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Abstract

Deep learning has been demonstrated effective in many neuroimaging applications. However, 

in many scenarios, the number of imaging sequences capturing information related to small 

vessel disease lesions is insufficient to support data-driven techniques. Additionally, cohort-based 
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studies may not always have the optimal or essential imaging sequences for accurate lesion 

detection. Therefore, it is necessary to determine which imaging sequences are crucial for precise 

detection. This study introduces a deep learning framework to detect enlarged perivascular spaces 

(ePVS) and aims to find the optimal combination of MRI sequences for deep learning-based 

quantification. We implemented an effective lightweight U-Net adapted for ePVS detection 

and comprehensively investigated different combinations of information from SWI, FLAIR, T1-

weighted (T1w), and T2-weighted (T2w) MRI sequences. The experimental results showed that 

T2w MRI is the most important for accurate ePVS detection, and the incorporation of SWI, 

FLAIR and T1w MRI in the deep neural network had minor improvements in accuracy and 

resulted in the highest sensitivity and precision (sensitivity =0.82, precision =0.83). The proposed 

method achieved comparable accuracy at a minimal time cost compared to manual reading. The 

proposed automated pipeline enables robust and time-efficient readings of ePVS from MR scans 

and demonstrates the importance of T2w MRI for ePVS detection and the potential benefits of 

using multimodal images. Furthermore, the model provides whole-brain maps of ePVS, enabling 

a better understanding of their clinical correlates compared to the clinical rating methods within 

only a couple of brain regions.
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1. Introduction

Enlargement of perivascular, or Virchow-Robin, spaces (Doubal, MacLullich, Ferguson, 

Dennis, & Wardlaw, 2010; Wardlaw et al., 2020) can be a manifestation of cerebral small 

vessel disease and dysfunction of perivascular drainage routes. Perivascular spaces are 

fluid-filled spaces that surround arteries, arterioles, veins, and venules (Wardlaw et al., 

2013) in the brain. They are generally microscopic in size but with increasing age and/or 

pathologies may become enlarged and visible, i.e. enlarged perivascular spaces (ePVS) (Hou 

et al., 2017; Potter, Doubal, et al., 2015; Wardlaw et al., 2020; Wardlaw et al., 2013). 

Typically, ePVS appear as bright or hyperintense linear or curvilinear structures when 

running parallel to the imaging plane and ellipsoidal or dot-like when perpendicular to the 

imaging plane on T2-weighted (T2w) magnetic resonance imaging (MRI) (Wardlaw et al., 

2020; Wardlaw et al., 2013). When perivascular spaces are enlarged, they become visible 

on routine structural MRI, typically with a diameter less than 3mm, but can reach up to 

10–20 mm in regions such as the basal ganglia (Wardlaw et al., 2013). While ePVS can 

be evaluated on T1-weighted (T1w) and T2w sequences, they are easier to visualize and 

quantify using T2w imaging (Ballerini et al., 2018; Potter, Chappell, Morris, & Wardlaw, 

2015).

Many detection/segmentation methods have been proposed (Ballerini et al., 2018; Hou et 

al., 2017; Lian et al., 2018; Wang et al., 2016; Zhang et al., 2017) which rely on T2w 

exclusively for detection/segmentation of ePVS. However, it is still unclear if models relying 

on a single modality such as T2w could account for similar-appearing brain lesions such as 

white matter hyperintensities (WMH), lacunes and infarcts. WMH are hyperintense on T2w 
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sequences and can appear as isointense or hypointense on T1w sequences, lacunes are round 

or ovoid subcortical fluid-filled cavities of between 3 mm and 15 mm in diameter, while 

infarcts are neuroimaging evidences of recent infarction in the territory of one perforating 

arteriole (Wardlaw et al., 2013).

In this paper, we aim to evaluate the feasibility and effectiveness of an automated deep 

learning-based method for segmenting ePVS using multiple MRI sequences from a subset 

of participants in the Multi-Ethnic Study of Atherosclerosis (MESA) cohort. The brain data 

collected by the MESA Atrial Fibrillation (AFib) (Austin et al., 2022; Bild et al., 2002; 

Burke, Lima, Wong, & Narula, 2016; Olson, Bild, Kronmal, & Burke, 2016) ancillary 

study at Exam 6 offer a unique and rich dataset of high-quality brain MRI at clinical 

field strength and high spatial resolution (1 mm isotropic images). We aim to evaluate the 

accuracy and reliability of ePVS segmentation in the presence or absence of T2w MRI, 

and when T2w is combined with other MRI sequences. We used a variation of our method, 

previously developed using MESA brain MRI data for fully automated detection of cerebral 

microbleeds and non-haemorrhage iron deposits in the basal ganglia (Rashid et al., 2021), 

and investigate the optimal strategy of combining information from susceptibility weighted 

imaging (SWI), fluid-attenuated inversion recovery (FLAIR), T1w and T2w MRI sequences. 

A set of ePVS segmentations by a human expert served as the gold standard for model 

training.

Automation is ideal in large cohort studies for feasibility and to improve reproducibility and 

to reduce human error (Hurtz et al., 2019). Accurate and reliable methods are also essential 

for deriving rich datasets from large cohorts to study associations with demographic, 

cognitive and vascular risk factors (Mohamad Habes et al., 2016; M Habes et al., 2016; 

Habes et al., 2021), or to refine the development of new methods (Liu, Rashid, & Habes, 

2020; Liu et al., 2021).

To the best of our knowledge, this study is among the first to comprehensively evaluate 

multimodal imaging for ePVS detection with deep learning. The main contributions of this 

paper include:

1. Development of an effective deep learning scheme with data fusion for accurate 

ePVS segmentation.

2. Application of the proposed model to the whole brain, instead of selective 

regions.

3. Investigation of the use of different sequences for optimal performance.

2. Related Works

Previous ePVS segmentation methods typically adopt conventional machine learning 

techniques such as vessel enhancement filters (Ballerini et al., 2018) and support vector 

machines (SVM) (González-Castro et al., 2017). Ballerini et al. trained a model on 

T2-contrast MR images (Ballerini et al., 2018) and evaluated it by categorical scores 

(Potter, Chappell, et al., 2015). González-Castro et al. applied SVM classifier with bag 

of visual words-based descriptors to the T2-weighted MR images with a focus on the 
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basal ganglia (González-Castro et al., 2017). Wang et al. developed a semi-automatic 

computational method that extracts ePVS on bilateral ovoid basal ganglia on intensity-

normalized T2w MRI (Wang et al., 2016). Meanwhile, some works exploited handcrafted 

features as predictors, for example, Boespflug et al. used signal intensities and morphologic 

characterizations including width, volume and linearity (Boespflug et al., 2018), while 

Ramirez et al. used set localized intensity thresholds for quantification of perivascular spaces 

(Ramirez et al., 2015), and Zhang et al. proposed vascular feature based structured learning 

for 3-dimensional ePVS segmentation using T2w data (Zhang et al., 2017). Besides, to 

facilitate these models, Sepehrband et al. combined T1- and T2w images to enhance PVS 

contrast to intensify the visibility (Sepehrband et al., 2019).

With the recent success of deep learning techniques (Liu et al., 2021; Mou, Zhang, Fan, 

Liu, & Wang, 2021; Song & Liu, 2021; Yin et al., 2019), some deep neural network models 

were proposed for ePVS segmentation. For instance, Boutinaud et al. developed a deep 

learning algorithm based on an autoencoder and a U-shaped network for the 3-dimensional 

segmentation of ePVS in deep white matter and basal ganglia using T1-weighted MRI data 

(Boutinaud et al., 2021), and Lian et al. proposed a fully convolutional neural network 

using 7T T2-weighted MRI for efficient segmentation of ePVS (Lian et al., 2018), Dubost 

et al. implemented separate convolutional neural networks for midbrain, hippocampi, basal 

ganglia and centrum semiovale, trained on T2-contrast MRI to quantify PVS (Dubost et 

al., 2019), Sudre et al. redesigned the region-based convolutional neural networks model to 

jointly detect and characterize markers of age-related neurovascular changes (Sudre et al., 

2019), and Jung et al. presented a deep 3-dimensional convolutional neural network with 

densely connected networks with skip connections for ePVS enhancement of 7T MRI (Jung 

et al., 2019). In general, these works did not investigate how to fully utilize different sources 

of information for improved ePVS detection on the whole brain based on deep data-driven 

techniques. Furthermore, these prior studies mostly used 7T MRI which is less available in 

the clinic compared to the more standard 3T machines. 3T MRI is more conventional and 

widely available, so a deep learning model tailored for 3T MRI a more cost-effective choice.

3. Materials and Methods

The key point of the proposed scheme is a deep fusion of information from different 

MRI sequences. An overview of the whole procedure is summarized in Fig. 1. Standard 

image processing techniques were first applied to raw MRI data of different sequences a 

subset of the MESA cohort, including inhomogeneity correction, reorientation, smoothing 

and filtering, brain masking and skull-stripping, followed by gray matter (GM), white 

matter (WM) and cerebrospinal fluid (CSF) segmentation. Then the participants’ MRI were 

registered to SWI. Preprocessed MRI data were manually segmented to obtain the ground 

truth used for model training with leave-one-out cross-validation.

3.1. Data

The training data included 21 participants, which are randomly selected from the MESA 

cohort. For T1w, T2w and FLAIR images, the MESA study collected 3D isotropic MRI 

scans at 6 different sites with Siemens scanners (Skyra with a 20-channel head coil, Prisma 
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and Prisma Fit with 32-channel head coil). Our training data included participants from 

all these sites and all the scanner models, thus ensuring generalizability within the MESA 

cohort. The MRI scan parameters are shown in Table 1.

The ages of the 21 participants range from 64 to 94 years with an average of 78.7 years, and 

12 of them are female. The average total number of individual lesions per participant is more 

than 683. The ePVS segmentation of these participants was performed by an experienced 

radiologist (JBW) and served as ground truth for model training (see supplementary material 

Table S1). The manual segmentation was performed using co-registered T2w, T1w and 

FLAIR images to ensure reduced likelihood of false positives such as WMH or lacunes 

(Wardlaw et al., 2013) being present in the ground truth. The average time needed to 

complete a manual segmentation of ePVS for the whole brain was around 24 hours per 

participant. For model training and evaluation, we used FLAIR, SWI, T1w and T2w 

images, which were reoriented, N4 bias corrected (Avants, Tustison, & Song, 2009) and 

skull-stripped (Doshi et al., 2016). The SWI phase mask was generated from the phase 

images using a high-pass filter of size 64 × 64 in order to remove artifacts, and the SWI 

was generated by multiplying the magnitude image with the phase mask (Haacke, Mittal, 

Wu, Neelavalli, & Cheng, 2009; Haacke, Xu, Cheng, & Reichenbach, 2004. For creation of 

the reference annotation and machine-based inference, only the SWI image with the shortest 

echo time (TE=7.5 ms) was used since SWI acquired with longer echo times are noisier. 

Examples of ePVS on the different sequences are shown in Fig. 2. The MRI scans used in 

this study have high spatial resolution, making it possible to detect small ePVS, although 

in clinical settings, the slice thickness is larger to allow for less scan time, so small lesions 

occurring between slices may not be visible.

3.2. Deep Fusion of Different Sequences

Suppose fU :ℝn × S ℝS is a nonlinear function with a set of learnable parameters U, where 

n is the number of MRI Sequences used and S is the size of the images, f maps the n 
images to voxel-wise labels indicating whether the voxel contains ePVS or not. In this study, 

fU is implemented as a multi-channel deep neural network (Rashid et al., 2021), which 

is a variation of the standard U-Net (Ronneberger, Fischer, & Brox, 2015) and has been 

demonstrated superior compared to conventional U-Net for small lesions (Rashid et al., 

2021). A typical U-Net is made up of a down-sampling or encoding path and a symmetric 

up-sampling or decoding path. The down-sampling path consists of a series of convolutional 

blocks, normalization blocks, activation blocks and pooling blocks. The up-sampling path 

consists of a series of convolutional blocks, normalization blocks, activation blocks and 

transpose convolutional blocks. The feature map of each corresponding down-sampling path 

and up-sampling path are concatenated.

The proposed scheme could perform a deep fusion of information from different sequences. 

The ePVS detection/segmentation model fuses information from T2w, SWI, FLAIR and 

T1w images through the multi-channel U-Net. It was designed in a scalable manner, i.e., the 

network using T2 only was basically a single-channel U-Net, and can be easily expanded to 

include multiple sequences. The manual segmentations by the human expert were used to 

train the deep learning model using leave-one-out cross-validation. To be specific, in each 
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iteration of the leave-one-out cross validation, we use data from 20 subjects for network 

training and data from 1 subject for testing. Also, from the 20 subjects used in training, 4 

were used exclusively for within-training validation.

Each 3-dimensional (3D) scan was cut into 2D axial slices, which underwent data 

augmentation through combinations of geometric transforms such as rotations, translations, 

up-down and left-right flips. In each experiment, the axial T2w slice (along with the 

corresponding axial slices in other MRIs) and corresponding axial ground truth slice 

were augmented. For translations, a set of two random floating-point numbers tx and ty 
(representing the amount of shift per axis) were generated within the range [−45, 45] and 

used to translate the image slice(s) and the corresponding slice of the ground truth. This 

range was chosen empirically so that most of the brain would be visible in the translated 

image. A total of 10 random floating-point numbers per axis were generated, resulting in 

10×10=100 translations for each slice. For rotations, a set of random floating-point numbers 

d (representing the rotation in degree) were generated within the range [1, 60], and the 

image slice(s) and the slices with ground truth were rotated using both +d and −d. The 

regions of the crops that were located outside the image matrix were padded with edge 

values. A total of 16 random floating-point numbers were used, resulting in 16×2=32 

rotations. The same set of transforms were applied to the flipped images. For example, 

a single T2w MRI image having 96 axial slices resulted in 23880 axial slices after data 

augmentation. These augmented data were fed into the neural network as data samples.

We aimed to train multi-class models, where predicted classes were background and ePVS, 

using the following combinations of imaging sequences: (1) T2w-only, (2) T2w and FLAIR, 

(3) T2w, T1w and FLAIR, (4) T2w, T1w, FLAIR and SWI, (5) T2w and T1w, (6) FLAIR 

only, (7) T1w only, (8) T1w and FLAIR. The training time for the deep learning models was 

3 to 8 days. Once model training was completed, the trained models can predict whole-brain 

ePVS in less than 30 seconds.

3.3. Analysis of Detection Results

The accuracy of these models was based on three parameters: sensitivity S, precision P, and 

magnitude accuracy A, which are defined as

S = TP / TP + FN ,

P = TP / TP + FP ,

A = S2 + P 2,

where TP is the number of true positives, FN is the number of false negatives, and FP stands 

for false positives.
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We also selected metrics effective for small lesions like ePVS where shape information 

and volume is important. The ePVS could be as small as one voxel. The analysis included 

Bland-Altman plots and scatterplots of ePVS count and volumes (prediction vs expert 

labelled data), as well as sensitivity and precision based on center of mass of the lesions. We 

also assessed performance using intra-class correlation coefficients (ICC) (Shrout & Fleiss, 

1979), volumetric similarity (Ramaswamy Reddy, Prasad, & Reddy, 2013), area under the 

curve (AUC) from receiver operator curves, Hausdorff distance (Rockafellar & Wets, 2009) 

and Mahalanobis distance (Xiang, Nie, & Zhang, 2008). For ICC, we used the method 

of (Shrout & Fleiss, 1979) with a two-way random model, absolute agreement, single 

measure. Hausdorff distance calculates the distance between two point sets that correspond 

to ground truth labels and segmentations respectively, while Mahalanobis distance is a 

multivariate distance metric that measures the distance between a point and a distribution 

and is particularly effective for classification on highly imbalanced datasets. The mean 

metrics are obtained by averaging over subjects, e.g., suppose Si is the sensitivity obtained 

by testing subject i (i = 1,2, … , 21), then average sensitivity S = 1
21 ∑i = 1

21 Si.

4. Results

The mean evaluation metrics with corresponding standard errors of all subjects including 

sensitivity, precision, magnitude accuracy, ICC, volumetric similarity, AUC, Hausdorff 

distance and Mahanabolis distance are shown in Table 2. The results indicate that T2w 

MRI is the most informative, with the best performance of any single sequence and near 

optimal for several measures. For most measures, the combination of T2w, FLAIR, T1w 

and SWI achieved the best performance. Adding SWI to the combination of the other 3 

sequences offered minimal overall gain but improved ICC.

Fig. 3 displays the correlations between the number of predicted lesions and that of ground-

truth lesions. The highest correlations are achieved by using T2w. Fig. 4 plots the points 

located by pairs (S, P) from all the participants, and indicates that by including T2w, FLAIR 

and T1w the model could attain highest magnitude accuracy, which is reflected by the 

distance between (S,P) and (0, 0) in the figure, where S and P  are the median sensitivity and 

median precision respectively. Fig. 5 shows the Bland-Altman plots of number of lesions, 

demonstrating that the mean difference between the prediction and the gold standard as 

well as the random fluctuations around the mean reached the minimal when using T2w 

only, and remained low when incorporating other sequences. Fig. 6 displays the correlations 

between the volume of predicted lesions and volume of the ground truth, reaffirming the 

importance of using T2w for ePVS segmentation. Fig. 7 shows the Bland-Altman plots of 

lesion volumes, indicating that combination of T2w, FLAIR, T1w and SWI could attain 

better results than using FLAIR, T1w only, since the mean difference and the fluctuations 

were minimal when combining T2w, T1w, FLAIR and SWI, and were significantly smaller 

when T2w is included.

Based on such observations, we can see that although T1 and FLAIR are more standard 

research sequences, for ePVS ratings using these two sequences only are not nearly as 

accurate as including T2w, and incorporating other sequences did not improve results 

Rashid et al. Page 7

Neuroimage Rep. Author manuscript; available in PMC 2024 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



significantly. However, utilization of information from different modalities enables the 

model to effectively distinguish ePVS from mimics like white matter lesions and lacunes, as 

demonstrated in Fig. 8.

5. Discussion and Conclusions

Enlarged perivascular spaces (ePVS) are increasingly recognized as a subclinical biomarker 

for brain health and disease, including cerebrovascular disease, and therefore quantification 

is of interest to the research community. Manual quantification of individual ePVS is 

extremely time consuming (Ramirez et al., 2015; Wang et al., 2016), operator-dependent 

and may not reflect accurately the true burden of ePVS. Data-driven automated systems, 

including deep learning models, provide a promising way to generate robust, reproducible, 

and rapid quantification of ePVS from brain MRI scans, and when training dataset is 

limited, light-weight networks can be sufficient to achieve accurate prediction (Peng, Gong, 

Beckmann, Vedaldi, & Smith, 2021).

Automated ePVS quantification is challenging due to the existence of mimics like lacunes 

and white matter lesions, which may lead to false positive measurements. Furthermore, 

in many scenarios, the number of neuroimaging data samples could be insufficient to 

support data-driven systems. Such problems still remain in recently published deep learning 

methods. In general, there are several limitations: 1) It is still under question as to whether 

one single modality could be sufficiently informative for ePVS quantification; 2) The 

advantages of combining different sequences for the application is not investigated; 3) 

Existing methods generally use 7T MRI whereas 3T MRI is more available and accessible 

in practice; 4) Existing methods were only applied to selective regions rather than the whole 

brain.

To address these issues, this study aims to fully exploit the informative 3T MRI data 

available by jointly utilizing different sequences, and investigate the optimal strategy of 

fusing information from different sequences in the deep learning framework for ePVS 

segmentation, which could be applied to the whole brain. Specifically, since the number of 

data samples is often limited, it is of great importance to make full use of the data available, 

and the fusion of information from different sequences could be an effective solution. The 

deep learning model adopts a light-weight multi-channel variation of the U-Net tailored for 

the application. The experimental results demonstrate that the combination of T2w, FLAIR, 

T1w and SWI leads to best segmentation performance, and that performance with T1w alone 

is worse than T2w alone for detecting ePVS. Our results suggest that if quantification of 

ePVS is of interest, prospective research studies should include T2w imaging in a brain MRI 

protocol. T1w images, which are by far more prevalent in research studies due to utility 

in brain tissue segmentation, should be expected to provide less accurate quantification of 

ePVS.

For regional evaluation, we derived several regions based on the existing MUlti-atlas region 

Segmentation utilizing Ensembles (MUSE) (Doshi et al., 2016), as shown in Fig. S3 of the 

supplementary material. Based on these regions, we did the same sensitivity and precision 

calculations for each individual region in all the experiments. The metrics including mean 
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sensitivity and precision etc. are in Table S2 ~ S8 of the supplementary material. We can see 

that in the basal ganglia, the sensitivity and precision is high for all experiments, even when 

using only T1 or FLAIR. This suggests we can get reliable and accurate ePVS readings in 

the basal ganglia using only T1 and/or FLAIR. On the other hand, we see that the sensitivity 

and precision is poor in the hippocampus and temporal regions. This is because of false 

positives due to the presence of blood vessels prevalent in those regions. Currently, the most 

clinically relevant regions for ePVS readings are the basal ganglia, centrum semiovale and 

maybe the midbrain (Wardlaw et al., 2020; Wardlaw et al., 2013). So our experiments are 

showing that our models can make accurate predictions in the basal ganglia and the centrum 

semiovale, even when T2w is absent.

In this work we chose 2D slices over 3D because the ground truth ePVS labels were 

manually labeled for each slice separately. Although theoretically using 3D samples could 

utilize context from adjacent slices, in practice such connection between adjacent slices 

might be weak or even misleading when the ground-truth labels are produced slice-wise 

manually. From this perspective, the main benefit of using 2D dataset is that it could better 

fit the characteristics of real-world expert-segmented labels. This might be the reason why 

2D datasets were demonstrated to be better than the 3D counterparts in some previous works 

(Srikrishna et al., 2022). Another practical reason for using 2D slices in lieu of 3D images 

is the exponentially larger GPU memory required to hold all the parameters of a 3D-capable 

deep learning model. Smaller models may fit commercial GPU memory but may not be 

capable of extracting the features necessary for effective learning and segmentation.

Although the dataset we used is a subset of the MESA brain MRI study at Exam 6, 

with available ground truth data, we strived to alleviate the issue of overfitting to the 

extent possible by performing leave-one-out cross-validation when evaluating our models. 

Our cross-validation strategy has shown great generalization to the available dataset, but 

additional experiments with external datasets might improve the generalization of our 

model. However, that comes with challenges, namely, other studies usually have recruited 

participants with pathology and may not include similar MRI sequences like T2w, FLAIR 

and SWI, and may not have the expert-segmented ePVS labels.

In conclusion, the proposed automated pipeline enables robust and time efficient readings of 

ePVS from MR scans, and demonstrated the importance of T2w MRI for ePVS detection 

and the insignificant benefit of using multimodal images. It may also provide a potential 

way to alleviate the issues brought by limitation of data samples. The automated pipeline 

will help in generating a rich variable set in MESA that will enable examination of ePVS 

in relation to other risk factors. A limitation of the study is that manual ePVS segmentation 

from only one expert is available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overview of the proposed ePVS detection/segmentation procedure.
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Fig. 2. 
Examples of ePVS in different MRI sequences. From top to bottom and left to right: 

a) A T2w image with ePVS regions marked red. b) 3D rendering of ePVSs, which are 

marked red. c) The original T2w image without label. d) Corresponding T1w image. e) 

Corresponding FLAIR image. f) Corresponding SWI image when time of echo is 22.5ms.
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Fig. 3. 
Scatterplots of number of groundtruth ePVS vs. number of predicted ePVS per subject, 

based on which the Person correlation and Spearman correlation (r) and the corresponding 

p-values (p) are calculated.
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Fig. 4. 
Scatterplots of sensitivity vs precision per subject along with the corresponding (median 

sensitivity, median precision) for different combination of the sequences.
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Fig. 5. 
Bland-Altman plots of numbers of ePVS for different combinations of the sequences. The 

plots show the differences between the numbers of predicted ePVSs and those of the 

groundtruth ePVSs.
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Fig. 6. 
Scatterplots of volumes of groundtruth ePVS vs. volumes of predicted ePVS per subject, 

based on which the Person correlation and Spearman correlation (r) and the corresponding 

p-values (p) are calculated.
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Fig. 7. 
Bland-Altman plots of volume of of ePVS for different combinations of the sequences. 

The plots show the differences between the volumes of predicted ePVSs and those of the 

groundtruth ePVSs.
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Fig. 8. 
Examples of the predicted ePVS with the presence of white matter lesions and lacunes on 

T2w, FLAIR and T1w images. The proposed model is able to distinguish ePVS from such 

mimics.

Rashid et al. Page 20

Neuroimage Rep. Author manuscript; available in PMC 2024 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rashid et al. Page 21

Ta
b

le
 1

 –

M
R

I 
Sc

an
ne

r 
pa

ra
m

et
er

s.

M
R

I 
M

od
al

it
ie

s
T

R
 (

m
s)

T
E

 (
m

s)
F

O
V

 (
m

m
)

F
lip

 A
ng

le
Sl

ic
e 

T
hi

ck
ne

ss
 (

m
m

)
N

o 
of

 S
lic

es
M

at
ri

x
Sc

an
 D

ur
at

io
n

T
1w

19
00

2.
93

25
0

9
1

17
6

25
6×

25
6

4:
26

T
2w

32
00

40
8

25
0

12
0

1
17

6
25

6×
25

6
4:

08

FL
A

IR
60

00
 (

T
I=

22
00

)
28

9
25

0
12

0
1

16
0

25
8×

22
1

4:
14

SW
I

35
7.

5,
 1

5,
 2

2.
5,

 a
nd

 3
0

25
6

15
1.

5
96

25
6×

19
2

6:
00

Neuroimage Rep. Author manuscript; available in PMC 2024 March 07.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rashid et al. Page 22

Ta
b

le
 2

 -

Su
bj

ec
t-

w
is

e 
ev

al
ua

tio
n 

fo
r 

di
ff

er
en

t c
om

bi
na

tio
ns

 o
f 

th
e 

se
qu

en
ce

s.
 T

he
 b

es
t s

co
re

s 
ar

e 
m

ar
ke

d 
as

 r
ed

 a
nd

 th
e 

se
co

nd
 b

es
t a

s 
bl

ue
. T

he
 c

or
re

sp
on

di
ng

 

st
an

da
rd

 e
rr

or
s 

ar
e 

sh
ow

n 
w

he
n 

ap
pl

ic
ab

le
.

E
xp

ts
A

vg
 S

en
si

ti
vi

ty
A

vg
 P

re
ci

si
on

A
vg

 M
ag

 
A

cc
ur

ac
y

A
vg

 S
im

ila
ri

ty
 

V
ol

um
et

ri
c

A
vg

 A
U

C
A

ve
ra

ge
 

H
au

sd
or

ff
 

D
is

ta
nc

e

A
ve

ra
ge

 
M

ah
an

ab
ol

is
 

D
is

ta
nc

e
IC

C
 (

#L
es

io
ns

)
IC

C
 (

V
ol

um
e)

T
2w

0.
81

±
0.

01
0.

83
±

0.
02

1.
16

±
0.

02
0.

81
±

0.
03

0.
72

±
0.

01
1.

41
±

0.
08

0.
17

±
0.

02
0.

83
0.

59

T
2w

+
FL

A
IR

0.
82

±
0.

01
0.

82
±

0.
02

1.
16

±
0.

01
0.

81
±

0.
03

0.
73

±
0.

01
1.

38
±

0.
08

0.
16

±
0.

02
0.

77
0.

60

T
2w

+
FL

A
IR

+
T

1w
0.

82
±

0.
01

0.
83

±
0.

02
1.

17
±

0.
01

0.
82

±
0.

03
0.

74
±

0.
01

1.
27

±
0.

07
0.

17
±

0.
02

0.
70

0.
63

T
2w

+
FL

A
IR

+
T

1w
+

SW
I

0.
82

±
0.

02
0.

83
±

0.
02

1.
17

±
0.

02
0.

82
±

0.
03

0.
74

±
0.

01
1.

28
±

0.
07

0.
16

±
0.

01
0.

77
0.

67

T
2w

+
T

1w
0.

80
±

0.
02

0.
84

±
0.

02
1.

16
±

0.
02

0.
78

±
0.

02
0.

71
±

0.
01

1.
40

±
0.

09
0.

18
±

0.
01

0.
79

0.
58

T
1w

0.
63

±
0.

01
0.

77
±

0.
02

1.
00

±
0.

02
0.

66
±

0.
04

0.
59

±
0.

01
2.

49
±

0.
11

0.
24

±
0.

02
0.

30
0.

18

FL
A

IR
0.

47
±

0.
02

0.
73

±
0.

02
0.

88
±

0.
02

0.
48

±
0.

04
0.

53
±

0.
02

3.
59

±
0.

09
0.

35
±

0.
04

0.
24

0.
05

T
1w

+
FL

A
IR

0.
68

±
0.

02
0.

75
±

0.
02

1.
02

±
0.

02
0.

71
±

0.
03

0.
61

±
0.

01
2.

30
±

0.
11

0.
23

±
0.

02
0.

50
0.

25

Neuroimage Rep. Author manuscript; available in PMC 2024 March 07.


	Abstract
	Introduction
	Related Works
	Materials and Methods
	Data
	Deep Fusion of Different Sequences
	Analysis of Detection Results

	Results
	Discussion and Conclusions
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Table 1 –
	Table 2 -

