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INTRODUCTION
Therapy and prognosis of non-small cell lung cancer 
(NSCLC) have been favorably impacted by the introduc-
tion of immune checkpoint inhibitors (ICIs), which trigger 
an antitumoural immune response against tumors that 
escape from immune surveillance by expressing surface 
inhibitors, termed “immune checkpoints”.1–3 These check-
points act against the activation of T-cells, hampering an 
efficient immune reaction against tumour cells. This down-
modulatory effect of tumours on T-cells is counteracted 
by ICIs, resulting in an enhanced immune response.4 ICIs 
target “programmed cell death protein 1” (PD-1; Nivolumab, 
Pembrolizumab, Cemiplimab) and “programmed cell 
death protein ligand 1” (PD-L1; Atezolizumab, Avelumab, 
Durvalumab), and they are proposed for both advanced 
and earlier-stages NSCLC.2,4–8 Compared to chemotherapy 
(ChT), which directly inhibits cancer cell growth and may 
cause a swift reduction of the tumour burden, ICIs might 
have a delayed effect and demonstrate a slower tumour 
burden decrease, yet durable even after treatment inter-
ruption (Figure 1). The immunohistochemical assessment 

of tumour PD-L1 expression (defined as the percentage of 
PD-L1 positive tumour cells, from 0 to 100%) represents the 
only validated predictive biomarker in metastatic NSCLC, 
with variable response rates based on different thresholds of 
PD-L1 expression.9–11

ICIs, however, are not expected to have beneficial effects on 
all patients, and accurate selection of patients is mandatory 
because of their potential toxicities and costs. A tight collab-
oration between radiologists and oncologists is of para-
mount relevance in managing NSCLC patients. It will help 
recognise new response patterns to treatment, potential 
pitfalls, and immune-related adverse events (irAEs).12–14

Approaches to longitudinal evaluation of 
ICIs-treated patients: the need for dedicated 
classification systems
Since the introduction of ICIs in advanced melanoma, 
the World Health Organization (WHO) criteria and 
the Response Evaluation Criteria in Solid Tumours 
(RECIST) have proved to be insufficient for evaluating 
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ABSTRACT

Therapy and prognosis of several solid and hematologic malignancies, including non-small cell lung cancer (NSCLC), 
have been favourably impacted by the introduction of immune checkpoint inhibitors (ICIs). Their mechanism of action 
relies on the principle that some cancers can evade immune surveillance by expressing surface inhibitor molecules, 
known as “immune checkpoints”. ICIs aim to conceal tumoural checkpoints on the cell surface and reinvigorate the 
ability of the host immune system to recognize tumour cells, triggering an antitumoural immune response.
In this review, we will focus on the imaging patterns of different responses occurring in patients treated by ICIs. We will 
also discuss imaging findings of immune-related adverse events (irAEs), along with current and future perspectives of 
metabolic imaging. Finally, we will explore the role of radiomics in the setting of ICI-treated patients.
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peculiar responses to ICIs.15 Radiologists had to reconsider how 
to assess responses in patients treated with ICIs, as they might 
display atypical imaging presentations posing critical diag-
nostic dilemmas.16,17 According to WHO criteria and RECIST, 
a decrease in lesion size (or absence of new lesions) accounts for 
a positive response to cancer therapy. In contrast, a size increase 
(or appearance of new lesions) would result in progressive 
disease (PD), indicating treatment failure and thus leading to 
therapy discontinuation.18 The effect of ICIs might take longer to 
manifest than standard ChT, and patients undergoing ICIs may 
display different imaging patterns at follow-up.19 These include 
complete tumour disappearance (complete response), decrease 
in size with numerical stability of tumour lesions (stable disease), 
partial response and progressive disease, all of which are estab-
lished patterns of response to therapy. ICI patients might also 
have a delayed response after an initial increase in total tumour 
burden (TTB), and new lesions might develop before a decrease 
in tumour size. However, these two patterns of response to ICIs 
do not necessarily account for PD, unlike ChT.18 The advent of 
ICIs changed the approach to lung cancer imaging interpreta-
tion, requiring radiologists to familiarize themselves with these 
unusual patterns of response, further underlining the need for 
a multidisciplinary approach given the role of clinical status in 
evaluating disease stability.20

Newer classification systems in the context of immunotherapy 
were adopted to overcome the limitations of the WHO criteria 
and RECIST. These new systems, currently applied in the context 
of clinical trials,15,16,20 include Immune-Related Response 
Criteria (irRC), Immune-Related RECIST (irRECIST), and 
iRECIST. irRC system was developed from WHO criteria and 
requires bidimensional measurements; thus, it is associated with 
lower reproducibility of lesions’ size assessment and increased 
measuring time. irRECIST and iRECIST, derived from RECIST, 
allow unidimensional measurements and define the number of 
lesions that should be evaluated. One major implementation of 
iRECIST is the concept of variable referring time-point beyond 
baseline and nadir, resetting the bar after a lesion change during 

treatment. According to iRECIST, new or growing lesions needs 
to be confirmed after 4/8 weeks; furthermore, new target lesions 
are evaluated separately, while in the irRC and irRECIST, they 
are included in the sum of measures of the baseline target lesions. 
Recently, the immune-modified RECIST (imRECIST) criteria 
have been proposed to adapt response patterns to progression-
free survival (PFS) analysis.9,16

Differences between the classification systems can be summa-
rized as follows:

•	 Immune-Related Response Criteria (irRC)

•	 Arisen from WHO criteria
•	 Number of measurable lesions: not defined
•	 Measurements: bidimensional

•	 Immune-Related RECIST (irRECIST)

•	 Adapted from the RECIST system
•	 Number of measurable lesions: standardized
•	 Measurements: unidimensional
•	 New lesions: incorporated into TTB

•	 immune RECIST (iRECIST)

•	 Adapted from the RECIST system
•	 Number of measurable lesions: standardized
•	 Measurements: unidimensional
•	 New lesions: incorporated into a separate cluster

Beyond the differences among these classification systems, it 
should be noted that imaging assessment maintains a central 
role in all of them, providing crucial information on dimensional 
changes and tumour burden.

Atypical imaging patterns in ICI-treated patients' 
follow-up
Pseudoprogression
The increase in tumour size or the appearance of new lesions 
followed by either tumour shrinkage or stability is defined as 

Figure 1. Long-lasting response after immune checkpoint inhibitors. (A) Baseline CT scan of an 81-male patient shows a heteroge-
neous mass with right hilum involvement (white arrow). (B) CT scan performed after two years after diagnosis shows a reduction 
of the right hilar mass consistent with prolonged disease response.
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pseudoprogression. This phenomenon can be observed in less 
than 10% of cancer patients treated with ICI, specifically in about 
5% of those with NSCLC21,22 (Figures  2 and 3) The definition 
of pseudoprogression relies on a ≥ 20% increase of the sum of 
longest diameter compared with nadir (minimum 5 mm) or 
progression of non-target lesions or new lesion not confirmed 
in the following studies.23,24 Therefore, according to iRECIST, 
growth of pre-existing lesions or appearance of new lesions 
at first follow-up should be reported with “interim” termi-
nology (i.e., immune “unconfirmed” PD) until second imaging 

follow-up that can either confirm (i.e., immune “confirmed” PD) 
or rule out disease progression.

The biological basis of pseudoprogression resides either in tran-
sient immune cell infiltration, necrosis or oedema or in the initial 
growth of the tumour before complete activation of the immune 
response.12,17 The appearance of new lesions is usually due to the 
lymphocytic infiltration of tumour sites undetectable at baseline 
imaging.17,25 A predisposition toward pseudoprogression cannot 
be predicted from histopathological tumour features, such as 
PD-L1 expression. Time-to-pseudoprogression is variable, 
ranging from days to months since treatment initiation. A large 
real-world study reported that most patients with pseudopro-
gression first developed progressive disease within two months 
of treatment.22,26

Hyperprogression
An unfavourable phenomenon described among ICI morpho-
logical responses is termed hyperprogression, which reflects a 
severe tumour surge occurring early after the administration of 
ICIs, associated with poor overall survival (OS) (Figures 4 and 
5).17–19 As per a recent meta-analysis, the pooled incidence of 
hyperprogression is 13.4%, varying from 5.9 to 43.1%. Such a 
large range of incidence is thought to reflect different methods 
of hyperprogression assessment, posing the need for establishing 
uniform criteria (Table 1).27

Several mechanisms of hyperprogressive disease have been 
suggested, including T-regulatory cell expansion, T-effector cell 
exhaustion, modulation of pro-tumorigenic immune subset, 
aberrant inflammation, and oncogenic pathway activation, and 
both translational and in vivo studies have attempted to unveil 
the underlying biology for such phenomenon. A definitive 
answer, however, is still to be found. Diagnostic indicators for 
hyperprogression include tumour growth rate (TGR), TGR on 
treatment minus TGR before treatment (delta TGR, ΔTGR), 
and tumour growth kinetics (TGK),28 with a ΔTGR>50% at first 
evaluation being proposed as a possible criterion.29,30 In this 
rapidly evolving clinical scenario, a univocal definition of hyper-
progression is still to be provided; notably, the identification of 
the underlying mechanisms and potential biomarkers that future 
studies could grant is paramount to avoiding detrimental immu-
notherapy and exploiting novel therapeutic targets for future 
immunotherapy combinations.31,32

Dissociated response
The detection of synchronous shrinkage and progression of 
different lesions within the same imaging study reflects a dissoci-
ated response (DR), potentially related to tumour heterogeneity 
or differences in drug distribution to tissues.33,34

What to look for: the many imaging faces of 
immune-related adverse events
The stimulation of the immune system prompted by ICIs might 
lead to autoimmune-type reactions with local and systemic 
adverse events (immune-related adverse events, irAEs).35,36 
Almost all trials reported irAEs, uncommonly observed in stan-
dard ChT and often requiring medical support. irAEs affect one 

Figure 2. Pseudoprogressive disease. (A) PET-CT scan (lung 
window) of a 67 female patient shows a right lower lobe mass. 
(B) A Follow-up CT scan performed one month after immuno-
therapy initiation shows a size increase of the pulmonary mass 
with cavitation. ICI therapy was not interrupted: after a further 
one month (C), the pulmonary mass showed a dimensional 
reduction, consistent with pseudoprogressive disease.
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or multiple organs simultaneously at any time (during and/or 
after treatment), ranging from asymptomatic to severe or even 
life-threatening manifestations.19 On imaging, lung involvement 
may be indistinguishable from infection, pseudoprogression or 
disease progression.19,37

Immune-related (ir) pneumonitis accounts for one of the most 
clinically relevant irAE. It exhibits a broad spectrum of imaging 
patterns, often coexisting, and high-resolution computed 
tomography (HRCT) is the imaging modality of choice for 
their evaluation.37–40 Longitudinal imaging usually allows accu-
rate characterisation in both asymptomatic and symptomatic 
patients.41

Recognized imaging patterns of lung-related irAEs include 
organizing pneumonia (OP), nonspecific interstitial pneumonia 
(NSIP), diffuse alveolar damage (DAD)/acute respiratory distress 
syndrome (ARDS) and findings of hypersensitivity pneumonia 
(HP):

•	 OP: patchy, usually bilateral, confluent peribronchial 
consolidations with mostly peripheral or subpleural 
distribution; central ground-glass opacities (GGO), 
surrounded by consolidation (reversed halo sign) can also be 
detected (Figure 6);

•	 NSIP: patchy GGOs, usually bilateral and peripheral, with 
lower lung predominance are typical of cellular NSIP, whereas 
reticulations and traction bronchiectasis/bronchiolectasis are 
indicative of fibrotic NSIP;

•	 HP: poorly defined centrilobular nodules and/or bilateral 
GGO; mosaic attenuation due to air trapping;

•	 DAD/ARDS: extensive bilateral GGO with or without crazy-
paving pattern, dependent consolidations, and potential 
development of traction bronchiectasis (Figure 7).

Interstitial ir-pneumonitis shows different clinical severity, with 
DAD/ARDS pattern being the most severe, followed by OP, NSIP 
and HP.42 Sarcoid-like reactions can also be detected on HRCT 
as new perilymphatic nodules and enlarged mediastinal/hilar 
lymph nodes, showing 18F - Fluorodeoxyglucose (18F - FDG) 
- Positron-emission-tomography (PET) uptake, findings that 
overlap PD (Figure 8).43 Sarcoid-like nodules have been linked 
to the phenomenon of pseudoprogression, as they may be due to 
the infiltration of activated immune cells.44

Pre-existing pulmonary fibrosis, previous thoracic radiation 
therapy (RT), a combination of drugs, and various degrees of 
tumoural obstruction and invasion of airways are recognised 
risk factors for ir-pneumonitis.45,46 Previous studies observed 
a positive association with active inflammation, reporting that 
pulmonary infections sustained by non-tuberculous mycobac-
teria or Pseudomonas aeruginosa can be worsened by ICI and 
that individuals with a pro-inflammatory state (e.g., patients 
with rheumatoid arthritis) are more prone to develop ir-pneu-
monitis.47 Rarer thoracic irAEs include tuberculosis reactiva-
tion, recurrent allergic bronchopulmonary aspergillosis, and 
diaphragm myositis.48–52

Distinguishing ir-pneumonitis from RT pneumonitis may be 
challenging. The differential diagnosis should consider both 
chronological and radiological aspects. RT-pneumonitis typi-
cally occurs 4 to 12 weeks after RT, usually involving areas 

Figure 3. Pseudoprogressive disease. (A-B) CT image of a 59 female patient showing a mass involving the left hilum with necrotic 
component and post-obstructive atelectasis of the left lower lobe and a mediastinal lymph node in station 5. (C-D) A three 
months CT control after ICI treatment showed an increased necrotic component (black arrow), increased size of hilar tissue and 
of thoracic lymph nodes, including that shown in station 5 (white arrow). (E-F) The further imaging follow-up performed after one 
month demonstrated a dimensional reduction of the mass and improved ventilation of the left lung, and the dimensional reduction 
of the abovementioned mediastinal lymph node.

http://birpublications.org/bjr


5 of 11 birpublications.org/bjr Br J Radiol;96:20210270

BJRImmunotherapy for lung cancer and imaging appearances

included in the RT field, with GGO, nodular or focal consol-
idations often crossing lung fissures.53 Future therapeutic 
approaches combining RT and ICI might exploit their synergistic 
effect. Still, the risk of an acute inflammatory response caused by 
a systemic agent (i.e., ICI) in a previously irradiated area should 
not be disregarded. In patients treated by ICIs, the pathogenesis 
of the so-called radiation recall pneumonitis (RRP) is thought 
to be driven by multiple signalling pathways prompted by ICIs, 
resulting in an inflammatory response of the previously irradi-
ated field, with different HRCT patterns including OP, NSIP, HP 
or DAD/ARDS,54,55 and clinical presentation can develop within 
a broad timeframe, as high as more than two years after the end of 
RT.56,57 Of note, combined chemoradiotherapy (CRT) followed 
by ICI-consolidation has been approved in unresectable locally 
advanced NSCLC2,5–7,12–14 and is being tested for non-metastatic 
settings.58–61 Hence, owing to the widened use of ICIs, atypical 
responses and irAEs are likely to be more frequently observed on 
follow-up images.39,59,62–65 In the PACIFIC trial, a Phase three 
study where Durvalumab was compared with placebo in unre-
sectable stage III NSCLC previously treated by CRT, the risk of 
pneumonitis was of particular concern since large tumour size, 
respiratory comorbidities, sequelae of smoking and potential 
negative synergy with recently delivered RT may undermine 
lung function. Rates of severe pneumonitis were comparable 

Figure 4. Hyperprogressive disease. (A, B) CT images at two different levels of a 46-male patient admitted to the emergency 
department because of dyspnoea. CT scan depicted a large left pleural effusion and a heterogeneous lesion (black arrow) obstruct-
ing the upper bronchus with left lung atelectasis. Other findings included: enlarged and necrotic mediastinal (white arrow) and 
left axillary lymph nodes; osteolytic lesion involving the left scapula (white arrowhead); liver hypodense lesion (black arrowhead). 
The patient was administered immune checkpoint inhibitors-therapy, and at the first follow-up CT scan (C, D), a tumour surge was 
observed, with an increase in size and number of the neoplastic lesions.

Figure 5. Hyperprogressive disease. (A) CT of a 73-male 
patient with a right upper lobe mass that showed a dimen-
sional increase (B, three month-follow up) during chemo-
therapy. The patient was administered immune checkpoint 
inhibitors-therapy, with evidence of further dimensional and 
numerical growth (C, CT performed one month after) con-
firmed at a further one-month follow-up CT (D).
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across treatment arms (Durvalumab as consolidation therapy vs 
placebo) and safely manageable.40,64,66

Gastro-intestinal irAE: ir-colitis typically develops 6–7 weeks 
after treatment; recognized CT patterns include diffuse and 
segmental colitis with generalized or focal bowel wall thickening, 
mesenteric hyperaemia, infiltration of perivisceral fat, air-fluid 
levels, and ascites. Although CT also allows the assessment of 
extraluminal complications (e.g., perforation, abscess formation) 
(Figure 9), its role might be of limited value in detecting subtle 
signs of inflammation. The clinical management of these cases 
can be supported by endoscopy.67

Liver and pancreatic irAE: ir-hepatitis and acute hepatitis display 
overlapping non-specific findings, including hepatomegaly and 
periportal lymphadenopathy. Ultrasound may show periportal/
portal vein hyperechogenicity and gallbladder wall oedema; CT 
findings include liver hypoattenuation and periportal oedema, 
which is also demonstrated by increased T2 signal of the portal 
vein walls and periportal spaces on magnetic resonance imaging 
(MRI).19,68 A liver biopsy might help the diagnostic process.69 

Imaging findings of the rare (incidence <1%) ir-pancreatitis are 
similar to those of acute non-ir pancreatitis and include glan-
dular enlargement, adipose tissue stranding, and oedema.70

Neurologic irAEs involve the central and peripheral nervous 
system, causing headaches, encephalopathies, and meningitis. 
Imaging characterization is mainly performed with MRI; find-
ings include signal changes in the limbic system, corpus callosum 
or signs of posterior reversible encephalopathy.70–72

Endocrine irAE encompasses thyroiditis and hypophysitis.73 
Enlarged and heterogeneous thyroid on ultrasound, CT, and 
FDG-PET avid gland account for features of thyroiditis.15 
Hypophysitis, a potentially life-threatening condition, displays 
an enlarged hypophysis on brain CT or MR and an avid gland 
18F-FDG uptake on functional studies and has shown a substan-
tial surge compared to the pre-ICI era, with the highest incidence 
rates after combination therapy.74,75

Table 1. definition of hyperprogression in NSCLC reported in the literature

Lahmar Champiata Katoa Saâda-Bouzida Ferrara Kas
Population 89 131 155 34 406 406

RECIST No TTB>20% new lesion TTB>50% No TTB>20% TTB>20%

Time-normalized growth index TGR ratio>1.5 TGR ratio>2 TGR ratio>2b TGK ratio>2 ΔTGR > 50 ΔTGR > 100

Clinical integration No No TTF<60 days No No No

Incidence of HPD 10.1% 9.2% 3.9% 29.4% 13.8% 8.4%c

Median OS N.A. 138 days 45 days d 183 days 102 days 100 daysc

TGK: tumour growth kinetics; TGR: tumour growth rate; TTB: total tumour burden; TTF: time to treatment failure.
apopulations including primary cancers beyond NSCLC
bobservation period: 2 months before and 2 months after ICI initiation
cdata were derived from Figure 2C of Kas et al, according to the optimal selection of 34 patients as reported in Results paragraph [19]
dtime-to-treatment failure, individually reported for each patient with hyperprogression in Supplementary material [24]

Figure 6. Pulmonary immune-related adverse event: organ-
izing pneumonia. (A) Magnification of High-Resolution 
Computed Tomography scan of an 82-female patient under 
immune checkpoint inhibitors treatment. CT scan showed 
bilateral, patchy consolidation with peribronchial distribution 
(white arrow). The pattern is consistent with organizing pneu-
monia. (B) The finding of pulmonary irAE resolved after dis-
continuation of ICIs and the administration of steroid therapy.

Figure 7. Pulmonary immune-related adverse event: diffuse 
alveolar damage. CT scan of an 82-male patient shows inter-
stitial involvement with bilateral, patchy ground-glass opaci-
ties. The pattern was deemed consistent with diffuse alveolar 
damage in a patient undergoing immunotherapy.
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Cardiac irAE: myocarditis and pericarditis are rare irAEs, 
although often severe and potentially fatal. Diagnosis and moni-
toring can be performed by echocardiography, cardiac MRI and, 
for pericarditis, CT.76,77

The role of metabolic imaging in the evaluation of 
response to ICI
The functional information provided by PET imaging can be poten-
tially applied to irRECIST and iRECIST for the evaluation of ICI 
patients since metabolic tumoural changes may pre-date morpho-
logical alterations due to therapy.19,78,79 However, the role of PET-CT 
is still debated: an increased FDG uptake by inflammatory cells is 
responsible for false-positive findings, and its high cost and limited 
availability hamper a broad and homogeneous use. Also, PET sensi-
tivity is relatively low in the case of respiratory artefacts, small lesions, 
and low cellular density. Moreover, the high brain tissue uptake 

observed in physiological conditions limits the ability of FDG-PET 
imaging to detect intracranial metastases, common in NSCLC.75 The 
use of immune-PET might overcome these limitations, but its appli-
cation in clinical practice is still under evaluation.80

Various classification systems have been proposed to assess ICI 
response, including the PET-CT Criteria for Early Prediction of 
Response to Immune Checkpoint Inhibitor Therapy (PECRIT), the 
PET Response Evaluation Criteria for Immunotherapy (PERCIMT), 
and immune Positron Emission Tomography Response Criteria in 
Solid Tumours (iPERCIST).81 Early assessment by PET-CT might 
stratify the risk of progression or predict patient survival through 
the identification of different response patterns according to 
changes in FDG uptake, as well as help assess early irAEs.9,75 The 
disappearance of FDG uptake is regarded as a complete metabolic 
response, whereas modifications in FDG uptake relate to either 
partial response or progressive disease, allowing the assessment of 
metabolic tumoural activity.75 FDG-uptake, however, might also be 
increased in case of activation of tumour immune microenviron-
ment, potentially leading to false-positive results. Semiquantitative 
measurements represent a promising approach for the evaluation of 
response to ICIs. Higher values of SUVmax reflecting high glucose 
metabolism were observed in NSCLC patients with PD-L1 expres-
sion compared to those without.82 The relation between SUVmax 
and PD-L1 expression has been postulated due to the activation 
of signalling pathways promoting tumour proliferation.83,84 Apart 
from SUVmax, other metrics potentially reflecting tumoural meta-
bolic activity have been proposed; these include metabolic tumour 
volume (tumoural volume with SUV above a threshold), total lesion 
glycolysis, and metabolic-to-morphological volume ratio.75,85 A 
comprehensive discussion of these metrics, however, goes beyond 
the scope of this review.

Currently, research is focused on developing specific radiophar-
maceutical agents, as ICIs labelled with PET isotopes (e.g., 89Zirco-
nium - 89Zr, or 64Copper - 64Cu). For instance, 89Zr-atezolizumab 
imaging before treatment has shown promising results in assessing 

Figure 8. Pulmonary immune-related adverse event: sarcoid-like reaction. Axial (A) and coronal-reformatted (B) Computed 
Tomography images of a 46 male patients undergoing immune checkpoint inhibitors showing enlarged hilar and mediastinal 
lymph nodes (white arrows), homogeneous in density, consistent with the sarcoid-like reaction, which was confirmed after EBUS-
TBNA.

Figure 9. Gastro-intestinal immune-related adverse event: 
colitis. Coronal-reformatted image of a 67-female patient 
undergoing ICIs showing diffuse colonic concentric wall thick-
ening that was deemed suspicious for irAE colitis and con-
firmed after endoscopic evaluation.
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ICI response and implementing PFS and OS stratification in patients 
with NSCLC, bladder and breast cancer.86–88

The potential impact of radiomics on the workflow 
of patients treated with ICIs
The identification of features that serve the purpose of differenti-
ating responders from pseudoprogressors and hyper-progressors 
has had limited success so far. Radiomics - allowing the analysis 
of quantitative biomarkers (i.e., radiomic features, RFs) from the 
whole tumour - might help identify those patients who benefit 
from ICIs.89,90 This approach could overcome the major limita-
tion of biopsy-derived tissue, where the sampling represents 
only a minor proportion of the neoplastic systemic disease.91 
Radiomics could predict PD-L1 expression, and RFs describing 
heterogeneous lesions with non-uniform density patterns and 
compact borders were mostly found in ICI responders.92 More-
over, RFs derived from intratumoural and peritumoural regions 
and vasculature were shown to allow the identification of patients 
at risk of hyperprogression.93,94 Prognostic models combining 
CT-RFs and immunophenotypic features in surgically resected 
NSCLC predicted outcomes in various retrospective studies.95–97 
Radiomics could also quantify changes in tumour compositions 

after ICIs, leading to the concept of delta-radiomics, whereby the 
modification of RFs over time is tested for outcome prediction.97

Nevertheless, several issues will need to be addressed before 
radiomics being incorporated into clinical practice, including 
data consistency in cancer patients who might undergo imaging 
in different hospitals (e.g., stability and reproducibility of 
features and radiomics outputs) and ethical aspects related 
to the “black-box” nature of radiomics itself. Furthermore, 
increased methodological quality and reproducibility of studies 
testing radiomics for predicting the ICI response in NSCLC is 
awaited.98,99

CONCLUSION
The increasing use of ICIs in clinical practice demands a deep 
understanding of the associated imaging manifestations of both 
therapeutic effects and adverse events. Imaging is the corner-
stone for the longitudinal evaluation of tumour burden in ICI-
treated patients: close collaboration between radiologists and 
oncologists is vital for proper imaging interpretation and opti-
mization of patient management.
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