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ABSTRACT

Purpose: We aimed to investigate epidermal lipid profiles and their association with skin 
microbiome compositions in children with atopic dermatitis (AD).
Methods: Specimens were obtained by skin tape stripping from 27 children with AD and 18 
healthy subjects matched for age and sex. Proteins and lipids of stratum corneum samples 
from nonlesional and lesional skin of AD patients and normal subjects were quantified by 
liquid chromatography tandem mass spectrometry. Skin microbiome profiles were analyzed 
using bacterial 16S rRNA sequencing.
Results: Ceramides with nonhydroxy fatty acids (FAs) and C18 sphingosine as their sphingoid 
base (C18-NS-CERs) N-acylated with C16, C18 and C22 FAs, sphingomyelin (SM) N-acylated 
with C18 FAs, and lysophosphatidylcholine (LPC) with C16 FAs were increased in AD lesional 
skin compared to those in AD nonlesional skin and that of control subjects (all P < 0.01). SMs 
N-acylated with C16 FAs were increased in AD lesional skin compared to control subjects (P 
< 0.05). The ratio of NS-CERs with long-chain fatty acids (LCFAs) to short-chain fatty acids 
(SCFAs) (C24-32:C14-22), the ratio of LPC with LCFAs to SCFAs (C24-30:C16-22) as well 
as the ratio of total esterified omega-hydroxy ceramides to total NS-CERs were negatively 
correlated with transepidermal water loss (rho coefficients = −0.738, −0.528, and −0.489, 
respectively; all P < 0.001). The proportions of Firmicutes and Staphylococcus were positively 
correlated to SCFAs including NS ceramides (C14-22), SMs (C17-18), and LPCs (C16), 
while the proportions of Actinobacteria, Proteobacteria, Bacteroidetes, Corynebacterium, 
Enhydrobacteria, and Micrococcus were negatively correlated to these SCFAs.
Conclusions: Our results suggest that pediatric AD skin shows aberrant lipid profiles, and these 
alterations are associated with skin microbial dysbiosis and cutaneous barrier dysfunction.
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INTRODUCTION

The stratum corneum (SC) is the outermost part of the skin and acts mainly as a barrier 
by preventing the entry of microbes, allergens, and irritants into the human body.1,2 The 
structure of the SC consists of corneocytes and intercellular lipid matrix that form a “brick 
and mortar” arrangement.1 The lipid matrix consists of ceramides (CERs), free fatty acids 
(FFAs), cholesterol, and triglycerides released from the lamellar bodies of keratinocytes.3-5 
Diverse microbial communities colonize in the human skin and interact with keratinocytes 
and immune cells to maintain skin homeostasis.2,6 Skin barrier dysfunction caused by defects 
in epidermal structure is crucial in the pathogenesis of atopic dermatitis (AD) together with 
immune dysregulation and skin microbial dysbiosis.7

AD affects up to 20% of children, and approximately 60% of AD cases begin during the first 
two years of life.8,9 It has been reported that the pathophysiology of AD in children is different 
from that of AD in adults.10,11 Although both pediatric and adult AD skin shows Th2 immunity, 
adult AD shows more prominent epidermal differentiation complex defects and lesional 
predilection for the hands and face.10,11 Recently, new insights into the pathophysiology of AD 
have emphasized the crucial roles of abnormalities in the epidermal lipid layer as well as skin 
microbial dysbiosis in adults.12 AD skin showed dysbiosis such as an increased proportion 
of Staphylococcus and reduced proportions of Streptococcus, Acinetobacter, Corynebacterium, and 
Propionibacterium during AD flares, resulting in a loss of bacterial diversity.12-14 AD skin also 
displayed an altered epidermal lipid composition such as accumulation of short-chain 
CERs and reduction in very-long-chain CERs, leading to an aberrant lipid organization in 
the extracellular layers and increased transepidermal water loss (TEWL).15,16 A recent study 
demonstrated that the levels of long-chain CERs were lower in the skin of AD patients 
colonized with Staphylococcus aureus than in those without, suggesting the association of 
changes in lipid composition with S. aureus colonization and barrier dysfunction.17

Previously published papers focused on profiles of lipids and microbiomes in adult AD 
patients, and demonstrated significant differences in lipid profiles and microbiome 
composition between young children and adults.17-20 Additionally, children with AD showed 
higher levels of interleukin (IL)-17A, IL-19, and LL37 in lesional and nonlesional skin than 
adults with AD, suggesting that the skin phenotype of pediatric AD differs immunologically 
from that of adult AD.21 Moreover, the abundance of specific bacteria such as Propionibacteria 
and Corynebacteria was correlated with epidermal lipid composition in German patients with 
AD.18 Therefore, we hypothesized that epidermal lipid profiles and skin microbiomes may 
vary between children and adults as well as among races. In the present study, we aimed to 
investigate epidermal lipid profiles and their association with skin microbiome compositions 
in Korean children with AD.

MATERIALS AND METHODS

Study subjects
Skin samples were obtained using tape stripping from 27 children with AD and 18 healthy 
subjects matched for age and sex. The diagnosis of AD was based on the criteria defined by 
Hanifin and Rajka.22 Parents were asked to respond to questionnaires to obtain demographic 
data, including a personal history of food allergy, allergic rhinitis, or asthma. The healthy 
control group was comprised of subjects with no personal or family history of atopy and 
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skin diseases. AD patients were assessed by allergists using the SCORing Atopic Dermatitis 
(SCORAD), ranging from 0 to 103.23 Patients had not received topical corticosteroids, topical 
calcineurin inhibitors, topical or oral antibiotics for at least 1 week prior to enrollment.24 
Patients were not treated with systemic immunosuppressive medications for more than 1 
month prior to enrollment. TEWL was measured on the volar surface of the right forearm 
by a Tewameter TM300 (Courage & Khazaka, Köln, Germany) in a test room with relative 
humidity of 40%–50% and temperature of 20°C–22°C. This study was approved by the 
Institutional Review Boards (IRBs) at Samsung Medical Center, Pusan National University 
Hospital, and Inje University-Sanggye Paik Hospital (IRB No. SMC-2018-03-041, H-1808-
021-070, and SGPAIK 2018-06-005-001, respectively), and written informed consent was 
obtained from all parents and/or patients prior to participation in this study.

Laboratory tests
Blood samples were collected at the initial visit. The specific IgE antibodies to 
Dermatophagoides pteronyssinus, D. farinae, egg white, cow milk, wheat, soy, and peanut were 
measured with the ImmunoCAP system (ThermoFisher Scientific Inc., Waltham, MA, USA), 
and concentrations ≥ 0.35 kU/L determined sensitization.

Collection of skin tape stripping (STS) samples
A total of 4 consecutive D-Squame® tape discs (22-mm diameter, CuDerm, Dallas, TX, USA) 
were applied to the volar surface of the forearm as described previously.25 STS samples were 
collected from lesional and nonlesional areas of the AD patients as well as from the skin of 
healthy control subjects. Upon application of the first tape disc, 4 marks were placed around the 
disc with a pen, so that subsequent discs could be applied to the same location. Each tape disc 
was placed in a separate well of 6-well plates allocated for the sample collection. Tape strips 3 
and 4 were designated for lipid analysis and stored at −80°C until the lipids were extracted.

Tape strip processing for lipid extraction and protein estimation
Samples from tape strips 3 and 4 were removed by scraping the tape strips in 2 mL of a water-
methanol (9:1, v/v) mixture in a petri dish with a rubber cell scraper. Tape strip processing 
was performed according to the previously published protocol.19 Floating SC particles were 
transferred into 8-mL glass screw-cap tubes and then subjected to a modified Bligh and Dyer 
extraction.19,26 A mixture of lipid internal standards was added during the initial step of lipid 
extraction to ensure absolute quantitation of the targeted lipid subclasses. In brief, extraction 
was performed overnight by adding 0.5 mL methanol and 1 mL chloroform; then, phase 
separation was achieved by vortexing and centrifugation after adding 1.5 mL chloroform and 
1.35 mL 2% formic acid. The upper water-methanol phase was carefully removed, and the 
bottom chloroform phase was collected with minimal disturbance to the protein interphase 
and evaporated by a stream of nitrogen. Lipids were dissolved in 0.2 mL methanol for 
liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) 
analyses. The residual protein denaturates/pellets were dried by a stream of nitrogen and 
hydrolyzed with 0.5 mL of 1N sodium hydroxide for 3 hours at 55°C.26,27

Tubes were periodically vortexed. After hydrolysis, the sodium hydroxide was neutralized 
with 0.5 mL of 21N hydrochloric acid, the hydrolyzed proteins were centrifuged at 2,000 g for 
5 minutes, and protein concentrations were determined using a detergent compatible (DC) 
protein assay kit (Bio-Rad; Hercules, CA, USA) with bovine serum albumin (BSA) as a protein 
standard. It was determined that hydrolysis of BSA is not needed to determine concentrations 
by DC protein assay, as both nonhydrolyzed and hydrolyzed BSA provide the same readings.
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Lipid analyses
CERs, lysophosphatidylcholines (LPCs), and sphingomyelins (SMs) from human skin were 
identified and quantified using a targeted LC-ESI-MS/MS approach on a Sciex 6500 QTRAP mass 
spectrometer coupled with a Shimadzu Nexera X2 UHPLC system, as described previously.19

Genomic DNA extraction and bacterial 16S rRNA sequencing
Skin swab samples were obtained from the nonlesional and lesional volar forearm skin of 
AD patients and the normal skin of healthy control subjects. The whole bacterial genomic 
DNA was extracted using a Maxwell® RSC PureFood GMO and Authentication Kit (Promega, 
Madison, WI, USA) according to the manufacture’s protocol. The hypervariable regions V3-
V4 of the bacterial 16S rRNA gene were amplified from skin swab samples and sequenced on 
the Illumina MiSeq platform (Illumina, San Diego, CA, USA). The 16S rRNA gene sequence 
data were analyzed using the Quantitative Insights Into Microbial Ecology (QIIME) software 
package (v1.9.1).28 Using qualified sequences (Phred ≥ Q20), the operational taxonomic 
units were identified and quantified using the open reference method that maps sequences 
with 97% identity to known sequences in the Greengenes database (v13_8) using UCLUST 
alignment algorithms and the EzBioCloud database (http://www.ezbiocloud.net).29-31

Statistical analyses
Data were analyzed using SPSS for Windows (version 27.0; SPSS, Armonk, NY, USA). 
Categorical data are presented as numbers and percentages. Continuous data are presented 
as arithmetic means ± standard deviations (SD). Categorical variables between groups were 
compared using the chi-square test or Fisher’s exact test. Data were analyzed by ANOVA with 
post-hoc tests to compare the nonlesional and lesional skin of children with AD with the skin 
of controls. Statistical differences between groups were determined using an unpaired t-test 
or Mann-Whitney U test, depending on the distribution of the data. The correlation between 
the two variables was calculated using Spearman’s correlation. Bonferroni’s correction was 
applied to account for multiple comparisons. A P < 0.05 was considered significant.

RESULTS

Aberrant SC lipid profiles in the skin of children with AD
We collected skin samples from 27 children with AD (Mean± SD) (8.3 ± 4.2 yr) and 18 healthy 
children (6.8 ± 4.1 yr) (Table). The mean (±SD) SCORAD score of the AD patients was 28.9 
± 15.1. There were no significant differences in sex and family history of allergic diseases 
between the AD and control groups (Table). The amounts of total CERs and esterified 
omega-hydroxy ceramides (EOS-CERs) were lower in the AD lesional skin than in AD 
nonlesional and healthy control skin (Fig. 1A, all P<0.01). In contrast, the amount of SMs was 
higher in the AD lesional than in AD nonlesional and healthy skin (Fig. 1A, P<0.01). However, 
no difference was observed in the amounts of CERs with nonhydroxy fatty acids (FAs) with 
C18 sphingosine as their sphingoid base (C18-NS-CERs) and LPCs between nonlesional and 
lesional skin in AD patients (Fig. 1A).

Lipid molecular species with short-chain fatty acids (SCFAs, C16-C18) of C18-NS-CERs, 
SMs, and LPCs were increased in AD skin, whereas lipid species with long-chain fatty acids 
(LCFAs) were globally decreased (Fig. 1B-D). C18-NS-CER N-acylated with C16, C18 and C22 
FAs (Fig. 1B, P<0.01), SM N-acylated with C18 FA (Fig. 1C, P<0.01), and LPCs with C16 FAs 
(Fig. 1D, P<0.01) were increased in the AD lesional skin compared to those in nonlesional 

189

Skin Lipids and Microbiome in Pediatric Atopic Dermatitis

https://doi.org/10.4168/aair.2023.15.2.186https://e-aair.org

http://www.ezbiocloud.net


skin of AD patients and control subjects. SM N-acylated with C16 FA was greater in AD 
lesional skin than in control subjects (P<0.05). Additionally, C18-NS-CERs with C16 FA 
(P<0.05), SM with C16 FA (P<0.01), and LPCs with C18 FAs (P<0.01) were increased in the 
AD nonlesional skin compared to the skin of control subjects. On the other hand, LCFAs 
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Table. The baseline clinical characteristics of subjects (N = 45)
Variables Control (n = 18) AD (n = 27) P value
Age (yr) 6.8 ± 4.1* 8.3 ± 4.2* 0.208
Male (%) 9 (50.0) 16 (59.3) 0.540
Comorbid conditions

Food allergy 0 (0) 10 (37.0) 0.003
Allergic rhinitis 0 (0) 9 (33.3) 0.007
Asthma 0 (0) 4 (14.8) 0.138

Allergic sensitization (%) 0 (0) 16 (59.3) < 0.001
Family history of allergic diseases (%) 12 (66.7) 20 (74.1) 0.591
SCORAD NA 28.9 ± 15.1
TEWL (g/m2·h)

Nonlesional skin 16.6 ± 4.0 31.8 ± 11.3 < 0.001
Lesional skin NA 51.1 ± 13.8

pH
Nonlesional skin 4.5 ± 0.3 4.6 ± 0.2 0.138
Lesional skin NA 4.8 ± 0.4

Corneometer (A.U.)
Nonlesional 37.8 ± 10.1 32.0 ± 10.1 0.077
Lesional NA 11.9 ± 9.8

AD, atopic dermatitis; SCORAD, scoring atopic dermatitis; TEWL, transepidermal water loss; NA, not available.
*Data are presented as mean ± standard deviation.

100

101

102

105

104

103

pm
ol

/m
g 

pt
ot

ie
n

A
Total CERs

†

† †

† †

†

EOS-CERs C18-NS-CERs SMs LPCs

Control
AD (non-lesion)
AD (lesion)

Control
AD (non-lesion)
AD (lesion)

0

60

40

20

%
 o

f C
18

-N
S-

CE
R

B
14:0

-C
ER

16:0
-C

ER

18:0
-C

ER

20
:0

-C
ER

22
:1-

CER

22
:0

-C
ER

24
:1-

CER

24
:0

-C
ER

26
:0

-C
ER

28
:0

-C
ER

30
:0

-C
ER

32
:0

-C
ER

†
†

†

†

†
†

†
†

†
†

†
†

*

*

Control
AD (non-lesion)
AD (lesion)

0

60

80

40

20%
 o

f t
ot

al
 L

PC

D
16:0

-LP
C

18:0
-LP

C

18:1-
LP

C

18:2-
LP

C

20
:0

-LP
C

20
:4-LP

C

22
:0

-LP
C

24
:0

-LP
C

26
:0

-LP
C

28
:0

-LP
C

30
:0

-LP
C

†
†

†
†

*
*

†
††

†

†

†
†

0

40

20

%
 o

f t
ot

al
 S

M

C
16:0

-SM

17:
0-SM

18:0
-SM

20
:0

-SM

22
:0

-SM

24
:1-

SM

24
:0

-SM

26
:0

-SM

28
:0

-SM

Control
AD (non-lesion)
AD (lesion)

†
†

†
††

†

† †
†

†

†

*

*

Fig. 1. The lipid composition (A) and proportion of ceramides with C18 sphingosine as their sphingoid base and nonhydroxy fatty acids (B), sphingomyelins (C), 
and lysophosphatidylcholine (D) in the skin of normal subjects and children with atopic dermatitis. The data are shown as the median and interquartile range. 
AD, atopic dermatitis; CER, ceramide; EOS-CER, ester-linked omega-hydroxy ceramide, C18-NS-CER, ceramide with C18 sphingosine as its sphingoid base and 
nonhydroxy fatty acids; SM, sphingomyelin; LPC, lysophosphatidylcholine. 
*P < 0.05 and †P < 0.01 by one-way ANOVA with the Tukey-Kramer test. Bonferroni’s correction was applied to account for multiple comparisons.



including C18-NS-CERs (with C26-30 FAs, Fig. 1B, P<0.01) and LPCs (with C24 and C28 FAs, 
Fig. 1C, P<0.01) were decreased in the nonlesional and lesional skin of AD patients compared 
to the skin of control subjects. The AD lesional skin also showed a lower proportion of SMs 
with C20-22 and C26 FAs than the skin of healthy children (P<0.01). Additionally, C18-NS-
CER with C26 FA (P<0.05), SMs with C22 and C26 FAs (P<0.01), and LPCs with C24 FAs 
(P<0.01) were decreased in the AD nonlesional skin compared to the skin of control subjects. 
However, SM with C24:1 FA was increased in the AD lesional and nonlesional skin compared 
to the skin of control subjects (Fig. 1C, P<0.05).

An altered lipid profile is associated with increased TEWL in AD skin
The correlations between TEWL and SC lipids such as C18-NS-CERs, EOS-CERs, SMs, and 
LPCs were analyzed in children. As a result, the ratios of NS-CER with LCFAs to SCFAs (C24-
32:C14-22) and LPC with LCFAs to SCFAs (C24-C30:C16-C22), as well as the ratio of total 
EOS-CER to total NS-CER were negatively correlated with TEWL (rho coefficients= -0.738, 
-0.528, and -0.489, respectively; all P<0.001) (Fig. 2). However, there was no correlation 
between the ratio of SMs with LCFAs to SCFAs (C24-C28:C16-C22) and TEWL (rho 
coefficients= -0.147 and P=0.228).
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Microbiome profiling in the skin from AD patients and healthy controls
In the skin of AD patients and healthy controls, 6 prevalent bacterial phyla, Firmicutes, 
Actinobacteria, Proteobacteria, Bacteroidetes, Cyanobacteria, and Fusobacteria, made 
up more than 98% of each subject’s microbiota (Fig. 3A). The lesional skin of AD patients 
displayed a significantly increased abundance of Firmicutes and decreased abundance of 
Actinobacteria and Proteobacteria at the phylum level compared to the nonlesional skin of 
AD patients and control subjects (Fig. 3A, all P<0.01). The AD lesional skin also showed a 
lower Bacteroidetes abundance than the skin of control subjects (Fig. 3A, P<0.05). At the 
genus level, a higher Staphylococcus abundance (P<0.01) and a lower Corynebacterium abundance 
(P<0.05) were found in the AD lesional skin compared to the nonlesional skin of AD patients 
and to that of control subjects (Fig. 3B). Additionally, the lesional skin of AD patients showed 
a decreased abundance of Micrococcus compared to the skin of control subjects (Fig. 3B, 
P<0.05). However, no differences were found in the relative abundance of bacterial phyla and 
genera between AD nonlesional skin and that of the control subjects.
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Fig. 3. Skin microbiome composition at the phylum (A) and genus (B) levels in nonlesional and lesional skin of atopic dermatitis patients and the skin of healthy 
subjects. 
AD, atopic dermatitis; C, control subjects; N, non-lesional skin of atopic dermatitis patients; L, lesional skin of atopic dermatitis patients. Lines within boxes 
display median values, and bars represent 10th and 90th percentiles. 
*P < 0.05 and †P < 0.01 by one-way ANOVA with the Tukey-Kramer test.
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Skin dysbiosis is associated with aberrant skin lipid compositions in 
pediatric AD skin
At the phylum level, the proportion of Firmicutes was positively correlated with C18-NS-
CERs containing saturated SCFAs (C14-C22), with SMs with SCFAs (C17-C18), and with 
LPCs containing SCFAs (C16), while the proportions of Actinobacteria, Proteobacteria, and 
Bacteroidetes were negatively correlated with these groups of lipids (Fig. 4). In contrast, 
the relative abundance of Firmicutes was negatively associated with NS-CERs containing 
saturated LCFAs (C26-C32), with SMs containing C20, C22 and C26 FAs, and with LPCs 
containing C20, C24 and C28 FAs, while the relative abundance of Actinobacteria, 
Proteobacteria, and Bacteroidetes was positively associated with all those lipids that contain 
long-chain FAs. The relative abundance of Fusobacteria showed a positive correlation with 
C18-NS-CERs containing LCFAs (C26 and C32) and SMs containing C22 FAs, and a negative 
correlation with C18-NS-CERs containing SCFAs (C14-C22), and with SMs containing C17 
FAs. Similarly, at the genus level, the proportion of Staphylococcus was positively correlated 
with C18-NS-CERs containing saturated SCFAs (C14-C22), SMs with C17-C18 FAs, 
while the proportions of Corynebacterium, Enhydrobacteria, Micrococcus, and Bacteroides were 
negatively correlated with these group of lipids containing SCFAs. The relative abundance 
of Staphylococcus showed a negative correlation with C18-NS-CERs containing C26-C32 FAs, 
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Fig. 3. (Continued) Skin microbiome composition at the phylum (A) and genus (B) levels in nonlesional and lesional skin of atopic dermatitis patients and the 
skin of healthy subjects. 
AD, atopic dermatitis; C, control subjects; N, non-lesional skin of atopic dermatitis patients; L, lesional skin of atopic dermatitis patients. Lines within boxes 
display median values, and bars represent 10th and 90th percentiles. 
*P < 0.05 and †P < 0.01 by one-way ANOVA with the Tukey-Kramer test.
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SMs containing C20-C22 FAs, and LPCs containing C20, C24, and C28 FAs. Additionally, 
the relative abundance of Streptococcus showed a positive correlation with LPCs containing 
C20 FAs, and a negative correlation with C18-NS-CERs containing C14 FAs. There was also 
a negative correlation between LPCs with C16 FAs and the proportions of Corynebacterium, 
Enhydrobacteria, and Micrococcus (Fig. 4).

C18-NS-CER with monounsaturated SCFAs (C22:1) showed a negative correlation with the 
abundance of Firmicutes and Staphylococcus and a positive correlation with the abundance of 
Actinobacteria, Proteobacteria, Bacteroidetes, Corynebacterium, Enhydrobacteria, Micrococcus, 
and Bacteroides. SM with monounsaturated FAs (C24:1) had a positive relationship with the 
abundance of Firmicutes and Staphylococcus and a negative relationship with the abundance of 
the phyla Actinobacteria, Proteobacteria, and Bacteroidetes, and the genera Corynebacterium, 
Enhydrobacter, and Bacteroides. LPCs with monounsaturated SCFA (C18:1) and polyunsaturated 
arachidonic acid (C20:4) showed a positive correlation with Firmicutes, while LPCs with 
monounsaturated FAs (C18:1) revealed a negative correlation with the abundance of the phyla 
Actinobacteria, Proteobacteria, and Bacteroidetes.

SM with very-long-chain C28:0 FA displayed a positive association with the proportions 
of Firmicutes and Staphylococcus and a negative association with the proportions of 
Actinobacteria, Proteobacteria, and Bacteroidetes, and the genera Corynebacterium, 
Enhydrobacter, Micrococcus, and Bacteroides. We also found that Firmicutes at the phylum level 
was negatively correlated with the ratio of C18-NS-CER with LCFAs (C24-C32) to C18-NS-
CER with SCFAs (C14-C22), with the ratio of total EOS-CERs to total NS-CERs, and with the 
ratio of long-chain to short-chain LPCs (C24-C32:C16-C22 FAs). Similarly, the abundance of 
Staphylococcus at the genus level was negatively correlated with the ratio of C18-NS-CER with 
LCFAs (C24-C32) to C18-NS-CER with SCFAs (C14-C22), and with the ratio of long-chain to 
short-chain LPCs (C24-C32:C16-C22 FAs).

DISCUSSION

SC lipids play an important role as a part of the epidermal barrier because the lipid envelope 
acts as a hydrophobic impermeable layer of matured corneocytes to prevent loss of water 
and natural moisturizing factors.32 However, few studies have been conducted to investigate 
epidermal lipid compositions in AD children. In the present study, nonlesional and lesional 
SCs of pediatric AD patients displayed increased proportions of NS CERs, LPCs, and 
SMs with SCFAs as well as a simultaneous reduction in the proportion of corresponding 
long-chain species compared to the SCs of normal children. These changes in SCFAs and 
LCFAs were more prominent in the lesional skin than in nonlesional areas of AD patients. 
Furthermore, an increased proportion of SC lipids with SCFAs was associated with epidermal 
barrier dysfunction and skin microbial dysbiosis. In addition to the observations of Baurecht 
et al.,18 our findings implicate that aberrant lipid profiles are common pathophysiology of AD 
regardless of age and race. To our knowledge, the present study provides the first pediatric 
data on skin lipid profiles, microbiome, TEWL, and their relationships using an STS method, 
which is a non-invasive and reliable technique for obtaining human SC samples.19,33,34

It has been established that the total amount of SC CERs is reduced in the lesional and 
nonlesional skin of pediatric and adult AD patients compared to the skin of healthy subjects.35 
In that study, the levels of long-chain CERs (> 42 carbon atoms) were reduced in AD patients 
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aged 4-40 years along with an increase in the levels of short-chain CERs (< 42 carbon atoms). 
Unfortunately, examining the total number of carbon atoms of CERs alone has limitations 
in evaluating the lengths and degrees of unsaturation in FA chains.35 In contrast, our study 
demonstrated aberrant SC lipid profiles with carbon chain lengths of FA for the first time in 
children with AD. In another study involving pediatric AD patients, the amounts of specific 
CER subclasses, such as CERs with sphingosine N-acylated with α-hydroxy FA (AS-CERs) and 
NS-CERs, were elevated in Chinese children.36 In our study, there were no differences in the 
amounts of AS-CERs and NS-CERs between the AD and control groups (data not shown), 
while the levels of total CERs and EOS-CERs were decreased in AD patients. The reason 
for this discrepancy might be the differences in characteristics of the study populations, 
including race, age, and AD severity. Subjects in the Chinese study were younger and showed 
higher SCORAD scores compared to those in the present study. Also, the concentration of 
skin EOS-CERs showed a tendency to increase in AD patients compared to healthy controls 
in that Chinese study, as opposed to our findings and the results from a previous study 
involving Caucasian adult AD patients.16 A detailed evaluation of total serum IgE levels and 
allergic sensitization was not performed in the present study. Further research is needed on 
SC lipid profiles in AD according to patient characteristics including extrinsic or intrinsic AD.

As shown in the control group of the present study, the most prevalent SC CERs contained 
long saturated FA hydrocarbon chains between C24-26, and the length of FA chains affected 
skin permeability.37 In contrast, the chain length of FAs in phospholipids such as SMs and 
LPCs as well as CERs was reduced in the lesional and nonlesional skin of children with 
AD, similar to adult patients.18,19 The effects of FA chain length of SC lipids on membrane 
architecture and permeability indicate the importance of the disrupted skin barriers 
associated with the lipid layer abnormalities in the pathophysiology of AD. Unlike CERs with 
LCFAs, CERs with SCFAs (C16-18) do not provide effective interaction with other lipid chains 
and barrier functions despite the same polar head groups and hydrogen bonding abilities.1 
We also found that the levels of monounsaturated or polyunsaturated lipids were increased 
in AD skin regardless of chain length, in accordance with the results of a previous study.38 
Interestingly, in the present study, unsaturated FAs showed a similar trend to SCFAs in terms 
of the association between SC lipids and microbiomes. This supports the finding that an 
increased degree of unsaturation leads to skin barrier dysfunction by lowering the packing 
density in the lipid organization.38

It has been reported that Th2 immunity is responsible for altered epidermal lipid profiles, 
which include decreased levels of FFAs and EOS-CERs and increased levels of unsaturated 
FFAs.15,16 Our previous study showed that Th2 immune activation downregulated the 
expression of FA elongases 3 and 6 (ELOVL3 and ELOVL6), leading to an increased 
proportion of short-chain species in epidermal lipid classes with a decrease in the 
proportion of long-chain species in AD skin.19 In that study, signal transducer and activator 
of transcription 6 (STAT6) silencing prevented IL-4/IL-13–driven changes in human 
keratinocytes, indicating that Th2 cytokines inhibited ELOVL3 and ELOVL6 expression in a 
STAT6-dependent way.19 Th2 cytokines also decreased the mRNA levels of elongase 1, acid-
sphingomyelinase, and β-glucocerebrosidase, which were involved in the synthesis of very-
long-chain FFAs and CERs.39 Th2 immunity and subsequent changes in elongases are also 
postulated as the cause of altered skin lipids in our pediatric AD patients.

It has been suggested that commensal bacteria such as S. epidermidis and S. hominis can prevent 
cutaneous dysbiosis by inhibiting S. aureus colonization, which is a major risk factor for 
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skin microbial dysbiosis.40,41 Skin colonization with commensal Staphylococcus during early 
infancy has also been reported to prevent AD development at 12 months of age.42 In recent 
studies in Germany, the levels of long-chain unsaturated FFAs in CERs were associated with 
increases in lipophilic Propionibacteria and Corynebacterium in the skin of adult AD patients.18,24 
Additionally, FLG-deficient subjects showed decreased abundance of Proteobacteria and the 
genera Acinetobacter, Enhydrobacter, and Microvirgula and increased proportions of Firmicutes, 
Propionibacterium, and Staphylococcus.18 Similarly, our study showed a positive association 
of FA chain lengths of SC CERs and LPCs with the genus Corynebacterium and the phylum 
Proteobacteria as well as a negative association with the genus Staphylococcus and the phylum 
Firmicutes, supporting the role of SC lipids in these microbes, or vice versa. We also observed 
a positive correlation of FA chain lengths of SC CERs and LPCs with the phyla Actinobacteria, 
Bacteroidetes, and Fusobacteria and the genera Streptococcus, Enhydrobacter, Micrococcus, and 
Bacteroides. Of note, recent studies demonstrated the bactericidal activity of skin lipids, 
including sphingoid bases and FAs, against specific bacterial compositions as a part of innate 
immunity.43,44 For example, short-chain C6-CERs exhibited antibacterial activity against 
Neisseria meningitidis and N. gonorrhoeae, while they were inactive against Escherichia coli and S. 
aureus.44 This indicates that chain length, type of hydroxylation, and saturation of SC lipids 
contribute to the predominance of specific microbes in the skin. Conversely, skin microbial 
dysbiosis can result in aberrant lipid profiles in AD skin. It has been reported that S. aureus 
lipases support the penetration of S. aureus into hair follicles, but the lipases do not alter FA 
chain length.45 However, S. aureus colonization in AD skin can lead to Th2 polarization and 
subsequent epidermal lipid abnormalities by inhibiting elongases.5,12,46 Therefore, these 
findings indicate that epidermal lipid alterations are associated with microbial dysbiosis in 
children with AD, as in adults with AD.

In conclusion, AD skin in children, like adults, shows aberrant lipid profiles including an 
increase in SCFA-containing species of C18-NS-CERs, SMs, and LPCs along with a decrease 
in the proportion of corresponding long-chain species, and these alterations are associated 
with skin microbial dysbiosis and cutaneous barrier dysfunction. Children with AD may 
derive clinical benefits from future treatment options targeting aberrant lipid profiles or 
microbial imbalances, although further longitudinal cohort studies are needed to establish a 
causal relationship.
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