www.nature.com/leu

LETTER

MYELODYSPLASTIC NEOPLASM

Leukemia

W) Check for updates

Risk prediction in MDS: independent validation of the IPSS-M—

ready for routine?

Constance Baer@®'*

Uwe Platzbecker ®?, Katharina S. Gotze®, Wolfgang Kern

© The Author(s) 2023

™ Sandra Huber'*, Stephan Hutter®', Manja Meggendorfer', Niroshan Nadarajah’, Wencke Walter@®",
!, Torsten Haferlach', Gregor Hoermann' and Claudia Haferlach

1
]

Leukemia (2023) 37:938-941; https://doi.org/10.1038/541375-023-01831-1

Myelodysplastic neoplasms (MDS) are clonal disorders of hemato-
poietic cells characterized by peripheral cytopenias, morphologic
dysplasia, ineffective hematopoiesis and risk of leukemic transfor-
mation (LT) [1, 2]. Biology and clinical outcome within MDS are
extremely heterogeneous, making individual risk prediction key for
management and therapy decision. Prognostic scoring systems are
used for risk prediction in MDS, and the current Revised-
International Prognostic Scoring System (IPSS-R) is based on clinical
variables and cytogenetic aberrations [3]. Next generation sequen-
cing (NGS) identified recurrently mutated genes, and molecular data
have been used to refine the prognostication in MDS [4-6]. However,
there has been no commonly accepted standard for incorporation of
NGS data into established prognostic scoring systems. The new
Molecular International Prognostic Scoring System (IPSS-M) includes
the mutation status of 31 genes in addition to cytogenetics, bone
marrow blasts, hemoglobin level, and platelet count [7]. In total, the
IPSS-M requires 37 parameters including the TP53 multihit status
(TP53™4% combination of mutations, deletion or copy neutral loss of
heterozygosity (CN-LOH)), KMT2A and FLT3 aberrations as well as a
pattern of co-mutations for SF3B1. The IPSS-M provides a continuous
patient-specific risk score grouped into six risk categories, defined as
very low (VL), low (L), moderate low (ML), moderate high (MH), high
(H) and very high (VH) [7].

To perform an independent validation of the IPSS-M, we selected
626 de novo MDS patients, who were referred to our laboratory
between 09/2005 and 01/2020 (Supplementary Table S1) with a
median follow-up of 9.5 years. Data was obtained from peripheral
blood and bone marrow using cytomorphology, cytogenetics
and molecular genetics as described [8-10]. Patients were
genetically characterized in-depth by amplification-free whole
genome sequencing (WGS), in addition to routine work-up. With a
median coverage > 100x, WGS is able to achieve a sensitivity of
10-15% variant allele frequency [11]. CN-LOH was assessed using
HadoopCNV [12]. The IPSS-R was calculated for 452 cases with
available data on absolute neutrophil counts, which is not necessary
for calculation of the IPSS-M.

Our real-world cohort of 626 MDS patients showed a distribu-
tion among the six IPSS-M risk categories of 15% VL, 41% L,

11% ML, 7% MH, 12% H and 14% VH (Fig. 1A). The observed risk
distribution is well comparable with the initial publication of the
IPSS-M also showing a skewing towards low-risk categories [7]. We
also found a clear prognostic separation for overall survival (OS),
leukemia free survival (LFS) and LT according to IPSS-M categories
(Fig. 1B) which is comparable with the initial publication but
shows a slightly worse discrimination e.g., of the MH risk category
probably due to the lower number of patients in this group
(n=42).

We then compared the individual risk categorization according
to IPSS-R and IPSS-M in 452 patients (Fig. 2A). When considering
the IPSS-M categories ML and MH combined as one group, 111
patients (25%) were up- and 87 patients (19%) down-staged
according to IPSS-M. For the majority of patients (38%), the risk
group differed only by one level (up-stage: 90; down-stage: 80),
while larger differences of more than one level were observed in
6% of patients (up-stage: 21; down-stage: 7). Exploratory analysis
of patients up- or down-staged more than one level suggests that
the new IPSS-M category better reflects the individual survival
(Supplementary Fig. S1). For a systematic approach, we used the
Harrell’s concordance index (c-index [13]) to assess the correlation
between predictions according to the IPSS-R and IPSS-M with real
outcomes. The c-index for the IPSS-R was 0.68 (OS), 0.69 (LFS) and
0.77 (LT), and improved to 0.71 (OS), 0.73 (LFS) and 0.81 (LT) for
the IPSS-M (Fig. 2B). Our results closely match the values of the
original IPSS-M publication and highlight the benefit of incorpor-
ating molecular genetic variables.

Finally, we focused on the relative importance of individual genes
for risk prediction according to the IPSS-M and underlying practical
aspects. In daily practice, missing values and the finding of genetic
variants of unknown significance, which cannot clearly be classified
as mutated or unmutated, are challenging. In general, the IPSS-M is
able to handle missing values and calculates best- and worst-case
scenarios. According to IPSS-M, TP53™!!% FLT3™+TKD and KMT24PTP
are the top predictors of adverse outcomes. We identified 67
patients with TP53 mutations (11%) of whom 35 (6%) fulfill the status
of TP53™ 1 (7 with two mutations, 16 with mutation(s) + deletion,
and 12 with mutation + CN-LOH). Conventional panel sequencing
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Fig. 1

Validation of the IPSS-M. A Frequencies of IPSS-M categories and specific parameters within our MDS validation cohort (n = 626)

compared to the data published by Bernard et al. B Kaplan-Meier plots for MDS patients classified according to the IPSS-M for overall survival

(OS), leukemia free survival (LFS) and leukemic transformation (LT).

does not necessarily allow to analyze the CN-LOH status, and a high
variant allele frequency (VAF; e.g., >55%) has been proposed as a
surrogate. In our cohort, only one patient (mutation with 46%
VAF + CN-LOH) would have been missed for TP53™""% status without
CN-LOH analysis indicating that high VAF could be a valuable
surro%ate for TP53™"% in daily practice. Furthermore, we found
FLT3T* TP in 7 (1%; all VH) and KMT2AP™ in 6 cases (1%; 2 VH, 3 H,
1 ML). KMT2AP™ poses a specific challenge since current targeted
NGS panels typically do not allow the assessment of the underlying
large intragenic duplications. In order to gauge the effect of missing
KMT2AP™® status we specifically left out this parameter for mutated
patients: One patient remained in the VH group independently of
the KMT2AP™® status, while for the other patients the best- and
worst- case scenarios led to sometimes vastly different categories
(Supplementary Table S2). Since imprecise categories are not useful
in daily practice, a determination of KMT2A"™ status is necessary for
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the use of the IPSS-M although it is a rare aberration in MDS (1% here
and 2.5% in the IPSS-M cohort). If lower weighted variables, e.g., the
“residual genes”, would be not available, this resulted in 31% of cases
displaying consistent categories between best- and worst-case
scenarios (Supplementary Fig. S2).

In addition, we identified NPMT1 mutations, which are also
integrated into the IPSS-M model, in 4 cases (1%; 1 VH, 3 H).
However, based on the 5th edition of WHO Classification NPM1
mutated patients are now categorized as AML with mutated
NPM1 irrespective of the blast count [2]. As the prognostic impact
of SF3B1 mutations (SF381™"%) depends on their co-abnormalities,
the IPSS-M discriminates SF3B1 mutations in the presence of
isolated del(5q) (SF3B1°%) and SF3B1 mutations without specific
co-mutations (SF3B19). Within all SF387 mutated cases (n = 199),
SF3B1°9 was found in 9% and SF3B1® in 82% of samples
(Supplementary Fig. S3).
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Fig.2 Comparison of IPSS-R and IPSS-M. A Changes in MDS risk categories of MDS patients (n = 452) according IPSS-R and IPSS-M. B Model
discrimination as measured by Harrell’s c-index of the IPSS-R or IPSS-M across the different end points (OS overall survival, LFS leukemia-free

survival, LT leukemic transformation).

In conclusion, we independently confirm the increased
predictive power of the IPSS-M in MDS as compared to IPSS-R.
We used a real-world cohort of 626 patients diagnosed at a single
center with profound genetic analysis using WGS. In both our data
set and the original IPSS-M cohort, the c-index was lowest for OS.
This could be explained by the fact that age is not taken into
account. Age per se is a risk factor for OS and associated with
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other comorbidities. Two other recently published molecular MDS
scores include age with moderate [14] or strong weight [15]. To
illustrate the effect of age, we looked at the youngest and oldest
10th percentile. While both subgroups have about a quarter of
patients in the IPSS-M H or VH group (n=11/43 vs. 9/43),
their predicted OS probability at 60 months according to the
above mentioned scores is very different (54 vs. 36% [14] and
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76 vs. 28% [15], Supplementary Fig. S4). In line with the age-
adjusted IPSS-R [3], age adjustment of the IPSS-M may improve
the prediction of OS. In contrast, LT and LFS are more influenced
by the biology of the disease and the genetic aberrations of the
MDS clone already included in the IPSS-M. While all new molecular
risk prediction tools for MDS have been shown to be superior to
the IPSS-R [7, 14, 15], the objective of the given tool should be
tailored to the application (e.g. personal therapeutic decision
making or clinical study design).

In daily practice, we use both a classification (homogeneous
morphology or genetics) and prognosis systems (homogeneous
risk but possibly different biology). Ultimately, those are two sides
of the same coin, which only combined lead to the best (targeted)
therapeutic solutions. In summary, a comprehensive molecular
analysis has become new standard for prognostication of patients
with MDS. On a short term, not all laboratories will be able to offer
broad molecular genetic panels with all 31 genes of the IPSS-M. In
addition to conventional targeted NGS, complementary genetic
methods (like PCR and FISH) and/or specifically designed and
validated NGS assays are needed to reliably assess TP53™uf
FLT3™ and KMT2AF™. The ability of the IPSS-M online calculator
to handle missing data will facilitate implementation into routine
diagnostics. However, results of such an approach are only
clinically meaningful if the spectrum from best case to worst case
scenarios is narrow enough to allow an acceptable risk assess-
ment. For highly weighted variables (e.g., KMT2A-PTD) this will
rarely be the case. This makes laboratory analysis for MDS more
relevant than ever. It requires different laboratory branches and
clinicians to join forces to yield a complete set of all types of data
allowing a meaningful prognostic score for state-of-the-art
management of MDS patients in 2023+.
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