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ABSTRACT

Outer membrane vesicles (OMVs) are spherical bilayered nanoparticles derived from the outer layer of Gram-negative 
bacteria. Bacteria communicate with nearby bacteria, their environment, and the cells of their host by secreting 
OMVs, which are essential for their survival. OMVs also play a critical role in bacterial pathogenesis since they are 
loaded with virulence factors, toxins, and enzymes. OMVs may modulate the immune response of the host by initiating 
inflammation through cytokine production and activating the innate immune response. OMVs also contribute to 
the resistance of bacteria to antibiotics by carrying antibiotic-degrading enzymes and acting as natural protection 
barriers. Concerns have also been raised regarding OMVs mediating the transfer of antibiotic resistance. Due to their 
advantageous properties, OMVs are attractive platforms for vaccine discovery and drug delivery research. In this 
review, we discuss the fundamental structure and biogenesis mechanisms of OMVs as well as their multifaceted roles 
in bacterial infection pathogenesis and host immune responses. We also discuss application examples of OMVs.
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INTRODUCTION

Extracellular vesicles produced by both eukaryotes 
and prokaryotic cells continuously interact with their 
environment. Exosomes are microvesicles derived from 
eukaryotic cells. Their roles in intercellular communication 
and usage potential in clinical applications such as 
diagnostic methods and drug delivery vehicles have 
been widely investigated [1, 2]. Extracellular vesicles of 
prokaryotic cells are called membrane vesicles. While 
membrane vesicles are secreted by both Gram-positive 
as well as Gram-negative bacterial cells, the term “outer-
membrane vesicles” (OMVs) is specifically used to refer to 

vesicles from Gram-negative bacteria that are enclosed 
naturally by an outer membrane.

OMVs from Gram-negative bacteria were first described 
in Escherichia coli in 1965. Since then, OMVs of all 
Gram-negative bacterial species identified to date have 
been determined, and are now considered a ubiquitous 
secretion process [3, 4]. Initially, OMVs were presumed to 
be merely lysed bacterial debris. However, their delicate 
production mechanism and function as a selective 
secretion process have since been proven [5]. OMVs of 
Neisseria meningitidis detected in the cerebrospinal fluid 
of an infant with meningococcus infection drew attention 
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to the role of OMVs in the pathogenesis of Gram-negative 
organism infections [6, 7]. However, general models 
of OMV biogenesis are still lacking and regulation and 
selective cargo mechanisms remain unknown despite 
decades of research in this area. A major challenge in 
research on OMVs is the difficulty of purifying true OMV 
from artifacts, which leads to low yields of OMVs from 
large bacterial culture volumes. However, bona fide 
OMVs are produced via an orchestrated process and play 
multifaceted roles in bacterial survival, and the clinical 
utility of OMVs as vaccines and drug delivery vehicles is 
actively investigated.

In this review, we discuss recent advances in our 
understanding of OMV biogenesis mechanisms as well 
as the roles of OMVs in bacterial infection pathogenesis 
and host immune responses. We also discuss application 
examples of OMVs.

STRUCTURE AND BIOGENESIS OF OMVS

OMVs are single-membrane bilayered spherical particles 
ranging from 20 to 300 nm in size. OMVs are derived from 
the cell envelope of Gram-negative bacteria [8] (Fig. 1, 2). 
A good understanding of the cell wall structure of Gram-
negative bacteria is therefore essential to understand 
the architecture of the OMVs. The cell envelope of 
Gram-negative bacteria consists of an outer membrane, 
a cytoplasmic membrane, and a periplasmic space. The 
outer membrane (OM) of Gram-negative bacteria is 
distinct from that of Gram-positive bacteria, in that it buds 
out and forms the OMV membrane. OM is asymmetrical, 
with the outer leaflet riched in lipopolysaccharide (LPS), 
and the inner leaflet primarily made up of phospholipids. 
The cytoplasmic membrane is composed of a phospholipid 
bilayer [9]. The transmembrane proteins of OM are 
referred to as outermembrane proteins (OMPs) and 
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Figure 1. This figure depicts cell wall envelope of the Gram-negative bacteria and biogenesis of Outer membrane vesicles (OMV). 
Gram-negative bacteria consists of two membrane. Outer leaflet of the outer membrane (OM) is composed of lipopolysaccharide 
(LPS). To stabilize membrane integrity, Braun's lipoprotein in the OM crosslinks OM layer and peptidoglycan (PG). Also Outer 
membrane protein A non-covalently binds with PG layer. The Tol-Pal complex which is consisted with cytoplasmic proteins, 
periplasmic protein, and outer membrane lipoprotein (peptidoglycan-associated lipoprotein) binds cell wall envelope together. 
OMV is generated from the OM by several mechanisms including reducing cell wall envelope crosslinks, LPS remodeling, and 
bilayer couple model by increasing OM fluidity. Periplasmic proteins including various virulence factors and cellular waste such as 
misfolded proteins are packaged into OMVs as cargos and secreted.
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serve as porins or structural roles. Outer membrane 
protein A (OmpA) contains a periplasmic peptidoglycan 
(PG) binding site [10]. The space between the outer and 
cytoplasmic membranes is called the periplasmic space 
and contains a thin PG layer and periplasmic proteins. 
The PG layer serves as a skeleton for bacterial cells and 
protects against osmotic and shear stresses. Periplasmic 
proteins are densely packed in the periplasmic space, 
which is more viscous than the cytoplasm. Various 
crosslinks are present to maintain the stability of the cell 
envelope. Braun’s lipoprotein (Lpp) in the OM is covalently 
crosslinked with PG, and staples the PG layers together 
[11]. OmpA non-covalently binds with diaminopimelic acid 
(DAP) in the PG layer [12]. The transmembrane of the 
Tol-Pal complex enables OM to encompass the periplasmic 
space and cytoplasmic membrane [12-14].

The OM should be free from crosslinks with PG, bulge 
outward to form budding vesicles, and finally detach to 
form OMVs. Several mechanisms have been proposed 
to explain OMV production and regulation; however, a 
definite mechanism still needs to be elucidated. Modulation 
of the envelope crosslink model is one of the earliest 
OMV biogenesis models proposed and has been widely 
investigated. Lpp and OmpA mutants in E. coli, Salmonella 
enterica, Vibrio cholera, and Pseudomonas aeruginosa 
were demonstrated to increase the fluidity of OM and lead 
to hypervesiculation [15, 16]. In addition, the weakening of 
interactions between PG layers called DAP-DAP crosslinks 
leads to an increase in Lpp-PG crosslinks and thereby 
results in a decrease in OMV production [17, 18]. Studies on 
the Lpp-independent OMVs production pathway have also 
been conducted. Porphyromonas gingivalis mutants lacking 
autolysin that cleaves PG amide bonds were found to lead 
to an increase in OMV production and thus motivated 
further studies on periplasmic accumulation [19]. Misfolded 
protein accumulation in the periplasmic space was also 
found to induce OMV production independent of Lpp 
crosslinks [18].

OMVs biogenesis based on alteration of the LPS content 
of the OM has also been reported in P. aeruginosa. This 
LPS remodeling process results in a selective type of 
anionic B-band LPS, which is detected in OMVs based on 
the mechanism of electronic charge repulsion [20, 21]. 
Further studies on the modulation of OM lipid content 
have been carried out using the LPS-binding molecule 
Pseudomonas quinolone signal (PQS). PQS constitutes 
a quorum sensing system of P. aeruginosa and serves 
as a bacterial intercellular communication system. PQS 
is secreted to the outside of the cell and subsequently 
engages with the outer leaflet of OM to cause an 
expansion and changes in curvature thus resulting in 
increased production of OMVs [22-24].

The bilayer couple model is based on a mechanism 
of phospholipid accumulation in the outer leaflet of 
the outer membrane [25]. The VacJ/Yrb ATP-binding 
cassette (ABC) is a phospholipid transporter that prevents 
phospholipid accumulation in the outer leaflet of the 
OM [9]. Mutants that lack the VacJ/Yrb ABC transport 
system were found to show increased phospholipid 
accumulation in the cell and thus increased OMV 
production in Haemophilus influenzae and V. cholerae 
[26]. Furthermore, the activity of the VacJ/Yrb system 
was also found to be regulated by the presence of certain 
conditions, such as an iron-limited or bile-salt-enriched 
environment. This suggests that OMV production is 
regulated by environmental nutrient conditions [26, 27].

FUNCTIONS OF OMVS IN BACTERIAL 
INFECTION PATHOGENESIS

1. Delivery of virulence factors and toxins
Bacteria secrete OMVs that are loaded with various 
types of molecules, such as enzymes, proteins, and 
even genomic materials, to be delivered to distant sites. 
Investigation of OMV cargo revealed an abundance of 
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Figure 2. Transmission electron microscope-images of purified outer membrane vesicles 
derived from clinical isolates of Pseudomonas aeruginosa with magnification of × 80,000.
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OMPs (OmpA, OmpC, and OmpF), periplasmic proteins, 
virulence factors, and nucleic acids. OMVs also carry 
proteins from various subcellular locations as well [28]. 
Accordingly, periplasmic proteins are more likely to be 
included in OMVs compared to proteins bound to the inner 
membrane.

The inclusion of toxins in OMVs plays a particularly 
significant role in bacterial infection pathogenesis. 
Bacteria can deliver virulence factors to distant sites 
via OMVs that protect them from degradation due to 
biochemical stress while avoiding cell-to-cell interactions 
[28, 29]. Enterotoxigenic E. coli (ETEC) produces several 
toxins, including heat-labile enterotoxin (LT) and cytolysin 
A (ClyA) [28, 30]. OMVs of ETEC deliver these toxins to 
mammalian cells and enhance their virulence by inducing 
oligomerization of toxins [31]. Leukotoxin and LPS that 
are tightly bound to the surface of OMVs also lead to 
more pronounced immunogenic effects on host cells 
than when presented alone [4, 32]. Cytotoxin necrotizing 
factor type 1 (CNF1) and Shiga toxin are found in OMVs of 
uropathogenic E. coli and E. coli O157:H7, respectively [33-
35]. V. cholerae is a well-known pathogen that releases 
cholera toxin (CT) and secretes virulence factors via OMVs 
[36]. P. aeruginosa OMVs carry multiple virulence factors 
that cause degradation and pore formation [20]. OMVs 
of P. aeruginosa were also shown to have bacteriolytic 
effects on both Gram-negative and Gram-positive bacteria 
[37]. Salmonella typhimurium translocates the virulence 
PhoP/PhoQ regulon into host cells via OMVs, and thereby 
attenuates virulence in mice [38].

OMVs also release adhesion molecules to increase the 
adherence of bacteria to host tissues [39]. For example, 
P. gingivalis OMVs include hemagglutinins and heat shock 
proteins that are deeply involved in host cell attachment 
and bacterial aggregation by causing dental plaque [40, 
41]. P. aeruginosa and Bacteroides fragilis OMVs contain 
aminopeptidase and hemagglutinin, respectively, and 
increase the adherence of bacteria to mammalian cells 
[42, 43]. However, OMVs containing adhesins may also act 
to compete with bacterial cells as well, since bacteria and 
OMVs use identical host-bacteria interaction mechanisms. 
For example, Helicobacter pylori OMVs were found to 
include less abundant adhesion molecules than the outer 
membrane [44].

2. Immunomodulatory activities
OMVs are internalized by host epithelial cells via direct 
fusion or diverse endocytosis mechanisms. OMVs of P. 
aeruginosa and Legionella pneumophila are internalized 
by the host cell through the actin remodeling process, 
which causes direct fusion and delivery of OMV cargo 
directly into the cytoplasm of the host cell [45, 46]. 
Clathrin- and caveola-mediated endocytosis pathways 

also participate in internalization, allowing large vesicles 
up to 80 - 120 nm to invade the host [47, 48]. Lipid 
rafts, which are microdomains in cell membranes rich in 
sphingolipids, mediate endocytosis and are responsible 
for the uptake of H. inflenzae, P. aeruginosa, and P. 
gingivalis OMVs [29, 42, 48, 49].

OMVs trigger an inflammatory response in epithelial 
cells following the invasion. Increased levels of pro-
inflammatory cytokines after processing of OMVs 
into host cell cultures have been observed in various 
pathogens as well. H. pylori OMVs showed dose-
dependent production of interleukin-8 (IL-8) in gastric 
epithelial cells [50]. Likewise, OMVs of P. aeruginosa 
and Klebsiella pneumoniae that induce IL-1β and IL-8 in 
human alveolar epithelial cells have been described [51, 
52]. OMVs that stimulate immune reactions have also 
been reported in mouse models. Acinetobacter baumannii 
OMVs were administered intratracheally to induce IL-1β 
and IL-6 cytokines in the lungs of mice [53].

The pro-inflammatory mechanism of OMV described 
above has been established based on the engagement of 
pathogen-associated molecular patterns (PAMPs) with 
host pattern recognition receptors (PRRs). PAMPs are 
highly conserved microbial determinants detected by host 
PRR, resulting in the induction of immune signaling. OMVs 
contain LPS, flagellin, peptidoglycan, lipoproteins, DNA, 
and RNA, which serve as PAMPs in the host, and activate 
PRR [54]. The signaling pathway of PRR differs between 
bacterial species depending on the components of the 
OMVs. E. coli OMVs induce Toll-like receptors 4 dependent 
IL-8 production [55]. Neisseria gonorrhoeae and H. pylori 
OMVs transduce signals in other PRRs such as nucleotide-
binding oligomerization domain-containing protein 1 
(NOD1) [56].

OMVs also exhibit immunosuppressive properties since 
inflammation induced by OMVs is not beneficial to 
bacteria. OMVs from P. gingivalis contain the cysteine 
proteinase gingipain, which degrades IL-8 [57]. In addition, 
OMVs of N. meningitidis induce the production of anti-
inflammatory cytokines, such as IL-4, IL-10, and IL-13. 
However, N. meningitidis OMVs also induce the production 
of pro-inflammatory cytokines IL-8, IL-1β, IL-6, and TNF, 
indicating that OMVs play a multifaceted role in both 
inflammation and immunosuppression [58]. Furthermore, 
OMVs of commensal bacteria in the gut are considered to 
promote the maturation of the immune system. B. fragilis 
releases capsular polysaccharides via their OMVs and 
results in enhanced activation of regulatory T cells and 
anti-inflammatory cytokine production, and prevention of 
experimental colitis [59].
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ROLES IN ANTIBIOTIC RESISTANCE

OMVs aid bacterial survival by hindering the activity of 
antibiotics. OMVs act as decoys that bind and absorb 
antimicrobial peptides or phages, and thereby function as 
physical barriers. Hence, antibiotic resistance is developed 
in bacteria. The addition of OMVs or hypervesiculating 
mutants of E. coli were found to result in the immediate 
development of resistance to the antimicrobial peptides 
polymyxin B, colistin, and phages [60]. In addition, the 
growth inhibitory effects of colistin and melittin on 
Pseudomoas syringae were found to be reversed by 
the addition of OMVs produced by the same organism. 
However, the protective effect of the vesicles on the 
organism was not observed against hydrophilic antibiotic 
streptomycin [61]. OMVs bind peptide antibiotics with high 
affinity, yet do not bind well to hydrophilic antibiotics [62, 
63]. β-lactamase producing organisms are considered 
serious threats especially in hematologic malignancy 
units and intensive care unit [64, 65]. OMVs of these 
β-lactamase producing organisms carry hydrolases and 
protect bacteria from antibiotics [66]. Also β-lactamase 
associated with OMVs protects not only producer bacteria 
but also standing non-resistant pathogenic bacteria 
[67]. For example, OMVs from β-lactam-resistant E. 
coli degrade β-lactam antibiotics in a dose-dependent 
manner and rescue β-lactam-susceptible E. coli and other 
bacterial species from β-lactam antibiotic-induced growth 
inhibition [68, 69]. Similar findings have been reported in 
amoxicillin-resistant Moraxella catarrhalis OMVs as well. 
Active β-lactamase from M. catarrhalis OMVs was found to 
promote the survival of H. influenzae and Streptococcus 
pneumoniae [70].

OMV-mediated genomic transfer between microbial 
communities is also a concern due to the high prevalence 
of antibiotic resistance even in healthy carriers [71]. OMVs 
of Acinetobacter spp. and E. coli O157:H7 that transfer 
double-stranded DNA to intra- and inter-species have 
been reported [72]. OMVs from A. baumannii are also 
capable of transferring the OXA-24 carbapenemase gene, 
leading to further dissemination of antibiotic resistance 
in bacteria [73]. Recent studies on K. pneumoniae OMVs 
in hypervirulent and multidrug-resistant strains have 
also demonstrated plasmid horizontal gene transfer [74]. 
Plasmid exchange via OMVs generates hybrid clones 
of hypervirulent strains showing a hypermucoid and 
multidrug-resistant phenotype [75].

Interestingly, antibiotic use increases the production 
of OMVs as well. Antibiotics, including ciprofloxacin, 
meropenem, fosfomycin, and polymyxin B, were found 
to induce the production of OMVs in E. coli [76]. In 
addition, a study on multidrug-resistant K. pneumoniae 
demonstrated that the use of carbapenems exacerbates 

the secretion of OMVs, which promotes the production of 
pro-inflammatory cytokines [77].

CURRENT APPLICATION OF OMVS

OMVs are not capable of self-replication; however, they 
mimic the immunogenic properties of the producing 
bacteria, making them an attractive vaccine platform. 
OMVs also have a size advantage, which enables 
their entry into lymph vessels and uptake by antigen-
presenting cells (APCs), in addition to strong adjuvant 
properties that stimulate both innate and adaptive 
immune responses, and high stability against biochemical 
stress [56, 78].

A successful OMV-based vaccine developed to date 
is the meningitis serogroup B vaccine BEXSERO® 
(GlaxoSmithKline, London, UK), which was approved 
by the Food and Drug Administration in 2016. Unlike 
other N. meningitidis serogroups that already have 
successful conjugate vaccines on the market, serogroup 
B capsules were not feasible since this polysaccharide 
was homologous to human brain tissue molecules [79]. 
To overcome this obstacle, researchers have focused 
on the outer membrane protein porin A (PorA), which 
is the main immunogenic molecule secreted by OMVs 
in N. meningitidis. Although PorA is highly variable 
between strains, OMVs derived from bioengineered strains 
expressing multiple PorA variants have been successfully 
developed [80]. OMV-based vaccines were also 
investigated for use against other pathogens, including V. 
cholerae, S. typhimurium, Burkholderia species, H. pylori, 
and Bordetella pertussis, yet none have progressed to 
clinical trials. B. pertussis acellular vaccine development 
was recently hampered by a reactogenic problem that 
prevents the effective reduction of pertussis infections. 
OMV-based vaccine from B. pertussis may provide a viable 
alternative to this end, due to the presence of many 
virulence factors in OMV of B. pertussis.

Besides bacterial vaccines, studies on the bioengineering of 
OMVs as cancer agents have also been carried out. OMVs 
can be engineered to express cancer-specific epitopes or 
to carry small non-coding RNAs [81]. The ability of OMVs 
to rapidly display antigens may lead to the development 
of personalized cancer vaccines [82]. Furthermore, OMVs 
induce a durable antitumor immune response and inhibit 
tumor growth in multiple tumor models by producing the 
antitumor cytokines and interferon-γ [83]. Their potential 
as drug delivery systems is also being investigated. 
Finally, doxorubicin-loaded K. pneumoniae OMVs showed 
tumor growth inhibition with favorable tolerability and 
pharmacokinetic profiles, thus showing great potential for 
tumor chemoimmunotherapy [84].
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CONCLUSION

In summary, we discussed OMVs’ basic structure, 
suggested biogenesis mechanisms, and their functions 
and role in pathogenesis and antimicrobial resistance. 
To our most recent knowledge, the OMVs seem to serve 
a significant role in bacterial cells and bacterium-host 
interaction. However, current research on the therapeutic 
applications of OMV, such as vaccines or drug-
delivery platforms, is still under progress. With deeper 
understanding of OMVs’ biogenesis and selective cargo 
mechanisms, the value of OMVs as a future therapeutic 
tool may become revealed.
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