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Abstract

Objective

To evaluate the diagnostic accuracy of deep learning algorithms to identify age-related mac-

ular degeneration and to explore factors impacting the results for future model training.

Methods

Diagnostic accuracy studies published in PubMed, EMBASE, the Cochrane Library, and

ClinicalTrails.gov before 11 August 2022 which employed deep learning for age-related

macular degeneration detection were identified and extracted by two independent research-

ers. Sensitivity analysis, subgroup, and meta-regression were performed by Review Man-

ager 5.4.1, Meta-disc 1.4, and Stata 16.0. The risk of bias was assessed using QUADAS-2.

The review was registered (PROSPERO CRD42022352753).

Results

The pooled sensitivity and specificity in this meta-analysis were 94% (P = 0, 95% CI 0.94–

0.94, I2 = 99.7%) and 97% (P = 0, 95% CI 0.97–0.97, I2 = 99.6%), respectively. The pooled

positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and the area under

the curve value were 21.77(95% CI 15.49–30.59), 0.06 (95% CI 0.04–0.09), 342.41 (95%

CI 210.31–557.49), and 0.9925, respectively. Meta-regression indicated that types of AMD

(P = 0.1882, RDOR = 36.03) and layers of the network (P = 0.4878, RDOR = 0.74) contrib-

uted to the heterogeneity.
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Conclusions

Convolutional neural networks are mostly adopted deep learning algorithms in age-related

macular degeneration detection. Convolutional neural networks, especially ResNets, are

effective in detecting age-related macular degeneration with high diagnostic accuracy.

Types of age-related macular degeneration and layers of the network are the two essential

factors that impact the model training process. Proper layers of the network will make the

model more reliable. More datasets established by new diagnostic methods will be used to

train deep learning models in the future, which will benefit for fundus application screening,

long-range medical treatment, and reducing the workload of physicians.

Introduction

Age-related macular degeneration (AMD) is one of the leading causes of severe irreversible

vision impairment in developed countries [1, 2]. With the accelerated aging process of the

global population, the number of AMD patients is expected to increase to 288 million by 2040

[3], and it has become one of the key topics in the research of ophthalmic blindness

prevention.

Clinically, it is classified as dry AMD (dAMD) characterized by medium-sized drusen and

retinal pigmentary changes, and wet AMD (wAMD) characterized by neovascular and atro-

phic [4]. Fundus photography (FP) and optical coherence tomography (OCT) are the most

widely used auxiliary examinations in ophthalmology. FP is the cheapest and the most neces-

sary fundus test in AMD, which can intuitively identify lesions and diagnose AMD. OCT uses

low coherence light to scan biological tissues in cross-section and converts the acquired infor-

mation into numbers. After computer processing, it displays the pathological changes of each

layer of the retina clearly and provides quantitative diagnostic indicators. In addition, OPTOS

ultra-widefield retinal images can clearly visualize peripheral retinal lesions, and when com-

bined with angiography, it can clearly show peripheral choroidal neovascularization (CNV)

[5], and produces better pseudocolor images than conventional 45˚ FP in diagnosis [6]. AMD

first affects the retinal pigment epithelium, Bruch’s membrane, and choroidal capillaries in the

macular area. AMD can be manifested as drusen, atrophy of the outer retinal structure, CNV,

polypoid lesions, and pigment epithelial detachment in OCT images.

The rapid increase in the demand for screening and follow-up of AMD means that a large

number of human and financial resources need to be provided by the healthcare systems of

various countries. The use of deep learning (DL) model technology may be a long-term solu-

tion for screening and monitoring patients in primary eye care settings.

The DL model is a branch of machine learning, composed of neural networks that are good

at computer vision, perception, and image recognition. DL model uses multilayer nonlinear

information processing modules to extract supervised or unsupervised features from a set of

training data and make the correct prediction. In recent years, DL models have been widely

used in ophthalmology [7–9], dermatology [10], radiology [11, 12], pathology [13, 14], and

many other image-centric specialties. In ophthalmology-related research, DL models are

beginning to be widely used in the diagnosis and recognition of diseases including diabetic ret-

inopathy [15–17], AMD [15, 18–20], glaucoma [21], refractive error [22], and prematurity reti-

nopathy of prematurity [23–25].

To establish a DL system, technical network and the datasets are the most essential compo-

nents. Although not all CNN (Convolutional Neural Network) belongs to deep learning, CNN
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is the most widely used technical network in AMD diagnostic research which can operate on

the whole images without requiring radiologists or ophthalmologists to manually contour on

images [26]. A CNN can be divided into input, hidden, and output layers. The hidden layers are

usually composed of convolutional, pooling, full connection, and normalization layers. The

core of the CNN is the convolutional layer, which transforms the input data by applying a set of

filters (also known as kernels) that act as feature detectors. A CNN learns the values of these fil-

ters’ weights on its own during the training process [27]. Activations are used after convolution.

The pooling layers can reduce the dimensionality and keep the most important information.

The output of the convolutional and pooling layers represents high-level features of the input

image. The purpose of the fully connected layer is to use these high-level features to classify the

input image categories based on the training dataset. Afterwards, backpropagation is performed

to calculate the network weights, and gradient descent is used to update all filters and parameter

values to minimize the output error [27]. This process will be repeated many times.

The datasets for AMD detection are various. Most public databases were established using

FP and OCT images. Peking University collected a structured FP database of 5,000 patients

including normal, diabetes, glaucoma, cataract, AMD, hypertension (H), myopia, and other

diseases/abnormalities in 2019. The database is named as Ocular Disease Intelligent Recogni-

tion (ODIR) [28]. iChallenge-AMD is composed of AMD and non-AMD (myopia, normal

control, etc.) FPs [29]. Srinivasan et al [30] conducted an OCT database (Duke dataset) that

was acquired from 45 patients: 15 normal patients, 15 patients with dry AMD, and 15 patients

with DME in 2014. Established by Rasti et al [31] in 2017, the Noor dataset was acquired at

Noor Eye Hospital in Tehran and is consisting of 50 normal, 48 dAMD, and 50 DME OCTs.

Regarding the Kaggle dataset [32], OCT images were selected from retrospective cohorts of

adult patients from the Shiley Eye Institute of the University of California San Diego, the Cali-

fornia Retinal Research Foundation, Medical Center Ophthalmology Associates, the Shanghai

First People’s Hospital, and Beijing Tongren Eye Center between July 1, 2013 and March 1,

2017. Kermany et al [33] established an OCT database (Mendeley dataset) that contains CNV,

DME, Drusen and normal people in 2018. Gholami et al [34] established an AMD retinal OCT

images database including 55 AMD images called OCTID (Optical Coherence Tomography

Image Database) in 2019. Besides public datasets, plenty of studies choose self-built databases

which obtained data from hospitals directly.

DL models, especially CNN, have flourished rapidly in AMD detection in recent years.

Although most of the DL models show effective diagnostic accuracy, DL specialists are still try-

ing to explore the best networks, diameters, and layers of the network for higher accuracy.

This meta-analysis summarized the DL models for AMD diagnosis and aimed to evaluate the

diagnostic accuracy of DL models and to explore the best settings for future AMD model train-

ing, which will benefit researchers interested in DL for the diagnosis of fundus disorder.

Methods

This systematic review and meta-analysis was conducted according to the Preferred Reporting

Items for Systematic Reviews and Meta-Analysis of Diagnostic Test Accuracy Studies (PRIS-

MA-DTA) [35], and the Cochrane handbook [36]. The PRISMA-DTA checklists are available

in S1 and S2 Tables. This meta-analysis was registered on PROSPERO (ID:

CRD42022352753).

Eligibility criteria

All peer-reviewed and preprint original articles that reported the sensitivity and specificity of

DL models in detecting AMD were considered. The detailed inclusion criteria were as follows:
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(1) diagnosing AMD by DL model via various images; (2) true positive (TP), false positive

(FP), true negative (TN), and false negative (FN) could be obtained or transferred from the

study. Records without available data such as reviews, conference abstracts, letters, and replies

were excluded. There was no restriction on the year of publication, language, country, or

datasets.

Information sources, search strategy and study selection

The search engines used included PubMed, EMBASE, the Cochrane Library, Web of Science,

Scopus, ScienceDirect ClinicalTrails.gov, and World Health Organization International Clini-

cal Trial Registration Platform (WHO ICTRP), and Chinese Clinical Trail Registry (ChiCTR)

by 11 August 11, 2022.

The search strategy using medical subject headings (MeSH and Emtree) combined with

entry words for all search engines. Detailed search strategies in different search engines are

detailed in S1 File.

Endnote 20 was adopted for the study selection process. Duplicate studies were excluded by

automation tools. The titles and abstracts were independently identified for possible inclusion

by two authors (Leng X. and Shi R.). Disagreements were resolved by a third researcher (Wu

Y.). After full text selection, the reports assessed eligibility were included in this meta-analysis.

Data collection process and definitions for data extraction

The data from the included studies were extracted by an individual researcher (Cai X.) and

were rechecked by another (Zhu S.). The data we extracted included the first author and pub-

lished year, country, number of images, network layers, device, hardware, type of AMD data-

sets, total dataset size, type of images, TP, FP, FN, TN, AUC, sensitivity, and specificity.

AMD, including dAMD and wAMD, was considered as the target condition. The reference

standard was clinically proven AMD, while the DL-based diagnosis was considered the index

test.

Risk of bias and applicability

The study risk of bias assessment was conducted by two individual researchers using the QUA-

DAS-2 (Quality Assessment of Diagnostic Accuracy Studies-2) tool (Leng X., Shi R.). Parame-

ters included patient selection, index test, reference standard, flow and timing, and

applicability concerns in terms of patient selection, index test, and reference standard. Dis-

agreements were solved with consensus by the third researcher (Lu X.). Deeks’ funnel plot

mapped by Stata 16.0 was applied to assess the potential publication bias. An asymmetrical

funnel shape or a P< 0.05 means the presentation of publication bias [37].

Diagnostic accuracy measures and synthesis of results

To evaluate the diagnostic accuracy of deep learning in detecting AMD, the sensitivity, speci-

ficity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds

ratio (DOR) along with a 95% Confidence Interval (CI) were calculated separately for each

study. Random effects models were applied in the calculation of the pooled results.

Meta-analysis and additional analysis

Separate and summary results of sensitivity and specificity would be presented in a form of a

forest plot. The heterogeneity of the meta-analysis was evaluated by the Cochran Q-test and I2

[38]. I2 exceeding 25%, 50% and 75% indicate the meta-analysis with low, medium, and high
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heterogeneity respectively [39]. Sensitivity analyses, subgroup analyses, and meta-regression

were conducted to explore the sources of heterogeneity. All meta-analyses and additional anal-

yses were performed using Metadisc 1.4 and Review manager 5.4.1.

Results

Study selection

The detailed study selection process is described in Fig 1. 1045 records were searched using

the present search strategy. 359 records remained after eliminating duplicate records and the

ineligible records marked by automation tools. 272 records were excluded by screening titles

and abstracts. 87 reports were sought for retrieval, of which 6 reports were not retrieved. 81

Fig 1. Study selection flow diagram.

https://doi.org/10.1371/journal.pone.0284060.g001
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reports were assessed for eligibility through full text reading, and 2 conference abstracts, 39

irrelevant studies, and 22 no-available-data studies were excluded. Finally, 18 eligible studies

were extracted from the remaining articles by full text review.

Study characteristics

The detailed studies characteristics are summarized in Table 1. The 18 studies included were

reported as full-text articles which consist of 56 models and summarized data from 778052 var-

ious images. OCT images, FPs, OPTOS ultra-widefield retinal images, and OCT images com-

bined with FP images were included in 10, 5, 1, and 3 studies, respectively. All studies were

published in 2017–2022, which were conducted in China, the USA, Japan, India, Jordan, the

United Kingdom, Turkey, Russia, South Korea, Singapore, Norway and Spain. As for the vari-

ants, 5 studies used VGG, and 5 studies used ResNet. CapsNet, Darknet and other networks

such as AlexNet, DenseNet, and self-created networks were adopted in one study, respectively.

The layers of the network were divided into five classes including�10, 10–20, 20–50, 50–100,

and>100, which were adopted in 2, 10, 6, 2 and 1 studies, respectively.

Risk of bias and bias of publication

The results of the QUADAS-2 analysis are summarized in Fig 2. Generally, the risk of bias is

low for this meta-analysis. The risk of patient selection was considered “low risk” in 16 studies

and “unclear risk” in 2 studies. The risk of bias for the index test and reference standard was

“low risk” in all studies. The risk of bias for reference standard was rated “low” in 17 studies

and 1 were rated “unclear risk”. The risk of bias for flow and timing was rated “low” in 15 stud-

ies and 3 were rated “unclear risk”. Applicability concerns including patient selection, index

test, and the reference standard only existed in one “unclear risk” study and the other 17 stud-

ies were rated “low risk”.

Deeks’ funnel plot (Fig 3) was adopted to investigate the potential bias of publication by

Stata 16.0 (P = 0.375, 95%CI -292.9264 to 112.091), which indicated no obvious publication

bias existed in this meta-analysis.

Results of individual studies

In this research, various DL models were mentioned in the included studies for AMD identifi-

cation, including VGG, CapsNet, ResNet, AlexNet, DenseNet, ResNext, DPN, CliqueNet etc.

The results show that these models have high sensitivity and specificity in AMD identification,

which can meet the needs of practical clinical applications. The detailed results of individual

studies are summarized in Table 2. Alqudah et al [40] used a 15-layer CNN to classify 136,187

OCT images from Mendeley, Duke, and Self-built datasets (4 classes including AMD, CNV,

DME, and normal) for AMD identifying with a sensitivity of 100% and a specificity of 100%.

Bhatia et al [41] used VGG-16 to classify 5588 OCT images from Mendeley, Duke, Noor, and

Self-built datasets (4 classes including AMD, CNV, DME, normal) for AMD identifying with a

sensitivity of 94% and a specificity of 90%. Celebi et al [42] used CapsNet with 7 layers to clas-

sify 726 OCT images form Kaggle and self-built datasets (2 classes including AMD and nor-

mal) for AMD identifying with a sensitivity of 100% and a specificity of 99%. Dong et al [43]

used a joint CNN detector using Yolov3 to classify 208758 FP images from self-built multicen-

ter real-world data (11 classes including AMD, DR, glaucoma, pathological myopia, retinal

vein occlusion, macula hole, epiretinal macular membrane, hypertensive retinopathy, myelin-

ated fibers, retinitis pigmentosa and normal) for AMD identifying with a sensitivity of 88%

and a specificity of 98%. Gour et al [44] used VGG-16 to classify 331 FP images from ODIR

dataset (8 classes including AMD, cataract, diabetes, glaucoma, hyperattention, myopia, and
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other abnormalities) for AMD identifying with a sensitivity of 6% and a specificity of 94%. He

et al [45] used ResNet-50 to classify 795 OCT images from Mendeley and Duke datasets (3

classes including AMD, DME, and normal) for AMD identifying with a sensitivity of 96% and

a specificity of 99%. Kadry et al [46] used VGG-16, VGG-19, AlexNet, and ResNet-50 to clas-

sify 3200 FP images and 3200 OCT images from iChallenge AMD database, OCTID (2 classes

including AMD and Non-AMD) resulting in sensitivity of 88%, 84%, 88%, 88% and specificity

Table 1. Characteristics of included studies.

First author &

published year

Country Variant of

CNN

Layers GPU Datasets Number of

Images

Images Other images in datasets AMD

Alqudah 2019

[40]

Jordan Self-created 19 Nvidia Tesla K40

(12GB)

Duke, Mendeley,

Duke, Self-built

135596 OCT CNV, DME, Normal All

Bhatia 2019 [41] UK VGG 16 NA Mendeley, Noor,

Self-built

5588 OCT CNV, DME, Normal All

Celebi 2022 [42] Turkey CapsNet 7 Nvidia Tesla K40

(12GB)

Kaggle dataset,

Self-built

726 OCT Normal All

Dong 2022 [43] China Darknet 53 NA Multicenter Self-

built

208758 FP Normal All

Gour 2020 [44] India VGG 16 NA ODIR 331 FP Cataract, Diabetes, Glaucoma,

Hyperattention, Myopia, other

abnormalities, Normal

All

He 2022 [45] China ResNet 50 NA Duke, Mendeley 795 OCT DME, Normal All

Kadry 2021 [46] Norway VGG 16 NA iChallenge-AMD

database, OCTID

6400 OCT,

FP

Non-AMD All

19

AlexNet 11

ResNet 50

Lee 2017 [47] USA VGG 16 NVIDIA Pascal

Titan X (12GB)

Self-built 101002 OCT Normal All

Ma 2022 [48] USA ResNet 34 Nvidia V100 (32

GB)

Self-built 73 OCT PCV Wet

Mathews 2022

[49]

India Self-created 11 NA Duke, Mendeley 75 OCT DME, Normal Dry

Matsuba 2019

[50]

Japan DCNN 7 NA Self-built 364 OPTOS2 Normal Wet

Motozawa 2019

[51]

Japan Unclear 18 GTX 1080 TI

(11GB)

Self-built 169 OCT Normal All

Takhchidi 2021

[52]

Russia ResNet 50 Nvidia RTX 2070

Max-Q (8GB)

Self-built 1200 FP Normal All

Tan 2018 [53] Singapore Unclear 14 NA Self-built 1110 FP Normal All

Thomas 2021

[54]

India Unclear 19 Nvidia RTX2080

(8GB)

Duke, Mendeley,

Noor, OCTID

1139 OCT Normal All

Wang 2019 [55] China DenseNet 121 NVIDIA RTX 2080

TI (11G)

Duke, Noor 8315 OCT DME, Normal All

ResNet 50

ResNext 101

DPN 92

CliqueNet 10

Yoo 2018 [56] Korea VGG 19 NVIDIA GTX1060

(3GB); GTX980

(6GB)

Project Macula 83 OCT,

FP

Normal All

Zapata 2020 [57] Spain Self-created 24 NA Optretina’s tagged

dataset

306302 OCT,

FP

GON3 All

NA, not applicable; OPTOS, OPTOS ultra-widefield retinal images; GON, glaucomatous optic neuropathy

https://doi.org/10.1371/journal.pone.0284060.t001
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Fig 2. QUADAS-2 results in each study.

https://doi.org/10.1371/journal.pone.0284060.g002
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of 85%, 87%, 85%, 84%, respectively. Lee et al [47] used VGG-16 to classify 101002 OCT

images from self-built dataset (2 classes including AMD and normal) for AMD identifying

with a sensitivity of 90% and a specificity of 91%. Ma et al [48] used ResNet-34 to classify 73

OCT images from self-built dataset (2 classes including AMD and polypoidal choroidal vascu-

lopathy) for AMD identifying with a sensitivity of 92% and a specificity of 90%. Mathews et al

[49] used a 11-layer lightweight CNN to classify 75 OCT images from Duke and Mendeley

datasets (3 classes including AMD, DME, and normal) for AMD identifying with a sensitivity

of 100% and a specificity of 100%. Matsuba et al [50] used a 7-layer CNN to classify 364

OPTOS ultra-widefield retinal images from self-built dataset (2 classes including AMD and

normal) for AMD identifying with a sensitivity of 100% and a specificity of 97%. Motozawa

et al [51] used an 18-layer CNN to classify 169 OCT images from self-built database (2 classes

including AMD and normal) for AMD identifying with a sensitivity of 99% and a specificity of

100%. Takhchidi et al [52] used ResNet-50 to classify 1200 FP images from self-built dataset (2

classes including AMD and normal) for AMD identifying with a sensitivity of 90% and a speci-

ficity of 86%. Tan et al [53] used a 14-layer CNN to classify 1110 FP images from self-built

dataset (2 classes including AMD and normal) for AMD identifying with a sensitivity of 96%

and a specificity of 94%. Thomas et al [54] used a 14-layer CNN to classify 1139 OCT images

from Mendeley, Duke, Noor, and OCTID datasets (2 classes including AMD and normal) for

AMD identifying with a sensitivity of 99% and a specificity of 100%. Wang et al [55] used Den-

seNet, ResNet, ResNext, DPN, and CliqueNet to classify 8315 OCT images from Duke and

Noor datasets (3 classes including AMD, DME and normal) resulting in sensitivity of 96%,

97%, 100%, 97%, 99% and specificity of 95%, 100%, 100%, 97%, 99% in dataset 1, and sensitiv-

ity of 95%, 100%, 99%, 100%, 93% and specificity of 95%, 99%, 95%, 99%, 98% in dataset 2.

Fig 3. Deek’s funnel plot.

https://doi.org/10.1371/journal.pone.0284060.g003
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Table 2. Summary of each included studies.

Study Methodology Datasets Number of

images

Classes Other diseases Sensitivity Specificity Limitations

Alqudah

2019 [40]

15-layer CNN Duke,

Mendeley,

Self-built

136187

OCT

images

4 CNV, DME, Normal 100% 100%

Bhatia 2019

[41]

VGG-16 Duke,

Mendeley,

Noor, Self-

built

5588 OCT

images

4 CNV, DME, Normal 94% 90% 1) Ignored bad quality pictures.

Celebi 2022

[42]

CapsNet Kaggle

dataset,

726 OCT

images

2 Normal 100% 99% 1)Did not study other retinal diseases;

2)Ignored bad quality pictures and

patients who had other retinal diseases.

Dong 2022

[43]

A joint CNN

detector using

Yolov3

Multicenter

Self-built

208758 FP

images

11 DR, Glaucoma,

Pathological myopia,

Retinal vein occlusion,

Macula hole, Epiretinal

macular membrane,

Hypertensive retinopathy,

Myelinated fibers, Retinitis

pigmentosa, Normal

88% 98% 1)Only small number of retinitis

pigmentosa.

Gour 2020

[44]

VGG-16 ODIR 331 FP

images

8 Cataract, Diabetes,

Glaucoma,

Hyperattention, Myopia,

other abnormalities,

Normal

6% 94% 1)The dataset contained 8 types of

diseases, but with a small dataset.

He 2022

[45]

ResNet-50 Duke,

Mendeley

795 OCT

images

3 DME, Normal 96% 99% 1)Only contained one other diseases.

Kadry 2021

[46]

VGG-16 iChallenge-

AMD

database,

OCTID

3200 FP

and 3200

OCT

images

2 Non-AMD 88% 85% 1)The definition of non-AMD is not

clear.VGG-19 84% 87%

AlexNet, 88% 85%

ResNet-50 88% 84%

Lee 2017

[47]

VGG-16 Self-built 101002

OCT

images

2 Normal 90% 91% 1)Included only images from patients

who met the study criteria, and the

neural network was only trained on

these images;

2) This model was trained using

images from a single academic center,

and the external generalizability is

unknown

Ma 2022

[48]

ResNet-34 Self-built 73 OCT

images

2 Polypoidal choroidal

vasculopathy

92% 90% 1) Small dataset

Mathews

2022 [49]

A 11-layer

lightweight

CNN

Duke,

Mendeley

10907

OCT

images

3 DME, Normal 100% 100% 1) This study used drusen macular

degeneration for AMD diagnosis;

2)Only contain one other diseases.

Matsuba

2019 [50]

A 7-layer CNN Self-built 364

OPTOS

images

2 Normal 100% 97% 1) It is difficult to acquire precise

images using OPTOS when the

transmission of light into the eye is

impaired by an intermediate

translucent zone;

2) Most AMD patients accept

treatment which may cause diagnostic

error

3) Did not study other retinal diseases.

Motozawa

2019 [51]

An 18-layer

CNN

Self-built 169 OCT

images

2 Normal 99% 100% 1) Excluded low quality images and

patients who had other concomitant

diseases;

2) Did not study other retinal diseases.

Takhchidi

2021 [52]

ResNet-50 Self-built 1200 FP

images

2 Normal 90% 86% 1) Did not study other retinal diseases.

(Continued)
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Yoo et al [56] used VGG-19 to classify three types of images (OCT, FP, and OCT combined

with FP) from Project Macula (2 classes including AMD and normal) for AMD identifying

with a pooled sensitivity of 84% and a pooled sensitivity of 59%. Zapata et al [57] used a

24-layer CNN to classify 306302 FP images and OCT images from Optretina’s tagged dataset

(2 classes including AMD and glaucomatous optic neuropathy) for AMD identifying with a

sensitivity of 83% and a specificity of 89%.

Results of synthesis

The pooled sensitivity and specificity in this meta-analysis were 94% (P = 0, 95% CI 0.94–0.94,

I2 = 99.7%) and 97% (P = 0, 95% CI 0.97–0.97, I2 = 99.6%) (Fig 4, S1 Fig), respectively. The

PLR, NLR, DOR, and AUC values were 21.77(95% CI 15.49–30.59), 0.06 (95% CI 0.04–0.09),

342.41 (95% CI 210.31–557.49) and 0.9925. The SROC (Summary Receiver Operating Charac-

teristic) curves are showed in Fig 5(A).

Additional analysis

For the high heterogeneity, the additional analyses were conducted based on the results of sen-

sitivity and specificity. Sensitivity analyses were conducted to investigate the sources of hetero-

geneity, however, neither the I2 of sensitivity nor specificity significantly decreased after

excluding studies one by one. Therefore, subgroup analyses which included the type of AMD,

type of images, variant of CNN, and variants were conducted (Fig 5B–5E). Meta regression

indicated that the sources of heterogeneity were types of AMD (P = 0.1882, RDOR = 36.03)

Table 2. (Continued)

Study Methodology Datasets Number of

images

Classes Other diseases Sensitivity Specificity Limitations

Tan 2018

[53]

A 14-layer

CNN

Self-built 1110 FP

images

2 Normal 96% 94% 1) Did not study other retinal diseases.

Thomas

2021 [54]

A 19-layer

CNN

Mendeley,

Duke, Noor,

OCTID

1139 OCT

images

2 Normal 99% 100% 1) Did not study other retinal diseases.

Wang 2019

[55]

DenseNet-121 Duke, Noor 8315 OCT

images

3 DME, Normal 96% in

Duke, 95%

in Noor

95% in

Duke, 95%

in Noor

1) Only contained one other diseases.

ResNet-50 97% in

Duke, 100%

in Noor

100% in

Duke, 99%

in Noor

ResNext-101 100% in

Duke, 99%

in Noor

100% in

Duke, 95%

in Noor

DPN-92 97% in

Duke, 100%

in Noor

97% in

Duke, 99%

in Noor

CliqueNet-10 99% in

Duke, 93%

in Noor

99% in

Duke, 98%

in Noor

Yoo 2018

[56]

VGG-19 Project

Macula

83 FP and

83 OCT

images

2 Normal 84% 59% 1) Did not study other retinal diseases;

2) Small datasets;

Zapata

2020 [57]

A 24-layer

CNN

Optretina’s

tagged dataset

306302 FP

images

and OCT

images

2 Glaucomatous optic

neuropathy

83% 89% 1.No clear number of OCT or FP

images.

https://doi.org/10.1371/journal.pone.0284060.t002
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and layers of the network (P = 0.4878, RDOR = 0.74). All additional analyses results were sum-

marized in Table 3. Original forest plots were available in S1 Fig.

Discussion

This meta-analysis included 18 studies and 56 models aimed to investigate the performance of

deep learning in detecting AMD. The results of the present study indicate a high accuracy in

detecting AMD through CNN, but with high heterogeneity. The sources of heterogeneity were

the types of AMD and layers of the network according to the meta-regression.

DL has been widely adopted in image recognition, speech recognition, and natural language

processing, but is only beginning to impact healthcare, especially in ophthalmology [6]. DL is

a subset of machine learning which has become possible with increasing computing power.

Compared to traditional machine learning algorithms and shallow networks, current DL algo-

rithms are characterized by large amounts of processable data, high computational power, and

large network size [58, 59].

Fluorescein angiography, optical coherence tomography (OCT), optical coherence tomog-

raphy angiography (OCTA), FP, fundus autofluorescence, and indocyanine green angiography

are useful diagnostic tests in clinical practice to detect AMD [1], of which OCT and FP are the

most commonly used. Plenty of public ophthalmic datasets are based on the above two types

of images, which have facilitated the rapid development of artificial intelligence in ophthalmol-

ogy, and will make telemedicine more convenient in the future. This meta-analysis reveals that

DL detection through OCT, FP, and OPTOS ultra-widefield retinal images has a high accuracy

in AMD diagnosing.

Fig 4. The forest plot of the pooled sensitivity and specificity.

https://doi.org/10.1371/journal.pone.0284060.g004
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18 included studies were summarized in Table 2. All studies adopted CNN to conduct DL

models. The non-saturating ReLU activation function was introduced in AlexNet to increase

the training speed and the dropout method was used to minimize overfitting in the fully con-

nected layers [60]. VGG has a deeper architecture, but cannot overcome the limitation of the

vanishing gradient problem [61]. In the ResNet architecture, identity mapping is introduced

to solve the vanishing gradient problem. ResNet can therefore be used to train deeper models

[62]. DenseNets can alleviate the vanishing-gradient problem, strengthen feature propagation,

encourage feature reuse, and substantially reduce the number of parameters [63]. Other stud-

ies mostly used a self-created CNN architectures with 7–20 layers. Duke, Mendeley, and Noor

are the most used OCT databases. Most FP image datasets were built clinically. 10 studies [40,

41, 43, 46, 47, 52–55, 57] included more than 1000 images in their research. 4 studies [40, 43,

47, 57] included more than 100 thousand images. Only Matsuba et al [50] used OPTOS as the

dataset, which is unique and pioneering among the 18 studies. Dong et al [43] and Gour et al

[44] included 11 and 8 classes respectively, while other studies only contained 2–4 classes.

In this research, the type of AMD and the layers of the network were found to be the two

essential factors that impact the accuracy of the diagnosis. However, the layers of the network

Fig 5. The SROC (a) the pooled SROC; (b) the SROC of types of AMD; (c) the SROC of types of images; (d) the SROC of variants of CNNs; (e) the SROC of

Networks.

https://doi.org/10.1371/journal.pone.0284060.g005
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Table 3. Subgroup analyses and meta regression results.

Number of

models

Sen1 Spe2 PLR NLR DOR AUC Meta

regression

Pooled

(95%CI)

I2 Pooled

(95%CI)

I2 Pooled

(95%CI)

I2 Pooled

(95%CI)

I2 Pooled (95%CI) I2 P RDOR

Layers 0.4878 0.74

�10 5 1.00

(1.00–

1.00)

97.80% 0.99

(0.99–

0.99)

60.20% 104.30

(70.94–

153.36)

65.70% 0 (0.00–

0.03)

98.60% 35609.58

(4947.73–

256287.76)

93.80% 0.9992

10–20 28 0.91

(0.92–

0.91)

99.70% 0.97

(0.97–

0.96)

99.80% 7.40 (5.04–

10.86)

99.20% 0.10

(0.07–

0.16)

99.60% 52.47 (33.55–

82.06)

98.50% 0.9861

20–50 11 0.94

(0.93–

0.95)

96.70% 0.95

(0.95–

0.96)

97.80% 28.68

(10.64–

77.28)

98.30% 0.04

(0.02–

0.09)

96.40% 770.17 (163.74–

3622.58)

97.90% 0.9927

50–100 7 0.93

(0.91–

0.94)

85.40% 0.98

(0.97–

0.98)

72.10% 36.07

(30.09–

43.24)

50.80% 0.10

(0.06–

0.16)

70.70% 366.71 (219.09–

613.82)

59.70% 0.9935

>100 4 0.95

(0.94–

0.97)

64.80% 0.98

(0.97–

0.99)

93.70% 76.90

(21.55–

274.39)

90.70% 0.04

(0.03–

0.08)

57.10% 1967.84

(464.67–

8333.64)

84.40% 0.9914

Type of AMD 0.1882 36.03

Single 2 1.00

(0.99–

1.00)

0% 0.99

(0.98–

1.00)

89.0% 122.44

(6.08–

2463.89)

87.70% 0.00

(0.00–

0.02)

0% 107120.15

(8471.87–

1354450.49)

0% NA3

All 54 0.94

(0.94–

0.94)

99.70% 0.97

(0.97–

0.97)

99.70% 20.61

(14.59–

29.12)

99.30% 0.06

(0.04–

0.09)

99.70% 306.14 (187.38–

500.18)

99.20% 0.9915

Architectures 0.0004 0.19

ResNet 13 0.94

(0.93–

0.95)

96.10% 0.96

(0.95–

0.96)

97.60% 34.66

(13.66–

87.94)

98.20% 0.04

(0.02–

0.08)

96.00% 951.18 (232.03–

3899.24)

97.70% 0.9941

VGG 16 0.90

(0.90–

0.89)

99.60% 0.91

(0.91–

0.90)

98.50% 4.29 (3.25–

5.67)

98.30% 0.19

(0.13–

0.27)

99.50% 30.62 (21.91–

42.79)

96.90% 0.8972

Others 26 0.99

(0.99–

0.99)

99.50% 0.99

(0.99–

0.99)

99.40% 86.04

(33.97–

217.95)

99.50% 0.01

(0.00–

0.08)

99.70% 7354.18

(1231.62–

43913.09)

99.40% 0.9987

Types of

Images

0.0002 0.12

OCT 36 0.94

(0.94–

0.94)

99.80% 0.97

(0.97–

0.97)

99.70% 52.33

(32.57–

84.10)

99.50% 0.03

(0.02–

0.04)

99.70% 2209.74

(1113.02–

4387.10)

99.40% 0.9982

FP 11 0.83

(0.81–

0.84)

96.90% 0.96

(0.96–

0.97)

98.20% 9.26 (3.74–

22.92)

99.10% 0.18

(0.06–

0.53)

99.10% 51.02 (13.37–

194.69)

97.70% 0.9592

OCT & FP 8 0.84

(0.83–

0.85)

45.70% 0.88

(0.87–

0.89)

87.00% 4.38 (3.11–

6.17)

91.30% 0.18

(0.15–

0.20)

30.00% 28.80 (20.38–

40.71)

70.70% 0.9176

OPTOS 1 1.00

(0.97–

1.00)

0% 0.97

(0.94–

0.99)

0 34.95

(20.45–

59.73)

0% 0 0 9371.15

(523.79–

167661.33)

0% NA

Sen: Sensitivity; Spe: Specificity; NA: not applicable.

https://doi.org/10.1371/journal.pone.0284060.t003
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are not positively correlated with diagnostic accuracy. Even though DOR and AUC are higher

when the layers are less than 10, as layers of the network are more than 10, the diagnostic accu-

racy gradually grows as the number of layers increases. Cautiously, when the number of layers

becomes too deep, overfitting may occur. Overfitting is a serious issue when training DL mod-

els, which may cause the trained models cannot be generalized in other data or datasets [64].

Predictably, deeper and more accurate networks will be placed in service soon. Meanwhile, dif-

ferent types of AMD may make the computation more difficult, but the prevailing datasets

contain different types of AMD, which will make the trained models more generalized.

Although the meta-regression results did not show that the networks and types of images

connected to the diagnostic accuracy, they are still significant. The DOR of ResNet showed

superior than VGG, other variants cannot be assessed because they were only included in one

study. That might be because ResNet with more layers was developed after VGG. ResNet

belongs to deep residual networks with a higher amount of processable data [65]. ResNets can

be trained easily without increasing the training error percentage, and are helpful in tackling

the vanishing gradient problem using identity mapping [66]. Therefore, it is believed ResNet is

an ideal architecture among the present variants of CNN. However, the influence due to the

layers of the network impacts the results. This may be the reason the RDOR of networks in

meta-regression is very low. As for the types of images, OCT images showed superior in

detecting AMD. OCT images can reveal every layer of macular structures with more anatomi-

cal information than fundus images. Combined OCT images with fundus images had worse

sensitivity, specificity, DOR, and AUC. We think it is because two images have more informa-

tion. More information means more computation and the potential to be more accurate,

which may require considering the layers of the network and the architecture of CNNs. Addi-

tionally, although only one study [50] reported the OPTOS ultra-widefield retinal images as

self-dataset, the pooled sensitivity, specificity, and DOR were all highest in the four subgroups.

The detailed limitations for each study were summarized in Table 3. Generally, 8 studies

[42, 47, 50–54, 56] did not study other retinal diseases. 3 studies [45, 49, 55] only contained

one other diseases. 2 studies [48, 56] had small datasets with no more than 100 images. Bhatia

et al [41] ignored bad quality pictures that may cause a generalization issue. Celebi et al [42]

ignored bad quality pictures and patients who had other retinal diseases. Although Dong et al

[43] established a database with 11 classes, the number of retinitis pigmentosa images is small.

Gour et al [44] contained 8 types of diseases, but with a small dataset of 331 FP images. Kadry

et al [46] used 4 CNN variants for classification, but the definition of non-AMD is not clear.

Lee et al [47] included only images from patients who met the study criteria, and the neural

network was only trained on these images. Meanwhile, the model was trained using images

from a single academic center, and the external generalizability is unknown. Mathews et al

[49] used drusen macular degeneration for AMD diagnosis. Matsuba et al [50] used OPTOS

images, but it is difficult to acquire precise images using OPTOS when the transmission of

light into the eye is impaired by an intermediate translucent zone. At the same time, most

AMD patients accept treatment which may cause diagnostic errors. Motozawa et al [51]

excluded low quality images and patients who had other concomitant diseases. Zapata et al did

not report a clear number of OCT or FP images.

This meta-analysis and the included studies have several limitations. First, some variants of

CNN including CapsNet, AlexNet, and DenseNet only existed once, and some studies used

self-created CNN architectures. Therefore, the subgroup analysis of networks is not accurate.

Second, we tried to establish more subgroups or to find more possible covariates such as hard-

ware, network, and hyperparameters. However, these potential factors were not mentioned in

many studies. Third, we concentrated more on diagnostic accuracy, but as DL develops, AMD

diagnostics has become more diverse, more plentiful, and more useful in lesion segmentation
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and efficacy prediction, which will be highly considered for further research. Forth, the Duke

and some self-built datasets have a small number of images for training.

Future challenges and direction

DL is still in the early stages of development in AMD diagnosis, but in the foreseeable future,

widespread use could play a significant role in fundus applications, screening, telemedicine,

reducing the workload of physicians, etc.

The purpose of DL algorithms for diagnosing AMD is to achieve an automated diagnosis of

many kinds of fundus diseases. However, no matter in public databases or self-built databases,

only several diseases were chosen for classification which is difficult for widespread use clini-

cally. Establishing a database which covers heterogeneous and large image sets is still a serious

challenge. Meanwhile, the DL algorithms concentrate more on images only, but the images are

not the only data obtained clinically. Ideally, multimodal data containing clinical data, FP, and

OCT, etc. may increase the diagnostic accuracy. At the same time, traditional fundus datasets

mostly consist of FP and OCT images. However, with diagnostic tests developing, more new

methods and technologies such as OPTOS ultra-widefield retinal images, OCTA, FFA, ICGA,

etc. will be added as public or self-built datasets in future AMD detection. Finally, as the equip-

ment evolves, the image quality of FP, OCT, OCTA etc. improves. More high definition images

will increase the diagnostic accuracy.

Conclusions

CNNs are mostly adopted deep learning algorithms in AMD detection. All included DL algo-

rithms adopted CNNs. CNNs, especially ResNets, are effective in detecting AMD with high

diagnostic accuracy. The types of AMD and the layers of the network are the two essential fac-

tors that impact the model training process. Proper layers of the network will make the model

more reliable. More datasets established by new diagnostic methods such as ultra-widefield

retinal images, FFA, and ICGA will be used to train DL models in the future, which will be

helpful in fundus application screening, long-range medical treatment, and reducing the work-

load of physicians.
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