. MOZ/MORF proteins

contain an RNA polymerase II-binding motif (RBM),

histones H1- and H5-like domain (H15), double PHD

finger (DPF), basic domain, catalytic MYST HAT

domain, and an ENL-binding domain (EBD)

(Fig. 2A). MOZ/MORF complexes contain various

chromatin reader modules that facilitate their associa-

tion with particular chromatin [22]. The DPF of MOZ

specifically recognizes acetylated H3K14 (H3K14ac)

and unmodified arginine 2 of histone H3 (H3R2un)

via its first and second PHD fingers (PHD1 and

PHD2), respectively (Fig. 2A) [23]. PHD1 recognizes a

range of different acylation modifications, including

crotonylation, butyrylation, and propionylation,

among which it has the highest affinity for crotonyla-

tion [24,25]. In the case of MORF, DPF-mediated

binding to H3K14ac further promotes the acetylation

of lysine 23 of histone H3 (H3K23ac) [26].

In addition to its HAT activity, the MYST HAT

domain also has DNA-binding ability [27]. By having
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both the reader and writer modules for the acylation

of H3K14, MOZ/MORF complexes likely spread

H3K14ac marks from the founder H3K14ac mark,

which is presumably introduced by another MYST

HAT termed HBO1 (also known as KAT7) (Fig. 2B)

[28–30]. MOZ/MORF proteins associate with BRPF1

through the MYST HAT domain (Fig. 2A) [7,11].

BRPF1 is required for the transcriptional maintenance

of Hox genes during development [10] and serves as a

scaffold that tethers each MOZ/MORF complex com-

ponent to its target chromatin. BRPF1 binds to MOZ/

MORF through the N-terminal portion of its EPC

homology domain (EPC-I) and to ING5/MEAF6

through its C-terminal portion (EPC-II) [10,11,31]. A

module composed of two PHD fingers linked by a zinc

knuckle [PZP (PHD-Zn knuckle-PHD) domain] associ-

ates with DNA and unmethylated histone H3 lysine 4

[31,32] and is required for the efficient acetylation of

nucleosomes by MOZ. The bromodomain of BRPF1

binds to acetylated histones [10]. The PWWP domain

preferentially associates with histones H2A/B over his-

tones H3/4 and specifically recognizes the di/

trimethylated histone H3 lysine 36 (H3K36me2/3)

[10,33]. BRPF1 is retained on the metaphase chro-

matin via its PWWP domain, whereas MOZ is dissoci-

ated [10], suggesting that it plays important roles in

the marking of the target chromatin of MOZ/MORF

complexes for transcriptional reactivation in the next

G1 phase.

BRPF family proteins also associate with HBO1

[30,31,34]. Notably, BRPF2/3 preferentially associ-

ates with HBO1, whereas BRPF1 associates with

MOZ/MORF, indicating the nonredundant roles of

the BRPF family members [30,34]. HBO1 acetylates

histone H3 when associated with BRPF family pro-

teins. However, when associated with the structurally

similar JADE family proteins, HBO1 acetylates his-

tone H4. Thus, BRPF/JADE family proteins play a

decisive role in the selection of target histone tails by

the MYST HATs [31]. Genes of the BRPF family

are required for proper skeletal and hematopoietic

development as they maintain segment-specific Hox

expression [10,30,35–37] in a manner similar to MOZ

[14–16].
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Fig. 1. Gene rearrangements of MLL and MOZ cause leukemia. Gene rearrangements via chromosomal translocations generate chimeric

genes encoding MLL and MOZ fusion proteins. MLL fuses with CBP/p300 HAT-containing complexes and ENL-containing complexes such

as the AEP and DOT1L complexes (e.g., MLL-CBP, MLL-AF4, and MLL-AF10). MOZ fuses CBP/p300 HAT-containing complexes (e.g.,

MOZ-CBP and MOZ-TIF2). Structures of MLL and MOZ fusion proteins are shown. hMBM, high-affinity Menin-binding motif; LBD, LEDGF-

binding domain; THD2, trithorax homology domain 2; CXXC, CXXC domain; PHD, plant homeodomain; Bromo, bromodomain; AD, activation

domain; SET, SET HMT domain; RBM, RNA polymerase II-binding motif; H15, histone H1/5-like domain; MYST, MYST HAT domain; Basic,

basic domain; EBD, ENL-binding domain.
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A

B

Fig. 2. Structures and functions of the MOZ complex. (A) Structures and functions of the human MOZ and yeast NuA3 complexes. Domain

structures are common between the mammalian NuA3 complex (MOZ complex) and the yeast NuA3 complex. Interactions are indicated by

dotted lines. LZ, leucine zipper; ING, ING N-terminal domain; EPC-I/II, enhancer of polycomb (EPC)-like domain I/II; PZP, PHD-zinc knuckle-

PHD module; PWWP, PWWP domain; YEATS, YEATS domain; AHD, ANC1 homology domain. (B) Spreading of H3K14ac marks and loading

of ENL onto the chromatin by the MOZ complex. The MOZ and HBO1 complexes provide and spread H3K14ac marks. The MOZ and

DOT1L complexes provide ENL to establish AEP on chromatin.

7990 The FEBS Journal 289 (2022) 7987–8002 ª 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

Leukemic MOZ and MLL fusion proteins A. Yokoyama



ING5 is a chromatin reader protein containing a

PHD finger and specifically associates with di/

trimethylated histone H3 lysine 4 (H3K4me2/3) to pro-

mote histone acetylation [13,31,38]. MEAF6 is the

smallest subunit of the MOZ/MORF complexes and is

shared by the HBO1 complex [13]. In summary, MOZ/

MORF complexes are formed on BRPF1 to recruit

ING5 and MEAF6. Each subunit contains unique

chromatin reader modules that render association with

particular target chromatin segments to spread acetyla-

tion marks.

MOZ complex associates with ENL
and RNAP2, and MLL

ENL (also known as MLLT1) is a frequent fusion

partner of MLL [1]. Our group recently investigated

the factors that interact with ENL on chromatin by

using affinity purification from the ENL-bound chro-

matin fractions of HEK293T cells transiently express-

ing ENL [7,39]. This method allowed the

copurification of ENL-associated factors in their

chromatin-bound form and identified MOZ/MORF

complex components as ENL binders, along with

known ENL-associated factors (e.g., AEP and DOT1L

complexes) (Fig. 2B) [7]. Domain mapping analysis

indicated that ENL binds to MOZ through its YEATS

domain, which is known to specifically bind to acety-

lated histone H3 lysine 9/18/27 (H3K9/18/27ac) [40–
43]. Presumably, the MOZ complex recruits ENL to

the target chromatin and functions as an ENL provi-

der to the DOT1L complex, which subsequently loads

the ENL protein onto chromatin to build an AEP

complex (Fig. 2B). The MOZ domain responsible for

ENL association was mapped to the ENL-binding

domain (EBD) [7]. The yeast NuA3 complex, presum-

ably the yeast counterpart of MOZ/MORF complexes,

contains a YEATS domain-containing component (i.e.,

Taf14) [11,44], which had been lacking in previously

characterized mammalian MOZ/MORF complexes.

Thus, we can conclude that ENL is the missing com-

ponent that completes the human NuA3 complex

nucleated by MOZ/MORF (Fig. 2A). Further studies

will provide insight into the details of the involvement

of ENL in the NuA3 complex.

Furthermore, the MOZ complex associates with

RNA polymerase II (RNAP2). The MOZ complex

specifically binds to the promoters of MYC and

HOXA9 in HEK293T cells. Domain mapping analysis

of the structure responsible for association with these

promoters revealed that 84 residues located in the N-

terminal region are the major determinant for target

recognition. Subsequent proteomic analysis revealed

that this structure specifically associated with the

RNAP2 complex and was thus named the RNAP2-

binding motif (RBM) (Fig. 3A). Interestingly, RNAP2

with nonphosphorylated C-terminal heptapeptide

motifs (RNAP2 non-P) specifically bound to the RBM

of MOZ, whereas its Ser 5-phosphorylated form

(RNAP2 Ser5-P) did not, indicating that MOZ associ-

ated with RNAP2 whose transcription was not yet ini-

tiated [7]. Overall, these findings indicate that MOZ

targets the RNAP2 complex in the early phase of tran-

scription.

MOZ associates with the MLL complex via its basic

domain (Fig. 3A) [7,21]. MLL knockout in HEK293T

cells resulted in the reduced presence of RNAP2 and

MOZ at the promoters of MYC and CDKN2C [7],

suggesting that MLL promotes the recruitment of

RNAP2 and MOZ. MLL binds to the promoter proxi-

mal regions by recognizing nonmethylated CpGs via

its CXXC domain [45–48]. The CXXC domain also

mediates the recruitment of RNAP2 non-P [7]. Conse-

quently, MOZ is colocalized with MLL and RNAP2

non-P at CpG-rich promoters in a genome-wide man-

ner (Fig. 3B,C).

Notably, MOZ associates with various sequence-

specific transcription factors (TFs), such as AML1

(also known as RUNX1), PU.1 (also known as SPI1),

and the tumor suppressor TP53 [12,16,49–51]. MLL

also associates with PU.1 and C/EBPa [52]. PU.1

recruits MOZ and MLL proteins to upregulate the

expression of CSF1R (also known as FMS or M-

CSFR), which plays a critical role in leukemogenesis

[52,53]. Thus, MOZ and MLL likely target a unique

chromatin via these sequence-specific TFs, in addition

to CpG-rich promoters.

MOZ-TIF2 activates MLL/AEP-mediated
transcriptional activation system

Chromosomal translocations generate chimeric genes

encoding fusion proteins of MOZ/MORF and CBP/

p300 HATs, inducing acute myeloid leukemia (Fig. 1)

[8,54–57]. MOZ also fuses with TIF2 (also known as

NCOA2) [58,59], which in turn associates with CBP/

p300 HATs (Fig. 3A) [60]. Thus, CBP/p300 or its

associated proteins are the preferred fusion partners of

MOZ.

MLL also fuses with CBP/p300 HATs [61,62] and

its associated factors (e.g., AFX) (Figs 1B and 3A)

[63]. The wild-type MLL protein interacts with CBP/

p300 HATs via its activation domain (AD). Associa-

tion with CBP/p300 HATs is presumably promoted by

the copresence of sequence-specific TFs such as MYB

and CREB [64–67]. Thus, the constitutive recruitment
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Fig. 3. Mechanism of MOZ-TIF2-mediated leukemic transformation. (A) Structures and functions of MOZ and MLL proteins. MOZ-TIF2 and

MLL-AFX associate with CBP/p300 HATs. MOZ fusion and MLL fusion complexes target similar chromatin where unmethylated CpGs and

H3K36me2/3 marks are enriched. IBD, integrase-binding domain; RNAP2, RNA polymerase II. (B) Average distribution of MOZ-50 and MLL-

50 proteins at transcription start sites (TSSs). ChIP-seq analysis of HEK293T cells transiently expressing FLAG-tagged MOZ-50 and MLL-50

revealed their localization at CpG-rich promoters with RNA polymerase II with nonphosphorylated C-terminal heptapeptide motifs (RNAP2

non-P). (C) Colocalization of MOZ and MLL proteins with RNAP2 non-P at CpG-rich promoters in HEK293T cells. Most unmethylated CpG-

rich promoters (black) are also positive for the ChIP signals of MOZ-50, MLL-50 and RNAP2 non-P. (D) Mechanism of MOZ-TIF2-mediated

gene activation. The MLL complex recruits RNA polymerase II to CpG-rich promoters where the MOZ-TIF2 complex is recruited to spread

H3K14ac marks. The MOZ-TIF2 complex recruits CBP/p300 HATs to produce H3K9/18/27ac marks on which an AEP complex is built. The

AEP complex resultantly activates transcription via SL1 and P-TEFb.
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of CBP/p300 HATs to MOZ/MLL target promoters is

a common mechanism during oncogenic transforma-

tion.

The structures required for leukemic transformation

by MOZ fusions are mostly studied on MOZ-TIF2

[7,60,68,69], using ex vivo myeloid progenitor transfor-

mation assays [70,71]. The association of MOZ-TIF2

with CBP/p300 via its TIF2 portion is critical for leu-

kemic transformation [60]. The HAT activity of the

MYST domain as requirement for leukemogenesis was

first questioned [60] but was later confirmed by exten-

sive mutant analyses [68]. The MYST domain contains

multiple binding surfaces for BRPF1, the association

with which is critical for leukemogenesis [7,68]. How-

ever, the DPF of MOZ was dispensable for leukemic

transformation [7,60,69]. The RBM was critically

required for leukemogenesis [7,69] and was shown to

be responsible for the association with RNAP2 [7] and

PRMT1 [69]. Taken together, these results indicate

that the MOZ-TIF2 complex transforms hematopoietic

progenitors through the functions of the RBM and

MYST domains of MOZ and the CBP/p300-binding

domain of TIF2 (Fig. 3D). The promoter targeting

ability is mainly conferred by the RBM, whereas the

MYST domain likely reinforces chromatin association

mediated by multiple chromatin reader modules [7].

Recruited by the TIF2 portion, CBP/p300 HATs

induce the acetylation of histone H3K9/18/27

(Fig. 3D) [72–74]. The ENL family proteins (i.e., ENL

and AF9) specifically bind to acetylated histone H3

lysine 9/18/27 marks [40,41,43] and further recruit mul-

tiple functionally distinct transcriptional regulators,

including AEP, the DOT1L complex, and PRC1

through their ANC1 homology domain (AHD)

(Fig. 2A) [39,75,76]. AEP is a transcriptional coactiva-

tor as it initiates transcription through the SL1 com-

plex, presumably by loading the TATA-binding

protein (TBP) to the TATA element of the promoters

[67]. The acetylation of histone H3 lysine 9/18/27 near

the target promoters induces the recruitment of AEP

and the subsequent transcriptional activation [7]. Com-

plexes similar to AEP have been purified and charac-

terized as transcription elongation factors and are

referred to as super elongation complex [77–79]. Thus,
AEP is a transcriptional activator that promotes both

transcription initiation and elongation. AEP compo-

nents are the most frequent fusion partners of MLL

found in leukemia patients (Fig. 1) [4]. The majority

of MLL fusions induce oncogenic transformation by

constitutively recruiting AEP to the MLL target chro-

matin [80]. As the MOZ and MLL portions retained

in leukemic fusion proteins (i.e., MOZ-50 and MLL-50,
respectively) target active CpG-rich promoters

(Fig. 3B,C), MOZ and MLL fusions are speculated to

target the same promoters. Accordingly, the partner-

swap mutants of MOZ and MLL fusions, such as

MOZ-ENL and MOZ-AFX, activate Hoxa9 expres-

sion and transform hematopoietic progenitors [7].

Thus, MOZ and MLL fusions participate in a com-

mon mechanism to transform hematopoietic progeni-

tors by recruiting AEP to CpG-rich promoters and by

causing aberrant and constitutive gene expression in

leukemia cells.

MOZ and MLL fusions constitutively
activate previously transcribed
CpG-rich promoters

MLL fusion forms a complex with MENIN through

its MENIN-binding motif (MBM) (Fig. 3A) [81,82].

The MLL/MENIN complex further associates with

LEDGF through their LEDGF-binding domain

(LBD) [83]. LEDGF has a PWWP domain that binds

to the di/trimethylated histone H3 lysine 36 [84,85].

H3K36me3 marks are deposited on the chromatin of

transcribed regions by SETD2 HMT in a

transcription-coupled manner [86]. Hence, LEDGF

preferentially binds to the transcriptionally active chro-

matin.

The minimum module required for the recognition

of MLL target chromatin is constituted by the PWWP

and CXXC domains [48]. The PWWP domain of

LEDGF could be functionally replaced by that of

BRPF1. An artificial fusion construct comprising the

PWWP, CXXC, and AHD domains functioned as an

oncogenic transcriptional machinery and induced leu-

kemia in mouse models. Because the PWWP and

CXXC domains are sufficient for the stable association

with the MLL target promoters, the target chromatin

of the MLL fusion complex is a broad range of previ-

ously transcribed CpG-rich promoters [48]. MENIN is

required for the transcriptional activation of genes reg-

ulated by wild-type MLL [82,87,88]. MOZ proteins

(i.e., wild-type MOZ and MOZ fusions) target promot-

ers bound by the wild-type MLL/MENIN complex

and RNAP2 [7]. Thus, both MOZ fusions and MLL

fusions target previously transcribed CpG-rich promot-

ers and constitutively activate transcription via AEP

(Fig. 3D).

MOZ and MLL fusion proteins confer
self-renewing ability to committed
hematopoietic progenitors

Homeostasis of the hematopoietic system is achieved

hierarchically, where HSCs are at the top of the
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hierarchy. Because only HSCs can self-renew, the size

of the hematopoietic system is strictly controlled. In

fact, in hematopoietic reconstitution experiments

wherein hematopoietic cells are transplanted into leth-

ally irradiated mice, one HSC could reconstitute the

entire hematopoietic system in the recipient mice; how-

ever, repopulation could not be achieved even with 50

multipotent progenitors (MPPs) (Fig. 4A) [89]. This

result indicates that non-HSC hematopoietic progeni-

tors irreversibly lose a fraction of their identity on

every cell division, presumably due to the incomplete

replication of epigenetic information. Therefore, non-

HSC hematopoietic progenitors quickly lose the iden-

tity of immature progenitors, as they proliferate. In

this way, non-HSC hematopoietic progenitors are pro-

grammed to differentiate or senesce.

MOZ and MLL fusions overcome this ‘programmed

differentiation’ by conferring self-renewing ability to

non-HSC hematopoietic progenitors [90–92]. Conse-

quently, committed progenitors, such as common mye-

loid progenitors (CMPs) and granulocyte/macrophage

progenitors (GMPs), transduced with MOZ or MLL

fusion genes indefinitely expand and induce full-blown

leukemia in mouse models [60,70]. MOZ and MLL

fusion proteins promote self-renewal by reactivating

previously transcribed CpG-rich promoters [7]. Tran-

scriptional activation deposits active epigenetic marks

(i.e., H3K36me3), thereby leading to further activation

by MOZ and MLL fusion proteins in the next G1

phase (Fig. 4B). By this process, committed progeni-

tors, which normally do not self-renew, acquire the

ability to self-renew and result in leukemia.

Drugs targeting the components of
the MLL/MOZ/AEP-mediated
transcriptional activation system can
be used for both MLL- and
MOZ-rearranged leukemias

A transcriptional activation system mediated by AEP,

MOZ, and MLL promotes self-renewal by conferring

an expression profile similar to that of the mother cell

to the daughter cells (Fig. 5) [39,48,93]. The mecha-

nism of the MLL/MOZ/AEP-mediated transcriptional

activation system is as follows: First, the MLL com-

plex binds to previously active CpG-rich promoters.

Second, it recruits RNAP2, to which the MOZ com-

plex binds and spreads H3K14ac marks on the nearby

chromatin. The MLL complex subsequently recruits

CBP/p300 HATs to induce H3K9/18/27ac marks.

ENL associates with H3K9/18/27ac marks to recruit

AEP. Subsequently, AEP activates transcription initia-

tion via the SL1 complex and promotes transcription

elongation via P-TEFb. Transcription triggers SETD2-

mediated H3K36 methylation and DOT1L-mediated

H3K79 methylation to promote the promoter re-entry

of the MLL complex [48] and inhibit SIRT1-mediated

transcriptional repression [94], respectively. Some inhi-

bitors for the components of this transcriptional acti-

vation system are currently being developed with

promising results [95–99]. Inhibitors targeting any

components of the MLL/MOZ/AEP-mediated tran-

scriptional activation system have the potential to be

novel therapeutic strategies for not only MLL-r leuke-

mias but also other non-MLL-r leukemias such as

MOZ-rearranged leukemias.

MENIN-MLL interaction inhibitors

Because MLL fusion proteins bind to MENIN form-

ing a stable complex on the target chromatin [83], the

inhibition of the interaction between MLL and

MENIN would specifically attenuate the oncogenic

property of the MLL fusion protein [81]. In MLL/

MENIN complexes, the MENIN-binding motif

(MBM) of MLL specifically binds to a pocket-like

structure of MENIN [81,100]. Grembecka et al. devel-

oped specific MENIN-MLL interaction inhibitors that

fit into this pocket [95–97,101]. Krivtsov et al. [98]

developed another type of MENIN-MLL interaction

inhibitor that demonstrated high levels of efficacy in

preclinical models.

The genetic ablation of MENIN in non-MLL-r cells

resulted in decreased HOX expression [82,87,88], indi-

cating that MENIN-MLL interaction is required for

the function of the wild-type MLL (Fig. 5). Because

the MOZ-TIF2 complex targets the chromatin in a

wild-type MLL-dependent manner (Fig. 3D),

MENIN-MLL interaction inhibitors attenuate the

oncogenic property of MOZ-TIF2 [7]. MENIN-MLL

interaction inhibitors also exhibit antitumor effects on

leukemia with NPM1 mutations [97,102,103]. These

findings indicate that MENIN-MLL interaction inhibi-

tors have a therapeutic potential against non-MLL-r

leukemia that is dependent on wild-type MLL.

DOT1L HMT inhibitors

DOT1L functions as an ENL provider to establish AEP

on the chromatin [39]. The methylation of lysine 79 of

histone H3 by DOT1L inhibits transcriptional repres-

sors, such as SIRT1, to maintain the self-renewal prop-

erty of leukemia stem cells (Fig. 5) [94]. Daigle et al.

[99,104] have developed DOT1L HMT inhibitors that

effectively inhibited the continuous proliferation of

MLL-r leukemia cells in preclinical models. MLL fusion
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proteins constitutively recruit AEP in a MENIN-

dependent manner, which cooperatively activates tran-

scription with DOT1L to promote self-renewal [39].

Accordingly, the combination of DOT1L HMT and

MENIN-MLL interaction inhibitors has demonstrated

synergistic antitumorigenic effects [39,105].

A

B

Fig. 4. Mechanisms of self-renewal. (A) Self-renewal in normal hematopoiesis and leukemogenesis. One HSC can reconstitute the

hematopoietic system, whereas 50 MPPs cannot achieve the same repopulation. The transition from HSC to MPP is a point-of-no return

where cells lose their self-renewing ability. Leukemic oncogenes such as MLL fusions and MOZ fusions confer self-renewing ability to

committed progenitors and induce leukemia. HSC, hematopoietic stem cell; MPP, multipotent progenitor; CMP, common myeloid

progenitor; GMP, granulocyte/macrophage progenitor. (B) Self-renewal mechanism mediated by the MLL/MOZ/AEP-mediated transcriptional

activation system. After each cell division, the MLL-MOZ and AEP complexes activate CpG-rich promoters that were previously transcribed

in the mother cell to promote self-renewal.
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Fig. 5. Summary of the MLL/MOZ/AEP-mediated transcriptional activation system. MLL forms a complex with MENIN to stably associate

with LEDGF on CpG-rich promoters and recruit RNA polymerase II (RNAP2) thereto. The MOZ complex targets the same promoters via

association with MLL and RNAP2 to spread H3K14ac marks nearby. MLL and TFs such as MYB recruit CBP/p300 HATs to make the H3K9/

18/27ac marks, on which ENL is recruited by the DOT1L complex and an AEP complex is assembled. Leukemic oncogenes generated by

the mutations of MLL and MOZ constitutively activate this step. The AEP complex activates transcription via SL1 and P-TEFb. Transcribing

RNAP2 provides H3K39me3 marks via SETD2 HMT, which further promotes LEDGF recruitment. The DOT1L complex provides the H3K79

methylation mark, which counteracts with transcriptional repressors such as SIRT1. YSPTSPS: The heptapeptide repeat in the C-terminal

domain of RNAP2.
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MYST HAT inhibitors

HAT inhibitors for MYST HATs have been developed

by Baell et al. [106] and shown to inhibit MYC-

induced lymphoma. HBO1 has been identified as a

therapeutic vulnerability of leukemia stem cells by

genetic screening [107,108]. Thus, the inhibitors of

these MYST HATs may have potentials as novel drugs

for hematological malignancies dependent on the

MLL/MOZ/AEP-mediated transcriptional activation

system.

YEATS domain inhibitors

Although it is still in the early phase of drug develop-

ment, several compounds have been generated to inhi-

bit the interaction between the YEATS domain of the

ENL family proteins and acetylated histone H3 [109–
113]. These compounds target the critical point of the

MLL/MOZ/AEP-mediated transcriptional activation

system (Fig. 5) and are thus expected to be effective

for the disease relying on this transcriptional activation

system.

Conclusions

Cells acquire various biological abilities during cancer

development, the majority of which are considered as

hallmarks of cancer [114], including sustained prolifer-

ative signaling and resistance to cell death. However,

some mutations in leukemia patients do not fall into

the known hallmarks of cancer. Structural and func-

tional analyses have revealed that the gene rearrange-

ments of MLL and MOZ generate constitutively

active transcriptional machinery that promotes self-

renewal [7,48]. Consequently, non-HSC hematopoietic

progenitors acquire the ability to self-renew and

develop leukemia [90,92].

A transcriptional activation system mediated by

MLL, MOZ, and AEP replicates the active epige-

netic/transcriptional status of CpG-rich promoters to

faithfully reactivate the promoters that were previously

active in the mother cell (Figs 4B and 5). This system

is presumed to be highly active in HSCs but is pro-

gressively suppressed during differentiation in normal

hematopoietic cells (Fig. 4A). The aberrant activation

of this transcriptional activation system results in effi-

cient replication of epigenetic information, thereby

causing aberrant self-renewal. These results indicate

that promoting self-renewal is another hallmark of

cancer. Several molecularly targeted drugs targeting

the components of this transcriptional activation sys-

tem have been developed (Fig. 5) and will hopefully

provide therapeutic benefits to patients of these refrac-

tory cancers in near future, followed by the develop-

ment of newer drugs that function with similar

mechanisms.
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