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Abstract

Motivation: Advances in RNA sequencing technologies have achieved an unprecedented accuracy in the quantifica-
tion of mRNA isoforms, but our knowledge of isoform-specific functions has lagged behind. There is a need to
understand the functional consequences of differential splicing, which could be supported by the generation of ac-
curate and comprehensive isoform-specific gene ontology annotations.

Results: We present isoform interpretation, a method that uses expectation–maximization to infer isoform-specific
functions based on the relationship between sequence and functional isoform similarity. We predicted isoform-
specific functional annotations for 85 617 isoforms of 17 900 protein-coding human genes spanning a range of
17 430 distinct gene ontology terms. Comparison with a gold-standard corpus of manually annotated human iso-
form functions showed that isoform interpretation significantly outperforms state-of-the-art competing methods.
We provide experimental evidence that functionally related isoforms predicted by isoform interpretation show a
higher degree of domain sharing and expression correlation than functionally related genes. We also show that iso-
form sequence similarity correlates better with inferred isoform function than with gene-level function.

Availability and implementation: Source code, documentation, and resource files are freely available under a GNU3
license at https://github.com/TheJacksonLaboratory/isopretEM and https://zenodo.org/record/7594321.

1 Introduction

More than 90% of human genes undergo alternative splicing, a pro-
cess that involves alternative patterns of intron removal to generate
alternatively spliced transcripts that differ in their coding capacity,
stability, or translational efficiency (Papasaikas and Valcárcel
2016). Until recently, a typical assumption of biomedical analysis
was that the functions of canonical isoforms provide a faithful repre-
sentation of the function of a gene or a gene product (Sulakhe et al.
2019). However, alternatively spliced isoforms provide functional
diversity at the level of enzymatic activities and subcellular localiza-
tions, as well as protein–protein, protein–DNA, and protein–ligand
physical interactions (Kelemen et al. 2013).

The advent of accurate and low-cost short- and long-read RNA
sequencing (RNA-seq) technology now allows isoform expression to

be measured with steadily increasing accuracy and comprehensiveness
(Stark et al. 2019). As a result, next-generation RNA-seq now enables
a more refined analysis of isoform-specific functions in the context of
the overall functions of genes. Gene ontology (GO) overrepresentation
analysis is commonly performed to gain insights into differentially
expressed genes significantly involved in specific biological functions or
pathways (Bauer et al. 2008), but analogous methods for examining
the functional profile of differential isoforms are not yet available. A
major roadblock is the lack of experimentally confirmed functional
annotations of isoforms (Bhuiyan et al. 2018). For this reason, a num-
ber of methods have been developed for isoform-specific function
prediction (Mishra et al. 2020). Many existing methods leverage
multiple-instance learning (Eksi et al. 2013; Li et al. 2014a,b; Luo et al.
2017; Shaw et al. 2018; Chen et al. 2019). Newer studies have adapted
network-based methods (Kandoi and Dickerson 2019; Yu et al. 2020),

VC The Author(s) 2023. Published by Oxford University Press. 1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 39(4), 2023, btad132

https://doi.org/10.1093/bioinformatics/btad132

Advance Access Publication Date: 17 March 2023

Original Paper

https://orcid.org/0000-0002-1653-8206
https://orcid.org/0000-0003-2024-7572
https://orcid.org/0000-0002-6601-2165
https://orcid.org/0000-0002-5694-3919
https://orcid.org/0000-0002-0736-9199
https://github.com/TheJacksonLaboratory/isopretEM
https://zenodo.org/record/7594321
https://academic.oup.com/


Bayesian logistic regression, collaborative matrix factorization techni-
ques (Wang et al. 2020), domain adaptation (Li et al. 2020), and deep
learning (Chen et al. 2019). Nevertheless, the problem of isoform func-
tion prediction remains a challenging one because of the paucity of
characterized isoform-specific functional annotations to robustly train
supervised machine-learning methods. To our knowledge, no existing
method has provided a comprehensive annotation suitable for GO
overrepresentation analysis.

A major motivation for the development of isoform-specific
function prediction methods is to provide the foundation for study-
ing the functional implications of differential alternative splicing to
characterize the interplay between expression regulation at gene and
isoform level and their potential role in diseases (Gandal et al. 2018;
Stark et al. 2019; Jiang and Chen 2021). GO analysis of differential
isoforms can be effectively performed only if reliable and robust
isoform-specific prediction methods will be developed and made
available for the scientific community.

In this work, we present isoform interpretation (isopret), which
models the relationships between genes, isoforms, and functions and
formulates isoform function assignment as a global optimization
problem, by using an expectation–maximization (EM) algorithm to
derive GO annotations for different isoforms.

2 Materials and methods

2.1 Data sources
Gene-level GO annotations were taken from goa_human.gaf (17
November 2021). GO terms for the three subontologies molecular
function (MF), biological process (BP), and cellular component (CC)
were extracted from goa_human.gaf, and combined with the GO
terms in Interpro2GO. Specific GO terms, defined as those that an-
notate <10% of genes, were used for isoform function inference. Six
thousand three hundred thirty-seven GO terms were taken from the
Interpro2GO file (26 November 2020), and 18 637 GO terms were
taken from the gaf file.

InterPro domains were obtained using BiomaRt (Smedley et al.
2009). Ensembl transcript coordinates as well as gene and transcript
IDs for Human Genome GRCh38 were obtained from Ensembl re-
lease 100 (Cunningham et al. 2022), and transcript sequences were
extracted accordingly from the Genome Reference Consortium
Human Build 38.

For expression-function correlation analysis RSEM counts for
lung were obtained from the GTEx data portal version 8 (Lonsdale
et al. 2013).

2.2 Inferring isoform functions by EM
The basic idea behind our approach is that pairs of isoforms sharing
similar sequence should also share similar functions. Based on the
assumption that the functions of an isoform represent a subset of the
functions of the associated gene, we developed an optimization pro-
cedure that maximizes the agreement between functional similarity
and sequence similarity. To this end, we used an iterative two step
(EM) model that finds an “optimal” GO-term assignment to the iso-
forms based on their sequence similarity at the expectation step; and
at the maximization step maximizes the similarity between isoforms
based on the GO-term assignments computed in the preceding ex-
pectation step. We alternate between these two optimization steps
as dictated by the EM methodology in order to infer isoform-
specific GO annotations, as detailed in the following subsections
and summarized in Fig. 1.

Our approach is based on the following assumptions: (i) GO
terms that are assigned to a gene correspond to a function of one or
more isoforms of that gene; (ii) the mean pairwise sequence align-
ment score of two isoforms increases with the number of functions
shared by the corresponding pair of aligned protein sequences; and
(iii) given two pairs of isoforms, such that the genes that encode the
isoforms share at least one common GO annotation and given the
GO terms that are assigned to each isoform, the sequence alignment
scores of the two pairs are independent random variables.

2.2.1 Notation

We introduce notation that will be used in the following description:

• G ¼ fg1; g2; . . . ; gng is the set of n genes.
• I ¼ fi1; i2; . . . ; ipg is the set of p isoforms.
• GO ¼ ft1; t2; . . . ; tmg is the set of m GO terms.
• 2GO is the powerset of GO terms.
• T I ¼ / : I! 2GO represents the annotations of the isoforms,

e.g. /ði1Þ are the GO annotations of the isoform i1
• T G ¼ w : G! 2GO represents the GO annotations of the genes
• Sðij; ikÞ is the sequence similarity between isoforms ij and ik
• sijk: the number of annotations shared by isoforms ij and ik, i.e.

sijk ¼ j/ðijÞ \ /ðikÞj.

2.2.2 Sequence alignment scores

The sequence alignment is computed using the Smith–Waterman local
alignment algorithm implemented in the pairwiseAlignment func-
tion in the R Biostrings package, with the BLOSUM62 substitution ma-
trix and all other parameters taking their default values.

In this work, we included only protein-coding isoforms, although
a generalization that aligns nucleotide sequence instead would be
conceptually similar. Normalization of alignment scores via log
transformation was performed using the log–x function of the
bestNormalize R package (Peterson 2021) with default parameters.

2.2.3 Initializing the model

As a starting point for the optimization, the gene-level annotations
are distributed to coding isoforms according to their predicted
InterPro domains and the GO terms associated with these domains
(Fig. 1A). InterPro is a database that stores amino acid signatures
and provides an integrative classification of protein sequences into
families and identifies functionally important domains and con-
served sites (Mitchell et al. 2015; Blum et al. 2021). Interpro2GO is
a semiautomatic annotation system that maps InterPro entries to
GO terms in one-to-one manner (Mitchell et al. 2015).
Interpro2GO predicts that a protein has a given GO annotation if it
is predicted to have a certain domain, which, for instance, can cor-
respond to an active site or a motif characteristic of a certain protein
family.

In our method, GO annotations not related to InterPro domains
are initially not assigned to any isoform (Fig. 1A). More precisely,
we used InterPro2GO predictions to initialize isoform GO annota-
tions, but at the same time, we used the GO annotations of the gene
which the isoform belongs to as new “potential” annotations for the
isoform. In this way, during the E-step the genetic algorithm (GA)
(Section 2.2.4) can add these novel “potential” GO annotations of
the gene to which the isoform belongs. An isoform-by-isoform ma-
trix, S, is constructed whereby cell Sði; jÞ contains the normalized
local sequence alignment score for isoforms i and j (Fig. 1B). These
values constitute the dependent variable that will be predicted from
the number of shared GO terms during the M-step of the algorithm
(Section 2.2.5). For the independent variable values, an isoform-by-
GO-term matrix TI is constructed with a 1 in cell TIði; jÞ if isoform i
is annotated to GO term j and otherwise 0 (Fig. 1C). Multiplication
of this matrix by its transpose yields an isoform-by-isoform matrix,
T ¼ TT

I TI, where cell Tði; jÞ contains the number of shared GO
annotations for isoforms i and j.

The initial guess for the b0; b1; b2 parameter values (Section
2.2.5) was obtained by fitting the alignment scores from an initial
random subset of isoforms to the number of common GO terms in
the initial assignment.

2.2.4 E-step: optimizing GO annotation assignments by a GA

The expectation step finds the best assignments of the GO terms to
isoforms (T I) using a GA on the basis of the parameters (b0; b1;b2)
of the regression function estimated at the M-step (the regression
predicts the pairwise alignment scores between isoforms as a func-
tion of the number of their shared GO terms, Section 2.2.5).
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For the GA implementation, we used the R GA package (Scrucca
2017). The main genetic operator was set to crossover with a prob-
ability of 0.8, with an additional 0.1 probability for mutation. This
implementation also applies elitism by default and so the best assign-
ment found is always propagated. The selection probability of a so-
lution was set to be proportional to its rank in increasing order of
fitness.

2.2.5 M-step: optimizing the parameters of the regression function

We model the relationship between pairwise isoform sequence simi-
larity (i.e. between the sequences of isoforms ij and ik) and the num-
ber of shared GO terms as a quadratic equation that depends on the
number of shared annotations between isoforms. The sequence simi-
larity between ij 2 ga and ik 2 gb, ij 6¼ ik is calculated for genes
ga; gb 2 G:

Sðij; ikÞ ’ b2s
2
ijk þ b1sijk þ b0 þ �: (1)

Note that we may also have ga ¼ gb, and similarities between
isoforms belonging to the same gene are not treated differently than

isoforms of different genes. We considered also more complex poly-

nomial dependencies, but we found that the quadratic one best fits
the data (data not shown).

The maximization step finds the best parameters (b0; b1;b2) of
the regression function using the GO-term assignments of the
E-step.

Finding the optimal GO-term annotations is an NP-complete
problem (Supplementary Note S1), which motivated the develop-

ment of an approximate solution based on a EM algorithm. Indeed
the objective of the EM procedure is to find a “good” assignment of
GO terms through a GA (E-step), and this is performed by iterative-

ly alternating this step with the optimization of the quadratic model
(M-step). At convergence the algorithm returns the final GO annota-

tions for each isoform. The inference procedure was performed sep-
arately for each of the three GO subontologies MF, BP, and CC.

2.2.6 Optimizing the objective function

We suppose that Sðij; ikÞ � Nðlðij; ikÞ; 1Þ, i.e. that S is distributed

according to a normal distribution centered on lðij; ikÞ ¼

A

C

B

Figure 1 Optimization algorithm for assigning functions from genes to isoforms. (A) The initialization of isoform functions, i.e. the initial isoform-to-GO-terms assignment, is

performed by assigning isoforms GO terms that are associated with their predicted InterPro domains. (B) Local alignment scores are computed between every pair of isoforms,

and the scores are log transformed and standardized. (C) The isoform-to-GO-term binary matrix is multiplied by its transpose to obtain a matrix of the number of shared GO

terms between each pair of isoforms. These values are then used as the independent variable in a quadratic model with parameters b0; b1; b2 to predict the normalized local

alignment scores between pairs of isoforms. The GO-term assignment is optimized by a stepwise procedure that uses a GA (Section 2) until no further improvement in the

model fit is possible (black arrow at bottom), at which point the GO-term assignment is fixed and new parameter values b0; b1; b2 are obtained by optimizing the fit of the

model (pink arrow at upper right). These two steps of GO-term assignment optimization and parameter values optimization are repeated consecutively until no further im-

provement can be obtained
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b2s
2
ijk þ b1sijk þ b0 and with a constant standard deviation r ¼ 1.

This assumption is supported by the one-sample Kolmogorov–
Smirnov test at a confidence level of a ¼ 0:01.

We suppose that the mean l of the Gaussian distribution is:
lðij; ikÞ ¼ b2s

2
ijk þ b1sijk þ b0.

Hence the probability density function of S is

PðSðij; ikÞ ¼ xÞ ¼ 1

2p
e�

b2s2
ijk
þb1sijkþb0�xð Þ2

2 : (2)

By applying the maximum log-likelihood principle, we can maxi-
mize the following function:

max
T I ;b0 ;b1 ;b2

log
Y
ga ;gb

Y
ij2ga ;ik2gb

1

2p
e�

b2s2
ijk
þb1sijkþb0�xð Þ2

2

0
@

1
A: (3)

Note that, we need to maximize with respect to the isoform
annotations T I and the parameters b0; b1;b2 of the quadratic func-
tion, and 8ij; ik sijk depends on T I, i.e. on the annotation of the con-
sidered set of isoforms I.

Equation (3) can be rearranged to obtain the following, equiva-
lent minimization:

min
T I ;b0 ;b1 ;b2

X
ga ;gb

X

ik 2 gb

ij2ga ;

ðb2s
2
ijk þ b1sijk þ b0 � Sðij; ikÞÞ2: (4)

Minimizing the objective function of Equation (4) corresponds
to finding the “best” isoform GO function annotation T I that mini-
mizes the differences between the pairwise sequence similarity
Sðij; ikÞ of the isoforms and their estimated similarity through the
quadratic function of Equation (1). For brevity, we use Sðij; ikÞ to de-
note the standardized Smith–Waterman similarity between isoforms
ij and ik and Ŝðij; ikÞ ¼ b̂2s2

ijk þ b̂1sijk þ b̂0 to denote their estimated
similarity through the quadratic model of Equation (1). We can opti-
mize (4) through an EM algorithm:

1. Initialize T I and model parameters b0; b1; b2:

½T̂ I ; b̂0 ; b̂1 ; b̂2 � ¼ InitðT I;b0; b1; b2Þ: (5)

2. E-step:

Given b̂0 ; b̂1 ; b̂2 :

T̂ I ¼ arg min
T I

X
ga ;gb

X

ik 2 gb

ij2ga ;

ðŜðij; ikÞ � Sðij; ikÞÞ2: (6)

3. M-step:

Given T̂ I :

½b̂0 ; b̂1 ; b̂2 � ¼ arg min
b0 ;b1 ;b2

X
ga ;gb

X

ik 2 gb

ij2ga ;

ðŜðij; ikÞ � Sðij; ikÞÞ2: (7)

4. Cycle between E-step and M-step until convergence

The final T̂ I provides the isoform annotations predicted by

isopret.

2.2.7 A minibatch algorithm for the isoform assignment problem

The most computationally demanding part of the EM algorithm is
represented by the E-step. Indeed the E-step constitutes an NP-
complete problem (Supplementary Note S1). Furthermore, our data
contains close to 85 000 isoforms, and consequently computing the
sum of log-likelihoods in (6) is a prohibitively expensive operation.
This problem is often alleviated in machine learning by the use of
mini-batches, namely by repeatedly sampling a subset of the sum
and updating the parameters based on that subset (Bottou 1998).

We follow a similar approach by randomly splitting the isoforms
into 200 subsets, aligning each pair of isoforms such that they be-
long to the same subset and their genes share at least one GO term,

normalizing the alignment scores and computing an update to the
function assignment using a GA. In this way the overall log-
likelihood (3) is estimated by simply summing the log-likelihood
computed on each of the 200 subsets separately, thus introducing a
relevant speed-up in the computation.

In order to prevent a bias of GO-term size, the splitting does not
impose equal sizes on the subsets. In order to robustly estimate the
change in log-likelihood, we obtain for each subset the mean log-
likelihood of a pair of isoforms, which is equal the subset’s log-
likelihood divided by the number of isoform pairs used to compute
it. This value is comparable between different iterations/splits.
Subroutine 1 gives the pseudo code for calculating the log-likelihood
change between two consecutive EM steps. Convergence of the E-
step is determined when the cumulative change over 25 iterations/
mini-batches is <1/3 (Supplementary Fig. S1). Then, at the M-step,
we compute the least-squares solution to the bi parameters based on
the annotations T I computed in the E-step.

2.2.8 Optimization for the three GO subontologies

We performed the optimization separately for each one of the three
GO subontologies MF, BP, and CC.

For the CC subontology, besides the initial InterPro2GO predic-
tions, we also added the BP GO terms that were assigned in the Isopret
optimization of BP predictions. The rationale behind this initialization
strategy is our observation that similar sequences are more likely to
share common GO terms from MF and BP rather than CC terms.
Hence, we tried to improve the CC isoform annotations in the E-step
by adding to the initial CC terms predicted by InterPro2GO also the
BP terms assigned in the optimization of BP. In this way, we can use BP
terms as “surrogate variables” to assure a more accurate similarity be-
tween pairs of isoforms. This in turn can assure better CC predictions
through the dynamics of the EM algorithm, since Isopret estimates the
similarity between isoforms on the basis of their shared GO terms. Our
experimental results confirm that by initializing the CC subontology
predictions using also the BP terms assigned in the optimization of BP
leads to better results with respect to an initialization strategy based
only on CC terms (data not shown).

2.3 Curation of a gold-standard isoform-specific dataset
We reviewed the literature for papers that determine the function of
isoform that can be mapped to Ensembl IDs and whose function can
be mapped to GO terms, resulting in a collection of 307 examples
where an isoform was shown to be either associated with a certain
GO term or not associated with it. A file with the curations is freely
available at the project GitHub repository.

2.4 Comparative evaluation
As a comparison for isopret’s performance, we assessed three other
GO-term assignment methods. First, we applied Interpro2GO by

Subroutine 1 Mini-batch D-Log-likelihood estimation

1: Input: i, the iteration number of the EM

2: for isoform ¼ 1; 2; . . . ;N do

3: Assign isoform a random subset from 1::200 using a

uniform distribution over subset labels

4: end for

5: ri ¼ 0

6: for subset ¼ 1;2; . . . ; 200 do

7: 1. k ¼ log-likelihood computed using only isoforms in

subset

8: 2. ri ¼ ri þ k
k�, where k� is the number of terms in the

computation of k
9: end for

10: return ri � ri�1
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mapping isoforms to their InterPro domains and then, using the pro-
vided GO-terms predictions on the basis of their domains, namely
for each isoform, assign the GO terms that Interpro2GO maps to its
InterPro domains. Then, we applied the IsoResolve tool (Li et al.
2020) that predicts splice isoform functions by integrating gene and
isoform-level features with domain adaptation;

IsoResolve provides mouse gene expression profiles to perform
predictions, and to apply it to human, we used the expression data-
set provided by the DIFFUSE GitHub repository (https://github.
com/chenhcs/DIFFUSE), including 1735 RNA-seq experiments of
human samples from various biological conditions. Finally, we also
tested the DIFFUSE tool, a deep-learning approach to isoform func-
tion prediction by using its precomputed isoform function predic-
tions (Chen et al. 2019).

2.5 Correlation in expression levels of isoforms
Correlations between isoform expression levels were computed with
the transcripts-per-million counts from 578 Lung samples provided
by GTEx (Lonsdale et al. 2013). We randomly selected 500 000
pairs of isoforms that had nonzero expression in more than half of
the samples with an observed standard deviation in the 90 percentile
and such that for every number of shared terms i between 1 and 10,
10% of the pairs shared at least as many functions. Then for each
number of shared functions, we compared the Pearson correlation
of transcript when using the GO per-gene assignment and when
using the isopret-assigned terms, and compared the correlations
using the Mann-Whitney test.

2.6 Data and code availability
The isopretEM GitHub repository is available at https://github.com/
TheJacksonLaboratory/isopretEM. It contains the implementation
of the EM algorithm in R and the 307 curated isoform-specific func-
tions from 72 publications, used to compare isopret with state-of-
the-art methods. The versions of the scripts used for this analysis are
available as tagged release 1.0.0. Additionally, an archive with these
versions together with the versions of the input files used by the
scripts is available at https://zenodo.org/record/7594321.

3 Results

Here, we present isopret, a method for inferring GO annotations for
isoforms based on patterns of gene-level annotations across the gen-
ome. We experimentally show that isopret is able to predict func-
tions for a large number of human isoforms, covering a large set of
protein-coding genes. After comparing the effectiveness of the pro-
posed approach with several state-of-the-art methods, we show that
isopret isoform sequence similarity correlates better with inferred
isoform function than with gene-level function, and that functional-
ly related isoforms show a higher degree of domain sharing and ex-
pression correlation than functionally related genes.

3.1 Assignment of GO annotations to isoforms using

EM
The functions of proteins are largely determined by their amino acid
sequence. An accurate and complete mapping from sequence to
function is not currently possible; however, the degree to which
functions are shared by a pair of proteins can be estimated from
their sequence similarity. Based on the assumption that the functions
of an isoform represent a subset of the functions of the associated
gene, we developed an optimization procedure that maximizes the
agreement between functional similarity and sequence similarity.
Our approach is based on an EM algorithm (see detailed description
in Section 2; overview in Fig. 1).

The isopret algorithm generated function predictions for 85 617
isoforms of 17 900 protein-coding genes, spanning a range of
17 430 distinct GO terms. For 17 401 of these genes (97.2%), iso-
pret inferred isoform-specific functions. This represents a substan-
tially larger number of annotations that cover more GO terms and
more isoforms than the Interpro2GO annotations that were used to

seed initialize the EM algorithm. The Interpro2GO annotations
cover only 4717 distinct GO terms, consisting of 1844 (39.1%) GO
terms from the ‘MF’ subontology, 2337 (49.5%) terms from the
‘BP’ subontology, and 536 (11.4%) terms from the ‘CC’ subontol-
ogy. In contrast, the ‘MF’ subontology of GO includes only 23.8%
of the overall 18 637 GO terms (Supplementary Figs S2 and S3).
The focus of Interpro2GO on MF is presumably related to the fact
that the linkage between an Interpro domain annotation, such as
alpha subunit of the acetyl coenzyme A carboxylase complex
(IPR001095) to ‘acetyl-CoA carboxylase activity’ (GO: 0003989)
can be made automatically—any protein for which this domain
signature is accepted will automatically be assigned the GO term
‘acetyl-CoA carboxylase activity’.

Isopret also predicted annotations for substantially more iso-
forms than Interpro2GO. Out of 88 544 isoforms in this study,
interpro2GO predicts at least one term for 52 210 isoforms (59%),
versus the 85 617 annotated isoforms (97%) predicted by isopret,
and only 724 isoforms (0.8%) have an Interpro2GO prediction but
not an isopret prediction. The median number of terms predicted by
intepro2GO to an isoform is 2 and the mean is 2.25. The median
number of terms predicted for an isoform by isopret is 6 and the
mean is 7.4.

Additionally, isopret provides more specific GO annotations
than interpro2GO. The mean information content (IC; a metric of
specificity) for terms predicted by interpro2GO was 6.78, and the
mean IC for isopret was 7.44. We also calculated the value of the
mean IC weighted by the number of times each term was used for
annotation. The weighted mean IC was 3.16 for interpro2GO and
3.75 for isopret. Thus, isopret provides GO annotation predictions
that are more comprehensive in their coverage of GO terms, anno-
tate more isoforms, and are more specific than interpro2GO.

3.2 Isoform sequence similarity correlates better with

inferred isoform function than with gene-level function
We hypothesized that if isopret’s GO annotations are accurate, then
there should be a better correlation between pairwise isoform ex-
pression patterns with the number of shared isoform GO terms than
with the number of shared GO terms for the corresponding genes.
Because of the way our algorithm is formulated, it distributes GO
annotations originally made for the gene to the isoforms encoded by
the gene, so that isoforms can only have the same annotations or a
subset thereof, but isopret does not add annotations to an isoform
that are not present for the gene. Therefore, intuitively put, isopret
attempts to choose a subset of GO annotations that are correct for
the specific isoform. To assess this hypothesis, we determined the re-
lationship between mean sequence alignment score (Section 2) and
the number of shared GO terms, whereby the isoform-specific anno-
tations are assigned using isopret and the gene-level annotations are
made by assigning an isoform with all of its gene’s terms. Keeping in
mind that isoforms have a lower average number of annotations
than genes in our analysis (note the different ranges of the X-axis in
the left and right panels of Fig. 2), there is a sharper increase in the
mean sequence similarity for the isopret assignments compared to
the gene-level assignments (Fig. 2).

3.3 Comparison to existing annotations and prediction

methods
We compared isopret to previously published methods whose authors
provided code or downloadable files (Supplementary Table S1), name-
ly, IsoResolve, an approach based on domain adaptation, which was
shown to outperform other available methods by its authors,
DIFFUSE, which is a deep-learning approach, and Interpro2GO, that
uses InterPro annotations (in particular domains) to predict GO func-
tions (Mitchell et al. 2015; Chen et al. 2019; Li et al. 2020). DIFFUSE
provides precomputed predictions for human isoforms, which we uti-
lized for the comparison, and we generated predictions for IsoResolve,
using the software provided by the authors.

In order to be able to compare different GO-term assignment
methods, we curated 307 isoform-specific functions from 72 publi-
cations, including a total of 149 different isoforms from 62 genes
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annotated to 97 different GO terms. This dataset was not used in
any way in the training phase. Since �40% of our curated examples
are negative labels, we expect a false positive rate of <40% and a
true positive rate of more than 60% from any method that surpasses
random assignment (Fig. 3A). As can be seen, only isopret and
Interpro2GO perform better than random assignment. In addition,
isopret has a higher rate of true positives and a lower rate of false
positives, with TP/FP rates of 0.8/0.2 and 0.73/0.27 for isopret and
Interpro2GO, respectively. To further compare isopret assignments
to those derived from Interpro2GO, we examined the counts of true
and false positives. Isopret predicts more than twice as many terms
as Interpro2GO (108 versus 45) with significantly better accuracy
(likelihood ratio test, P ¼ :00017) (Fig. 3B). Additionally, area
under the receiver operating characteristic results confirmed that
Isopret outperforms the other competing methods on the curated
isoform dataset (Supplementary Fig. S7).

3.4 Functionally related isoforms show a higher degree

of domain sharing and expression correlation than

functionally related genes
One of the core assumptions of enrichment analysis is that genes or
isoforms that participate in the same function are more likely to be
expressed in the same biological sample. Indeed, cellular responses
are rarely carried out by a single protein. Therefore, we examined

the correlation of expression of isoforms as a function of their num-
ber of shared isopret-assigned GO terms and as a function of the
number of GO terms shared by their genes. For any number of
shared isoform-assigned terms the expression correlation was sig-
nificantly higher than the correlation for the same number of shared
GO terms between the corresponding genes (Fig. 4B, Section 2).
Moreover, we can observe a similar trend with the number of shared
InterPro domains as a function of the shared GO terms: isoforms
show a larger number of common domains with respect to genes
(Fig. 4A). In both cases the correlation increased with the number of
shared terms. This suggests that isopret’s isoform-level predictions
are in agreement with regulation of gene expression, and therefore
the terms it assigns to isoforms reflect the BPs that they participate
in. Supplementary Fig. S5 shows the same breakdown for expression
correlation, and Supplementary Fig. S6 shows the breakdown of the
number of shared GO terms for the three subontologies MF, BP,
and CC.

4 Discussion

Advances in RNA-seq technologies have enabled unprecedented ac-
curacy in the quantification of mRNA at isoform level. This in turn
opens the door to the development of novel isoform-specific func-
tion prediction methods. Nevertheless, it remains challenging to pre-
dict GO terms at isoform level using supervised methods, due to our
limited knowledge about isoform functions that precludes the appli-
cation of powerful supervised machine-learning methods (Bhuiyan
et al. 2018; Mishra et al. 2020).

In our view, machine-learning approaches for inferring isoform-
specific function should respond to three main issues: (i) they should
not rely on supervised learning, which is limited by our current state
of knowledge about isoform functions; (ii) they should not associate
GO terms to genes rather than isoforms; and (iii) they should not
make predictions one isoform at a time or one GO term at a time,
which precludes information sharing and can result in inconsisten-
cies between different predictions. To our knowledge, no previously
published method satisfies these requirements (Supplementary Table
S1). In contrast, isopret is unsupervised, learns directly from isoform
sequences without using gene elements (e.g. domains), and assigns
GO terms to isoforms through a global optimization algorithm, thus
avoiding inconsistencies due to local isoform-by-isoform predic-
tions. Our review of 16 published methods found only three that
made code or predictions available in a way that enabled us to com-
pare our methods on a comprehensive set of 307 isoform-specific
functions derived from our curation of the literature. Our results
show that isopret substantially outperforms the other compared
state-of-the-art methods.

Extensive efforts have been made by the bioinformatics commu-
nity to develop methods that can be used to ascertain the biological
“meaning” of experiments by characterizing GO terms that are
overrepresented in differentially expressed genes (Bauer et al. 2008;
Robinson and Bauer 2011). The accurate isoform annotations pro-
vided by isopret can be used to extend this analysis at isoform level,
thus enabling differential alternative splicing and a GO overrepre-
sentation analysis aware of the splicing processes.

5 Conclusion

Isopret provides accurate and comprehensive isoform-specific GO
annotations. Our approach can be applied to any model organism
using available isoform sequences and GO annotations at gene level.
We provide an algorithmic framework for characterizing differential
functional profiles associated with differential splicing in RNA-seq
experiments that complements existing gene-based GO annotation
methods. It is our hope that methods, such as ours, will spur more
activities in the elucidation of isoform-specific functions, but further
community-driven efforts will be required to develop experimental
frameworks, databases, and computational methods for isoform-
specific analysis.

Figure 3 Isoform-specific GO annotation predictions. (A) Comparison of the pro-

portion of correct GO-term assignments and incorrect assignments using a gold-

standard of curated 307 isoform functions. The horizontal red dotted line marks the

proportion of negative examples in the test set. (B) Comparison of the number of

correct GO-term assignments and incorrect assignments using a gold-standard of

curated isoform functions

Figure 2 Mean sequence alignment score as a function of the number of shared GO

annotations. In order to alleviate the computational cost of the E-step of the EM al-

gorithm, we repeatedly split the isoforms into 200 random subsets and run a GA in

each subset for a fixed number of iterations. Here, for the last partition into 200 iso-

form sets, mean normalized sequence alignment scores were plotted against the

number of GO terms shared by pairs of isoforms (left) and the number of GO terms

shared by the pairs of genes that contain the isoforms (right). The red line in the left

frame corresponds to the quadratic model [expressed in Equation (1) in the main

text] using the final bi values. This figure was created with data generated by the in-

ference of isoform-specific GO MF annotations
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Figure 4 Intepro domain sharing and expression correlation of isoforms. (A) Number of shared InterPro domains as a function of the number of shared GO terms. Brown

(Isoform): boxplots for the number of shared InterPro domains between isoforms that share at least one domain (y-axis) as a function of different numbers of shared GO terms

that are assigned by the isopret algorithm (x-axis), from 0 to 10 shared GO terms. The median of the number of shared InterPro domains increases with the number of shared

GO terms. Blue Gene): the same boxplots for the number of shared InterPro domains, for different numbers of shared GO terms, where all the GO terms of a gene are assigned

to all of its isoforms. While the isopret-assigned GO terms are selected from the gene’s GO terms and Interpro2GO, the correlation between the count of shared GO terms and

the count of shared InterPro domains is higher for the former (Kendall’s tau 0.38 versus 0.18, respectively). (B) Correlation of expression level of transcripts as a function of the

number of shared GO terms, for gene- and isoform-level assignments. Expression correlation as a function of the number of shared GO terms increases for both types of assign-

ment, but for isoform-level it is consistently higher. Supplementary Fig. S6 shows a breakdown of the number of shared GO terms to the three subontologies MF, BP and CC
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