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Abstract

In recent years, metabolomics has emerged as a pivotal approach for the holistic

analysis of metabolites in biological systems. The rapid progress in analytical

equipment, coupled to the rise of powerful data processing tools, now provides

unprecedented opportunities to deepen our understanding of the relationships

between biochemical processes and physiological or phenotypic conditions in

living organisms. However, to obtain unbiased data coverage of hundreds or

thousands of metabolites remains a challenging task. Among the panel of avail-

able analytical methods, targeted and untargeted mass spectrometry approaches

are among the most commonly used. While targeted metabolomics usually relies

on multiple‐reaction monitoring acquisition, untargeted metabolomics use either

data‐independent acquisition (DIA) or data‐dependent acquisition (DDA) meth-

ods. Unlike DIA, DDA offers the possibility to get real, selective MS/MS spectra

and thus to improve metabolite assignment when performing untargeted meta-

bolomics. Yet, DDA settings are more complex to establish than DIA settings, and

as a result, DDA is more prone to errors in method development and application.

Here, we present a tutorial which provides guidelines on how to optimize the

technical parameters essential for proper DDA experiments in metabolomics

applications. This tutorial is organized as a series of rules describing the impact of

the different parameters on data acquisition and data quality. It is primarily

intended to metabolomics users and mass spectrometrists that wish to acquire

both theoretical background and practical tips for developing effective DDA

methods.
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1 | INTRODUCTION

Over 3.5 billion of years of evolution, natural selection
has generated an overwhelming array of molecular en-
tities forming the backbone of the ever‐growing tree of
life. This myriad of compounds, crafted from 27 out of
the 90 elements present on Earth and produced by all
living organisms, from archaea to whales, represent
millions of potential functional entities (Alseekh &
Fernie, 2018; Aversa et al., 2016; Frieden, 1972; Xie et al.,
2015). Generated at the crossroad of any individual's
genome, its physiology, and its environmental adapta-
tion, this massive chemodiversity provides the raw ma-
terial for both fundamental and applied biological
research. For instance, many of the molecules produced
by plants bear pharmacological properties (e.g., antic-
ancer, antibacterial, antiviral, analgesic, anti‐
inflammatory or antitumor), making them an invaluable
source of medicines (Bruneton, 1995; Newman & Cragg,
2020; Veeresham, 2012). Since the late 1990s, when the
term “metabolome” was first coined to define the col-
lection of small‐molecular‐weight molecules (typically
<1500 Da) produced by a given organism, metabolomics
has emerged as a pivotal approach to uncover the mo-
lecular structure of biological systems (Fiehn, 2002). This
rapidly evolving technological approach, notably via the
development of mass spectrometry (MS) workflows, has
already generated abundant information on the nature of
biochemical processes and functions across scales: from
cells to individual organisms, to ecosystems (Chomel
et al., 2016; Tanentzap et al., 2019), as well as for the
development of more accurate medical and drug dis-
covery programs (Castro‐Perez, 2007; Thomford et al.,
2018). Nonetheless, today, to exhaustively detect, char-
acterize, and quantify the entire metabolome of biologi-
cal systems remains a major analytical challenge in
chemical biology research (Fiehn, 2002; Patti et al., 2012).

Of all the different techniques used for metabolomic
analyses, mass spectrometry is among the preferred tools,
due to its high selectivity and sensitivity (Cajka & Fiehn,
2016). Mass spectrometry‐based metabolomics can be
broadly divided into two groups: targeted or untargeted
(Roberts et al., 2012). Targeted analysis involves multi-
plexed analysis of a set of defined metabolites, generally
using multiple reaction monitoring (MRM) with low‐
resolution tandem mass spectrometers (Lu et al., 2008).
This type of analysis facilitates metabolite identification
and quantification, and minimizes the risk of false an-
notation. A major drawback of the targeted approach,
however, is the limited metabolome coverage and the
impossibility to perform retrospective data analysis. In
contrast, untargeted analysis aims to detect as many
metabolites as possible in a single or integrated analysis

and offers the potential to discover new biomarkers
without pre‐existing knowledge (Ribbenstedt et al.,
2018). Typically, for untargeted metabolomics, (ultra)‐
high pressure liquid chromatography is combined with
high‐resolution mass spectrometry (HRMS), such as
when using quadrupole‐time‐of‐flight (Q‐TOF) and
Orbitrap instruments.

Several approaches have been proposed to perform
mass spectrometry‐based untargeted metabolomics: full
scan, data‐independent acquisition (DIA), or data‐
dependent acquisition (DDA) (Fenaille et al., 2017). In
full scan mode, only one MS function without induced
fragmentation is acquired to generate ions of the mole-
cular species, adducts and in‐source fragments. Despite
the low level of spectral information and metabolite
identification provided by the full scan acquisition mode,
several untargeted metabolomics studies still use this
approach, probably due to its simplicity in terms of ac-
quisition, data processing, and its high performance for
discriminating biological samples (e.g., Clancy et al.,
2018; Marr et al., 2021). To improve data quality and
metabolite annotation rate, fragmentation data using
DIA or DDA can be added to the full scan mode. In
conventional DIA, including the so‐called MSE, MSALL,
or MS‐AIF, one function is set at low collision energy and
is equivalent to a full scan analysis, whereas a second
function is set at higher collision energy to generate
molecular fragmentation (Plumb et al., 2006; Wrona
et al., 2005). The main advantage of DIA is that, thanks to
its fast acquisition rate, no undersampling of some peaks
occurs allowing fragmentation of all precursor ions.
However, in DIA, it is not possible to deduce the physical
relationship between multiple precursor ions and their
fragments. Therefore, subsequent mass spectral decon-
volution relies uniquely on chromatographic retention
time differences and on the quality of time alignment by
the processing software (Schrimpe‐Rutledge et al., 2016).
This often results in very complex fragmentation spectra
and poor match between precursors and fragments (van
der Laan et al., 2020). To enhance selectivity, improved
DIA methods have been proposed such as the SWATH or
SONAR acquisition methods, in which the quadrupole
analyser of a Q‐TOF mass spectrometer is stepped or
ramped across a mass range of interest (Bonner &
Hopfgartner, 2019; Gethings et al., 2017; Gillet et al.,
2012). By reducing the ion transmission window for the
first quadrupole (Q1), for example, from 1000 Da to
20–30 Da at a given time, the probability that several
precursor ions are simultaneously fragmented is pro-
portionally reduced. Alternatively, an ion mobility device
may be used in combination with the high‐resolution
mass spectrometer to obtain cleaner spectra and reduced
interferences (Paglia & Astarita, 2017). Still, these DIA
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techniques are not always capable of reliably revealing
the connection between the precursor and the frag-
ment ions.

By contrast, DDA offers the possibility to acquire real
MS/MS spectra by selecting precursor ions from a full
scan analysis for further fragmentation, based on real‐
time evaluation of MS data by the software. DDA thus
has the potential to significantly improve metabolite
annotation, notably via in silico fragmentation tools, by
providing cleaner spectra compared to other acquisitions
modes (Guo & Huan, 2020). In a DDA experiment, the
fragmentation is only performed on the MS signals that
meet specified, user‐guided criteria (Figure 1). These
criteria are diverse and relatively complex but represent
critical steps for optimizing the coverage of the metabo-
lome of the biological system under investigation.
Moreover, several compromises, such as in terms of
number of MS/MS spectra that can be acquired versus
the speed of chromatography, must be made
(Ten‐Doménech et al., 2020). A number of studies have
reported on how to increase coverage using sophisticated
approaches such as time‐staggered precursor lists or data
set‐dependent acquisition (Broeckling et al., 2018).
However, given that DDA parameter choice is so im-
portant for obtaining high data quality, the small number
of systematic studies that focus on the effects of the dif-
ferent DDA settings is striking. We have observed large
discrepancies, and occasionally idiosyncratic use, in the
DDA parameters published in the literature. Besides, a
significant proportion of publications simply omit to re-
port the essential parameters needed to reproduce a

particular DDA experiment, thus impairing proper eva-
luation of the methods (see Supporting Information, for
an example of a correct description of a DDA method).

To overcome this gap in the literature, we here pre-
sent a tutorial which aims to provide guidelines on how
to choose and optimize the technical parameters essen-
tial to perform any DDA metabolomics experiments. We
describe which effects these parameters have on the data
outcome, and how they are interrelated. This tutorial is
not a comprehensive review on the applications of DDA
in metabolomics, but rather a compilation of data, ob-
servations, and recommendations resulting from our
own experience, discussions with colleagues and litera-
ture searches. This tutorial is organized as a list of eight
rules that we consider to be of primal importance for
successful DDA analyses. We trust that this tutorial can
help users make appropriate decisions when setting up a
DDA method, which will ultimately maximize MS/MS
data performance for innovative metabolomics
workflows.

2 | EIGHT RULES FOR
SUCCESSFUL DDA ANALYSES

Although DDA can in theory be performed on any tan-
dem mass spectrometer such as the triple quadrupole
(QqQ), quadrupole‐linear ion trap (QqLIT), Q‐TOF,
Orbitrap (LTQ‐Orbitrap, Q‐Exactive), and Qq‐FT‐ICR,
in practice Q‐TOFs or Orbitraps are predominantly em-
ployed since only these two technologies combine

FIGURE 1 Principle of data‐
dependent acquisition. The mass
spectrometer first performs a full scan
MS1 survey. Only the ions that meet
certain defined criteria are further
selected for MS/MS
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sufficient resolution and fast enough acquisition fre-
quency to facilitate metabolomics analyses. In the fol-
lowing section, we thus focus on these two types of
hybrid instruments. The parameter values and data pre-
sented are derived from measurements performed on
Synapt XS (Waters) and TripleTOF 6600 (AB Sciex)
Q‐TOFs, as well as on a Q‐Exactive HF (Thermo Fisher
Scientific). However, the presented concepts are generic
and should be applicable to any Q‐TOF or Orbitrap in-
strument with minimal adjustments.

2.1 | Rule 1: Set appropriate scan time
and maximum number of MS/MS
per cycle

In DDA, the instrument acquires a full scan MS1 and,
when certain criteria (described thereafter) are met,
performs a specified number of MS/MS acquisitions on
the most intense ions before switching back to full scan
MS1. According to the literature, there exists great het-
erogeneity in the scan times selected for MS1 and MS/MS
acquisitions, typically ranging as widely as 20–800ms
(Andrews et al., 2011; Pezzatti et al., 2020), as well as the
maximal possible number of MS/MS to be recorded (ty-
pically between 3 and 20). A longer scan time definitely
provides a gain in sensitivity, albeit at the expense of an
increase in total cycle time, that is, the time needed for
switching from one to the next full scan MS1 acquisition
(Figure 2). A higher number of subsequent MS/MS also
increases the total cycle time. Since the total cycle time
determines the frequency (scans/s), it should be carefully
adapted so that enough data points per chromatographic
peak (i.e., at least 7–8) can be obtained. However, the
time that the MS takes to complete a cycle of MS1 and
MS/MS acquisitions cannot simply be calculated by
summing the MS1 and MS/MS acquisition times speci-
fied in the method, but should be experimentally de-
termined (Figure 2). Indeed, there exist additional delay
times during which (i) the instrument switches from one
function to another (the interscan delay), and (ii) the
data‐dependent computational processing performed by
the software selects the top ions from the MS1 acquisi-
tion for further fragmentation. For instance, we have
experimentally measured that, on the Synapt XS Q‐TOF
(Waters), the sum of the interscan delay (14ms) and the
computational process between each event takes on
average 31ms. On the TripleTOF 6600 (AB Sciex), we
also measured a delay time of 31 ms. This means that for
a method with one full scan MS1 and nine MS/MS, these
instruments will spend up to 310ms per cycle without
acquiring data. This time lag can be significant in
combination with ultrahigh performance liquid

chromatography (UHPLC), which has become standard
in metabolomics and in which peak widths are typically
4–6 s (Johnson et al., 2013). In such a situation, the ac-
quisition of 7–8 data points per peak along with a large
number of MS/MS restricts the available scan time and
thereby limits overall sensitivity.

In our methods using the last‐generation Synapt XS
Q‐TOF, we generally set scan times of 100ms for MS1
and 50ms for MS/MS and allow a maximum of eight
subsequent MS/MS functions. This results in a total cycle
time of 780ms (500 ms acquisition + 280ms delay) in
profile mode and enables at least eight data points per
chromatographic peak (Figure 3). Other authors have
used identical set ups on other systems (Uka et al., 2017).
Slower instruments might permit only a smaller number
of MS/MS events or require slower chromatography to
enable enough data points per peak. Centroiding data
may also increase the cycle time. In any case, it is simply
unrealistic to acquire up to 100 MS/MS in combination
with fast chromatography as occasionally advertised by
certain manufacturers because the delay time alone
would take about 3 s. It should also be noted that the
cycle time at a given moment may be shorter than
the maximal possible cycle time if fewer MS/MS than the
maximum enabled are acquired during this cycle. This
may lead to erroneous interpretation of the cycle time
and for this reason, it is advisable to calculate the total
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FIGURE 2 Illustration of the experimental determination of
the total cycle time. In this example where one full scan MS1 and
eight MS/MS are acquired, the time between two full scan events
corresponds to 4.569–4.556min = 0.013 min = 780ms [Color figure
can be viewed at wileyonlinelibrary.com]
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cycle time using a very low or null threshold to make
sure that all available MS/MS functions are acquired at
all times.

Finally, on the Orbitrap mass analyser, the MS and
MS/MS events are controlled by both a maximum ion
injection time and an automatic gain control (AGC)
target value, depending on which parameter is reached
first (Kalli et al., 2013). This can result in variable scan
times for both MS1 and MS/MS functions. Also, unlike
Q‐TOFs, the scan time and the delay time on the Orbi-
trap increase with increasing resolution and a compro-
mise must be made between frequency and resolution.
Accordingly, most DDA methods on the Orbitrap typi-
cally use a higher resolution in MS1 (R= 35,000–70,000)
than in MS/MS (R= 17,500–30,000). Although the aver-
age delay time per cycle is slightly longer on the Orbitrap
(39–57ms depending on the resolution) than on TOFs
(31ms, see above) because of the computation intensive
Fourier transformation, similar cycle times can be ob-
tained with both technologies. For instance, using a
method with one full scan MS1 and eight MS/MS func-
tions on a Q‐Exactive HF, we have experimentally mea-
sured cycle times of 600, 715, and 880ms for MS1/MS2
resolutions set to 45,000/15,000, 60,000/30,000, and
120,000/30,000, respectively.

2.2 | Rule 2: Define the proper threshold
for switching to and back from MS/MS

The signal threshold at which the instrument will switch
from full scan MS1 to MS/MS is one of the most im-
portant parameters for DDA. On the one hand, if the
threshold is set too high, many peaks detected in the full

scan MS1 acquisition will not be fragmented, which will
result in limited MS/MS coverage. On the other hand, if
set too low, MS/MS will be performed on (i) low intensity
signals giving rise to low quality MS/MS spectra, often
insufficient for metabolite assignment, and (ii) noise
signals giving rise to “useless” MS/MS spectra. The
threshold strongly depends on the signal intensity and
background noise level of the mass spectrometer, which
can differ a lot according to the manufacturer and in-
strument type, as well as on solvent purity, memory ef-
fects of the column, condition of the source, and so on.
Furthermore, some high‐resolution mass spectrometers
can be operated at variable resolutions and the threshold
may vary according to the specified resolution. Indeed,
the higher the resolution on Q‐TOF instruments, the
lower the absolute signal intensity. Noteworthily, the
threshold value is also closely associated with the peak
exclusion list, which permits to decrease the threshold
while preventing (the excluded) background ions to be
selected for MS/MS fragmentation (see Rule 3 below). In
our DDA methods, we set signal thresholds that are
about 5–10 times lower than the highest signals present
in the background noise. Finally, another key aspect is to
define the return to full scan MS1 after the MS/MS ac-
quisition. There are basically two means to achieve this:
(i) by setting a constant accumulation time for MS/MS
(e.g., 50 ms for each MS/MS followed by return to MS1),
or (ii) by setting an accumulation target intensity (e.g.,
10,000 counts for each MS/MS followed by return to
MS1). We recommend when possible to preferentially
define a constant accumulation time rather than in-
tensity, for reasons related to the total cycle time (see
Rule 1) which may vary widely when a target intensity is
defined.

FIGURE 3 Full scan MS1 chromatogram of a plant extract analysed by DDA with 1 MS survey and max. eight MS/MS. Inset: extracted
ion chromatogram at m/z 209.0809 from the full scan MS1. The total cycle time is constantly 780ms (all available MS/MS functions
were used at all times) and enables nine data points over the 6‐s‐wide chromatographic peak. Data were acquired in continuum mode on a
Synapt XS (Waters)
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2.3 | Rule 3: Utilize a recent exclusion
list and determine exclusion mass
tolerance and exclusion time

A static exclusion list is a number of features (char-
acterized by their m/z or m/z vs. retention time) which
should never be selected for MS/MS even if they exceed
the defined threshold. Having an exclusion list is crucial
for enabling the system to select ions whose intensity is
smaller than those of the most intense background ions.
Since the noise in mass spectrometry can vary quantita-
tively and qualitatively over time, we recommend to
generate a new exclusion list for every batch of analyses.
There are several ways to create exclusion lists, but we
propose here the following simple procedure based only
on m/z ratios: first run 4–5 blank solvent samples, then
generate a total mass spectrum over the last chromato-
gram, and finally sort the detected ions by order of in-
tensity and keep only the most intense ions for the
exclusion list (Figure 4). With this approach, retention
times are not taken into account and the exclusion is
active across the whole chromatogram. Thus, it is parti-
cularly efficient at excluding background interferences
that elute as baseline noise or broad peaks but less effi-
cient on ghost peaks. Generally, a rule of thumb is to
exclude the background ions which have an equal or
higher intensity than the threshold intensity set for
MS/MS switch. Excluding less ions would cause the
preferential selection of background ions over signals of
interest, whereas excluding more ions could increase the
risk of accidentally omitting certain ions of interest in
subsequent analyses (see also the paragraph on mass
tolerance below). The number of excluded precursor ions

is highly correlated to the instrument sensitivity. For
instance, on the Synapt G2 Q‐TOF, which is an old‐
generation instrument bearing low sensitivity, we ex-
clude about 10 ions in positive electrospray when oper-
ated in resolution mode. In contrast, on the newer Synapt
XS Q‐TOF which displays much higher sensitivity in the
same configuration, we exclude about 200 ions. Natu-
rally, other factors such as the quality of the solvents
used for chromatography, the memory effect of the col-
umn, the condition of the source, and the acquisition
mode (profile or centroid) may also have an impact on
the number of ions that need to be excluded.

Another key aspect of the static exclusion list is the
mass tolerance in mDa (also referred to as mass window)
around the exact mass of excluded precursor ions.
Regardless of whether data are acquired in profile or
centroid modes, this tolerance depends mostly on the MS
resolution and should be determined for a specific
instrument based on the same concept as that of mass
extraction windows for HRMS quantitative methods
(Glauser et al., 2016; Vereyken et al., 2018). If the toler-
ance is set too low, redundant “spikes” of yet excluded
ions will still appear in the MS/MS functions because the
edges of high intensity MS peaks will still be accounted
for (Figure 5). On the other hand, a too high tolerance
will prevent the selection of certain isobaric compounds
and create significant gaps in the covered mass range.
For example, setting a list of 1000 excluded precursors
with a 100mDa tolerance could cause a potential loss of
up to 100 Da over the whole mass range. On the Synapt
XS Q‐TOF, we have experimentally determined optimal
tolerances of 100, 80, 30, and 20mDa for sensitivity
(resolving power of ca. 13,000 at m/z 556), resolution

Time
2.50 5.00 7.50 10.00

%

0

100
No m/z intensity
1 130.9563 1.17E+07
2 96.9501 1.11E+07
3 96.9517 1.08E+07
4 158.9534 9.72E+06
5 130.9582 9.63E+06
6 113.9534 8.51E+06
7 158.9514 7.57E+06
8 90.4972 6.78E+06
9 113.9551 6.27E+06

10 242.2794 6.18E+06
11 90.4957 5.78E+06
12 128.9414 4.65E+06
13 112.9463 4.34E+06
14 158.9554 3.92E+06
15 359.2409 3.88E+06
⁞ ⁞ ⁞

344086 208.3207 1.80E+01

Exclusion 
list

m/z
200 400 600 800 1000 1200

%

0

100
130.9563

158.9534

242.2794

359.2409

(A) (C)

(B)
Total MS
spectrum

FIGURE 4 Schematic representation of the creation of an exclusion list from a blank analysis. First, a blank sample is analysed. (A) The
corresponding base peak intensity chromatogram. Second, a total MS spectrum is generated from the blank chromatogram (B).
Third, a list of all detected peaks in this total MS spectrum is exported and sorted according to intensity (C). The exclusion list is created with
the most intense background ions
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(resolving power of ca. 22,000 at m/z 556), high
resolution (resolving power of ca. 45,000 at m/z 556) and
enhanced resolution (resolving power of ca. 63,000 at
m/z 556) modes, respectively. On the Sciex TripleTOF
6600, the adequate mass tolerance is 50 mDa for a re-
solving power of ~35,000 at m/z 956. It should be noted
that the resolution on TOF instruments is relatively
stable over the whole mass range, meaning that the peak
width increases with the m/z ratio. Thus, in theory,
heavier ions would need a larger tolerance than lighter
ions. This phenomenon may even be exacerbated on
Orbitrap machines as resolution decreases with increas-
ing m/z. At this stage, we are unaware of software
solutions which take this aspect into consideration,
and which would enable the user to set variable mass
tolerances over the m/z range.

In addition to the static exclusion list, a dynamic
exclusion list enables the user to define an exclusion time
during which a specific precursor that had been selected
for MS/MS is omitted from being selected again. We
found that there is actually a high discrepancy in the

values used for this parameter in the literature, some of
which can be as short as 0 s and others as long as 30 s or
even for the rest of the analytical run. Setting the
exclusion time too low will result in repeated MS/MS
acquisitions of the same precursor ions over the same
chromatographic peak to the detriment of the less
intense ions, thereby reducing MS/MS coverage. Con-
versely, setting it too long (e.g., 30 s) will prevent the
switch to MS/MS for closely eluting isomers, which are
frequent in the metabolomics analysis of biological
samples. We advise to use a trade‐off approach that
ranges between these two extreme situations. For
UHPLC separations with peak widths of ca. 4‐6 s, we
usually set an exclusion time of 1.5–2 s. This enables us
to acquire a second MS/MS at the top of the peak to
get more intense fragments and better spectral quality.
Alternatively, one may set an exclusion time which is
slightly longer than the peak width at the base so that no
redundant MS/MS spectra are acquired.

Finally, it is possible to perform iterative automated
precursor ion exclusion using repeated injections of

803.4213
(A)

(B)

(C)

FIGURE 5 Illustration of the effect of the mass tolerance window around the excluded ions. (A) Zoom on a peak at m/z 803.42. An
80mDa but not 30mDa window is sufficient to entirely cover the peak. (B) MS/MS first trace of a blank sample with the tolerance window
set at 80mDa. (C) MS/MS first trace of a blank sample with the tolerance window set at 30mDa. Redundant intense peaks at
m/z 89.94 are visible along the chromatogram and indicate that the precursor ion leading to the m/z 89.94 fragment was not constantly
excluded due to a too narrow mass tolerance window. Data were acquired in continuum mode on a Synapt XS (Waters) operated in
“resolution” mode (resolution ca. 23,000 at m/z 556)
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the same sample. After a first round of DDA, a list of
all selected precursor ions is created and imported as
exclusion list in the method for a second DDA run, and
so on. This process can be indefinitely repeated with
new lists merged with the lists generated from the
previous runs, but the best compromise was found to
be five rounds of exclusion (Zhang, 2012). The ad-
vantage of this approach is that it maximizes the
number of unique MS/MS spectra. However, the time
required to measure a single sample may be prohibitive
in the case of large sample batches.

2.4 | Rule 4: Utilize an inclusion list
(optional)

An inclusion list, a list of desired precursor ions that are
preferentially selected for MS/MS, is rare in untargeted
metabolomics studies, which by definition aim for an
unbiased coverage of all metabolites. However, similarly
to the automated precursor ion exclusion method men-
tioned above, inclusion lists may be used in a sequential
manner to increase MS/MS coverage (Hoopmann et al.,
2009). Here again, the information obtained from pre-
vious runs is used to guide the acquisition of MS/MS
spectra in subsequent analyses. To do so, a full scan
analysis is first acquired and an inclusion list is generated
using a feature detection software. Inclusion lists consist
of features characterized by m/z values and narrow

retention time windows. Only the detected features will
then be selected for MS/MS in the next run. Inclusion
lists can even be combined with exclusion lists for in‐
depth MS/MS coverage (Cho et al., 2021).

2.5 | Rule 5: Adjust the collision energy
for MS/MS fragmentation

The ability to annotate metabolites is directly dependent
on the quality of MS/MS fragmentation. Ideally, frag-
mentation conditions should be selected so that all mo-
lecules within a run fragment neither too strongly, nor
too weakly. Several options are available for fragmenting
precursor ions using collision‐induced dissociation (CID)
in the collision cell: (i) a unique fixed collision energy
(e.g., 25 V), (ii) stepped collision energies (e.g., 10, 20, 30,
40, and 50 V), and (iii) a collision energy ramp (e.g.,
10–50 V). In DDA, an additional possibility is to set mass‐
dependent or retention time‐dependent collision en-
ergies. Indeed, small molecules generally require lower
collision energies than big molecules. Our tests have re-
vealed that, on the Synapt XS Q‐TOF, a wide ramp of
collision energy weighted by m/z gives the best overall
fragmentation spectra for diverse metabolites (Figure 6).
Specifically, we apply a ramp of 5–40 V at m/z 50,
12.5–55 V at m/z 625, and 20–70 V at m/z 1200. These
values are indicative and optimal values for a given in-
strument will depend on the collision cell geometry, the
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FIGURE 6 Examples of MS/MS spectra for two representative metabolites of a plant extract using a ramp of collision energy weighted
by m/z (5–40 V at m/z 50 and 20–70 V at m/z 1200) or a stepped collision energy (10‐20‐30‐40‐50 V). In both cases, the ramped collision
energy provides more informative fragments than the stepped collision energy
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collision gas pressure and type (Ar, N2, etc.), or the po-
larity (negatively charged ions usually require less energy
than positively charged ions). We therefore recommend
to optimize collision energies on a set of compounds with
diverse range of m/z and structures.

2.6 | Rule 6: Adjust the quadrupole
or ion trap isolation window
for precursor selection

The quadrupole or linear ion trap of hybrid high‐
resolution mass spectrometers such as Q‐TOFs and
LTQ‐Orbitrap serve as mass filters during precursor se-
lection. Their mass resolution window can be modulated
and this has an impact on MS/MS spectra. The isolation
window may be wide (typically 4 Da window), inter-
mediate (2 Da), or narrow (1 Da) (Allard et al., 2016; Kalli
et al., 2013). In the wide mode, the 4 Da window is
generally set at −0.5/+3 Da around the precursor mass,
so that the first three isotopologues are included in the
MS/MS spectrum (Figure 7). In the narrow mode, a −0.5/
+0.5 Da window is set around the precursor mass, and
the information provided by the isotopologues is lost
(Figure 7). Naturally, the narrow mode provides better
selectivity but slightly lower sensitivity (1.5–2‐fold on our
instrument). Furthermore, the loss of isotopic patterns
can have a negative impact on molecular formula as-
signment, as spectral accuracy (i.e., the accurate mea-
surement of isotopic distributions (Glauser et al., 2013))
is an important factor for the determination of elemental
compositions (Kind & Fiehn, 2007). Altogether, there is
thus a trade‐off between selectivity, sensitivity, and

spectral information that should be considered when
setting the isolation window.

2.7 | Rule 7: Apply filters for precursor
selection

Depending on the manufacturer, different filters for
precursor selection may be available. Here we discuss
only two which in principle should be common to all
types of instruments. First, an isotope exclusion function
(also called monoisotopic precursor selection) should be
activated, so that the mass spectrometer does not spend
time to measure different isotopologues of the same
metabolite. Second, the charge state should be set to 1, or
possibly 1 and 2, since the vast majority of metabolites
are detected as singly charged ions and only a minority as
doubly charged ions. This is in sharp contrast with pro-
teomics applications in which singly charged ions are
usually rejected (Kalli et al., 2013).

2.8 | Rule 8: Perform DDA on all
measured samples

A practice sometimes observed in metabolomics studies
is to perform full scan measurements with all samples
and restrict DDA to only a small subset of samples, for
instance on quality control (QC) samples. In our opinion,
such approach should be avoided since it may sig-
nificantly decrease MS/MS coverage by “diluting” each
study sample within the pool of QC samples. This is
particularly relevant for big sample batches and/or for

FIGURE 7 Examples of MS/MS
spectra with the quadrupole set at 4 or
1 Da isolation windows. The precursor
ion is m/z 646 in both cases. Inset: zoom
on the fragment at m/z 586.3039. Isotopes
are present with a 4 Da window but not
with a 1 Da window
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highly heterogeneous samples. Instead, we recommend
to perform DDA on all measured samples to ensure
adequate MS/MS coverage.

3 | CONCLUSION

The last decade of research in tandem mass spectrometry
has offered substantial advances for the characterization of
the metabolome of biological systems and opened exciting
perspectives for a wide range of research areas spread across
cellular metabolism, disease detection, drug discovery or
biodiversity‐ecosystem function framework (Kaddurah‐
Daouk & Krishnan, 2009; Olivon et al., 2017; Withers et al.,
2020). Nonetheless, these ever‐growing performances re-
quire in‐depth knowledge of the parameters underlying
data acquisition processes. DDA methods that potentially
offer the highest quality of MS/MS data fully illustrate this
strong sensitivity to parameter settings. As highlighted in
this tutorial, the inherent nature of DDA imposes important
compromises between metabolite screening capacity and
the quality of the fragmentation spectra. When developing a
DDA method, the trade‐off between quality and quantity
must initially be considered since it will strongly impact the
data output generated by the processing pipeline. Indeed,
while the ability to obtain quantitative and reproducible
data for robust comparisons between samples is related to
the MS1 screening capacity, the assignment of metabolites
using, for instance, molecular networking and in‐silico an-
notation, is mainly dependent on MS/MS spectral quality.
This tutorial provides a practical framework for optimizing
the quality of mass spectral fragmentation data while also
maintaining efficient screening capacity, thus minimizing
the risk of undersampling. Ultimately, this will ensure op-
timal performance for the use of the last generation pro-
cessing workflows, including the trinity of feature detection
and alignment, molecular networking, and in‐silico anno-
tation (Dührkop et al., 2019; Pluskal et al., 2010; Wang
et al., 2016). By improving the accuracy in annotation as
well as the clustering capacity of unknown compounds in
large sets of metabolites, optimized DDA approaches may
provide the finest resolution of the entire metabolomes,
and ultimately enhance our ability to explore molecular
processes in biological systems.
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