

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

Research Paper

Contents lists available at ScienceDirect

Artificial Intelligence In Medicine

journal homepage: www.elsevier.com/locate/artmed

CoSumNet: A video summarization-based framework for COVID-19 monitoring in crowded scenes

Check for updates

Ambreen Sabha^{*}, Arvind Selwal

Department of Computer Science and Information Technology, Central University of Jammu, Samba, Jammu and Kashmir 181143, India

ARTICLE INFO

Keywords: COVID-19 Object detection Face mask detection Video summarization Deep learning

ABSTRACT

The outbreak of COVID-19 pandemic poses new challenges to research community to investigate novel mechanisms for monitoring as well as controlling its further spread via crowded scenes. Moreover, the contemporary methods of COVID-19 preventions are enforcing strict protocols in the public places. The emergence of robust computer vision-enabled applications leverages intelligent frameworks for monitoring of the pandemic deterrence in public places. The employment of COVID-19 protocols via wearing face masks by human is an effective procedure that is implemented in several countries across the world. It is a challenging task for authorities to manually monitor these protocols particularly in densely crowded public gatherings such as, shopping malls, railway stations, airports, religious places etc. Thus, to overcome these issues, the proposed research aims to design an operative method that automatically detects the violation of face mask regulation for COVID-19 pandemic. In this research work, we expound a novel technique for COVID-19 protocol desecration via video summarization in the crowded scenes (CoSumNet). Our approach automatically yields short summaries from crowded video scenes (i.e., with and without mask human). Besides, the CoSumNet can be deployed in crowded places that may assist the controlling agencies to take appropriate actions to enforce the penalty to the protocol violators. To evaluate the efficacy of the approach, the CoSumNet is trained on a benchmark "Face Mask Detection ~12K Images Dataset" and validated through various real-time CCTV videos. The CoSumNet demonstrates superior performance of 99.98 % and 99.92 % detection accuracy in the seen and unseen scenarios respectively. Our method offers promising performance in cross-datasets environments as well as on a variety of face masks. Furthermore, the model can convert the longer videos to short summaries in nearly 5-20 s approximately.

1. Introduction

The coronavirus disease 2019 (COVID-19) is an ongoing global pandemic that is caused by severe acute respiratory syndrome (SARS-CoV-2). In December 2019, the virus originated from the city of Wuhan of China and rapidly spread across the world. According to a report of WHO (World Health Organization) that is released on August 16, 2020, the coronavirus disease has infected more than 6 million individuals worldwide and a casualty of more than 379,941 peoples was reported [1]. The COVID-19 has impacted every aspect of human life as well as hindered the global economy. As per the reports of WHO, the COVID-19 has spread in more than 213 countries across the world [2,3]. To tackle the spread of the virus, several countries enforced complete lockdown resulting in closure of their mundane facilities, utilities, educational institutions, industries, shopping malls, public transport, etc. In nutshell,

* Corresponding author.

E-mail address: ambreensabha45@gmail.com (A. Sabha).

https://doi.org/10.1016/j.artmed.2023.102544

Received 29 October 2022; Received in revised form 28 March 2023; Accepted 2 April 2023 Available online 7 April 2023 0933-3657/© 2023 Elsevier B.V. All rights reserved.

the pandemic has posed several challenges ranging from daily routine to other commercial activities in intra as well as inter-countries.

The majority of the nations are using precautionary measures to prevent the spread of virus by employing COVID-19 protocols such as lockdown, compulsory wearing of face masks, appropriate physical distance, random testing at public places, etc. Among all, face mask wearing is an effective measure that is widely followed in most of the nations. However, a strict enforcement of face masks wearing protocol in public places is a challenging task for security agencies, particularly in the densely crowded places such as, shopping malls, railway station, airport, religious places, etc. The public health agencies make use of several steps to mitigate COVID-19 spread by using artificial intelligence techniques such as machine or deep learning algorithms. To overcome the challenges in monitoring face mask protocols via traditional methods, the intelligent video analysis is a viable mechanism where the

A. Sabha and A. Selwal

Fig. 1. The breakthrough and progression of COVID-19 pandemic since December 2019.

violators can be accurately detected. Additionally, the video summarization is used to generate a shorter summary from long videos by satisfying a specific criterion that makes use of key-frames selection approach [4,5]. Moreover, video summarization includes variety of applications in various sectors such as sports [6-12], medical [13-15], education, surveillance [16-22], egocentric videos [23-27] and etc. The notion can be used to detect human (i.e., with or without mask) in crowded scenes and it produce short video summaries accordingly. The technique of face mask detection refers to predict a face in a video frame with or without face masks. Although, several research contributions are available in the existing literature for face mask detection in the images, but to the best of our knowledge there exist no studies on face maskbased video summarization. Thus, the main objective of this research work is to design a novel video summarization model that creates smaller video summaries of COVID-19 face mask violators from the realtime videos. Apart from this, CoSumNet yield accurate face mask rule violators in the public gathering to minimize the further spread of the pandemic.

Hence, the key motivation behind the proposed work is to develop a novel and efficient framework that accurately detect and generate summaries of persons with and without face mask to monitor the spread of the disease and thereby assisting the public health workforces. Furthermore, to build a robust video summarization model the notion of domain adaptation is employed in CoSumNet where a pre-trained finetuned deep convolutional neural network (DCNN) is adopted.

The major contributions of our work are listed as follows:

- i. A novel CoSumNet framework is proposed for COVID-19 face mask protocols monitoring in crowded places.
- ii. The CoSumNet employs a potent pre-trained DCNN for efficient classification of video frames to with and without face mask video summaries.

- iii. The proposed model is trained on benchmark Face Mask Detection ~ 12 K Images Dataset and evaluated on real-time CCTV footage.
- iv. Our approach demonstrates its effectiveness in both known and unknown environments as well as excellent performance on a variety of unseen face masks samples.
- v. The CoSumNet aids in detecting and monitoring COVID-19 violations of face mask protocols with promising accuracy and low training overhead.

The remainder of the article is organized as follows: Section 2 illustrates a background and the emergence of COVID-19 pandemic. Section 3 depicts the proposed framework and algorithms of the CoSumNet. In Section 4, the detailed experimental analysis is discussed along with the benchmark datasets and performance metrics. Finally, the conclusion as well as the future scope of the work is presented in Section 5.

2. Background

The outbreak of COVID-19 in December 2019 that has spread across the world is an ongoing pandemic, which has witnessed several waves hitherto [2,3,28–30]. The deadly virus that was first reported in an outbreak in the Chinese city of Wuhan has appeared in a variety of variants. The common symptoms of the COVID-19 disease include such as, fever, dry cough, fatigue, body aches, lack of taste, etc. The virus mainly spreads when people come into close contact with respiratory droplets produced by an infected person's cough, sneeze, or exhale. As these droplets are too dense to swing in the air for long distances, they quickly settle on the floors or surfaces and can spread when the individuals touch the surface contaminated with the virus followed by touching their own face (such as the eyes, nose, and mouth). The emergence of COVID-19 since December 2019 up to June 2022 is depicted through a timeline as shown in Fig. 1. The timeline clearly highlights the breakthrough that has been reported during the period [3,28,29,31].

As per the recent studies, the second wave of COVID-19 that hit India during 2021 [32] was more severe and the virus spread comparatively quicker than the first wave in 2020. According to a report by health ministry of India, the number of cases of COVID-19 increased from 8105 to 97,894 within 110 days in the first wave. Whereas, the second wave began in February 2021 that exhibited an upward trend with drastic increase in COVID-19 patients from 8365 cases per day to 1,03,558 cases per day within 62 days [33].

To tackle the biggest pandemic of the century, researchers started exploring various AI-driven mechanisms that are assisted by computervision enabled solutions. Nowadays, several issues in medicine are successfully addressed by the researchers via the field of computer vision such as video analysis, object identification, segmentation, localization, and classification. Among all, video analysis is one of the momentous solutions that process huge number of videos and thereafter can classify these to different categories. In early 1990s, the traditional techniques were employed for analysis and classification problems, but there are some limitations in these approaches such as, manual features extraction and limited accuracy. To tackle these problems, the paradigm has shifted from traditional machine learning algorithms to contemporary deep convolutional models. These DCNN models involve the mechanisms of automatic features extraction from the given input videos or images. The deep learning methods extract deep level of features from images that is not possible in the case of their conventional counterparts. The detection of individuals following COVID-19 protocol by wearing face mask in public places is one of the challenging tasks for controlling the further spread of the virus. Thus, the automatic and effective face mask detection techniques in video scenes are a crucial task. Some of the researchers have contributed work in this field. Earlier, Goyal H. et al. [34] proposed a face mask detection model for static and real-time videos that distinguish between images with and without face masks. The model is trained and evaluated on the dataset that is available on Kaggle platform, which include 4000 samples and it shows an accuracy of 98 %. The comparison of the proposed model with existing pre-trained architecture such as, MobileNet-V2, DenseNet-121, VGG-19, and Inception-V3 reveals that it is more accurate and computationally efficient. Later, Sethi S. et al. [35] proposed an ensemble-based method that use one-stage and two-stage object detectors to identify human with face mask. In addition, they make use of a bounding box transformation method to locate and identify people without face masks. Three wellknown pre-trained models, ResNet50, AlexNet, and MobileNet are used in the experiment, where ResNet50 results in promising accuracy of 98.2 %. As face recognition algorithms frequently require a front face input image, head pose classification is frequently employed for the preprocessing prior to face recognition. However, for COVID-19 safety, individuals wear face masks that cover the entire face. There occurs a problem in the classification of head pose along with facial recognition and the issue is overcome by Li S. et al. [36], where they employed CNN (Convolution Neural Network) to identify human with or without face mask. They created the HGL approach, which make use of line portraits and colour texture analysis to categorise head pose utilising masks for faces. The side-to-side accuracy is evaluated as 87.17 %, while the front face accuracy is 93.64 %.

In the current COVID-19 era, the correct face mask wearing is an important protocol for human safety, but the effectiveness of face masks wearing is declining due to its inappropriate usage. Furthermore, Qin and Li [37] proposed a system that combines picture super-resolution and classification networks to identify the proper wearing of face mask (SRCNet). The benchmark medical masks dataset is used which contain a total of 3835 samples out of which 671 images belongs to without face mask class, 134 images of people wearing face mask incorrectly, and 3030 images of individual wearing correct face mask. The dataset is pre-processed by using various steps such as, face

detection, cropping, image super-resolution, and appropriate face maskwearing identification. The proposed SRCNet outperformed other similar methods with an accuracy of 98.70 %. To mitigate the further spread of virus, it is key to address the real-time detection of face mask wearing by the individuals in public places. In another work, Hussain D. et al. [38] proposed an automatic prediction system for face mask detection that utilize deep learning models. The MobileNetV2 pretrained model along with a DCNN is used for effective face mask detection. The proposed approach is evaluated on a secondary 'dataset-1' along with self-created 'dataset-2' through real-world scenarios having 2500 samples. The experimental results with DCNN achieves an accuracy of 97 % on both the dataset. Whereas, MobileNetV2 offers an accuracy of 98 % and 99 % on datasets-1 and dataset-2 respectively. Additionally, Kodali R. et al. [39] proposed a three-step approach for face mask detection that include pre-processing, CNN learning, and realtime classification. The pre-processing is the first step, where face images are resized before converting to grayscale followed by image normalization operation. As the problem is binary classification, a SoftMax function is employed in the classification header of the CNN model. In yet another work, Jiang M et al. [40] proposed a model namely; RetinaFaceMask to detect face mask in given images. The model utilizes multiple features maps to form a feature pyramid network for extracting the high-level features from an image. In addition, a context attention model is used that enhances the detection accuracy and it correctly identify images that contains human with face mask. The experimental analysis is performed on a face mask dataset in terms of precision and recall parameters and it results in comparatively 2.3 % and 11.0 % higher performance than existing similar techniques. Later, Fan X. and Jiang M et al. [41] present a single stage face mask detector model namely; RetinaFaceMask, which is an extended version of their previous work [40]. In this approach, firstly a dataset MAFA (i.e., masked faces) is created that consist of three different classes namely; no mask, correct mask, incorrect mask wearing. Thereafter, a novel context attention module (i.e., CAN) is build that extract deep level features from images for discriminating among the three classes. In addition, the transfer learning approach is used to enhance the performance of model by transferring the knowledge from the base model to the face mask detector. The experimental analysis is performed on both public and private dataset and it demonstrate superior performance against other existing techniques. Manual detection of face masks in crowded places such as face detection, facial expression detection and face-based biometric attendance with face mask is a difficult task. In addition, there exist no standard benchmark dataset for face mask detection along with variations of masks. Therefore, to overcome this problem, Wang Z. et al. [42] presented three types of face mask dataset namely; Real-world Masked Face Recognition Dataset (RMFRD), Masked Face Detection Dataset (MFDD), and Simulated Masked Face Recognition Dataset (SMFRD). Among all, RMFRD is the largest face mask dataset and is openly available to research community. The experimental analysis shows that DCNN model achieves an accuracy of 95 % on RMFRD dataset. Furthermore, Jayaswal R. et al. [43] proposed a CLAHE-SSD_IV3 model for face mask detection. Initially, for image preprocessing, the contrast limited adaptive histogram equalization (i.e., CLAHE) technique is used to enhance the quality of images. Thereafter, a pre-trained model such as Inceptionv3 along with SSD face detector is used to learn Real-time face mask dataset (RTFMD) for classification purpose. The proposed model is compared with other pre-trained models such as, VGG16, VGG19, MobilenetV2 and Xception at various parameters. Besides, the proposed approach is compared with other similar techniques on face mask dataset and RTFMD and it results in an accuracy of 98 % and 97 % respectively. In the same year, Jayaswal R. et al. [44] developed another approach for face mask detection model to predict human with and without face mask. The model consists of single shot multi-box face detector along with a pre-trained Inceptionv3 to extract few features and it is named as SSDIV3. The approach is compared with other pre-trained models (such as, VGG16, VGG19,

Fig. 2. The proposed framework of CoSumNet model.

Mobilenet V2 and Xception). As compared to their earlier work, the present technique make use of two novel datasets comprising of samples with a variety of face mask in both indoor and outdoor environment. The approach outperforms the existing state-of-the-art techniques with an accuracy of 98 % on newly created dataset in real-time environment. Jayaswal R. et al. [45] extended their earlier work, where a deep learning approach is used to detect face with and without mask. The method used a newly designed face mask dataset in real-time (i.e., FMDRT) to detect whether a person is wearing a mask or not. For image pre-processing, the same CLAHE approach as used in [43], is employed to enhance the quality. Apart from this, to detect a face, a pre-trained Caffe face detector model is utilized along with Xception model for extracting the deep level features from images and named it as CL-SSDXcept. The model is compared with different pre-trained models at various parameters settings on FMDRT dataset. The performance of the model is evaluated against existing techniques on both FMDRT and face mask detection dataset. The experimental analysis reveals that approach achieves an accuracy of 98 % and loss of 0.05, as well as its superiority over other methods.

3. Proposed approach

Though, majority of the COVID-19 studies are related to detection and monitoring of individuals with and without face masks, but there exist no model that can automatically detect the protocol violators in videos of public gatherings. Hence, the current work is aimed at detection and summarization of human with and without face mask in CCTV videos. In this section a detailed depiction of framework of CoSumNet is presented along with a description of the relevant algorithms. In addition, a thorough illustration of each step of training and testing phase is also expounded.

3.1. CoSumNet framework

The proposed CoSumNet framework is presented in Fig. 2, that consist of two phases namely; training and testing. In training phase, initially the video captured through crowded scenes is processed, where the frames are extracted from original CCTV. Thereafter, with and without face mask images in training dataset are pre-processed by

Fig. 3. An illustration of frames extraction from a crowded scene video.

Fig. 4. An architecture of pre-trained ResNet-50 model (adopted from [46]).

applying elementary image processing operations such as resizing, colour conversion, normalization, quality enhancement and noise removal. The notion of transfer learning is used, where a pre-trained model (i.e., ResNet50) is used for the learning purpose to enhance the overall efficiency. Afterwards, the model is fine-tuned by selecting the optimal parameters to increase the performance of CoSumNet. The last layer of the fine-tuned model performs the task of classification of a given frame as with or without mask. Then, resultant classified frames are augmented into two separate clusters. Later, the frames in each cluster are converted to two videos thereby resulting two short summaries of with or without mask(i.e. protocol violators). The stepwise operation of CoSumNet model is discussed in subsequent subsections.

3.1.1. Video frames extraction

A video typically consists of a large number of frames that are captured at a given interval of time. Initially, an original video captured via CCTV camera from crowded scenes is processed to extract frames with a rate of 25–30 fps as shown in Fig. 3.

Mathematically, a video is represented as f(x, y, t), where f(x, y) are the spatial coordinates and 't' represents the temporal representation.

The model takes video as an input from dataset and extract frames from these videos one after another as well as stored in to a list. As depicted in Eqs. (1) and (2), 'V' is the original video that is treated as combination of multiple frames ' f_i ', where *i* ranges from 1 to n.

$$\mathbf{V} = \sum_{i=1}^{n} (f_i) \tag{1}$$

$$f_i = \sum \{f_1, f_2, f_3, \dots, f_n\}$$
(2)

3.1.2. Image pre-processing

Once the frames are extracted from original video, then each frame is assessed for its quality and uniformity by applying some pre-processing techniques. Then images are resized to 224×224 to ensure input data is of same dimension that is pre-requisite for deep learning model. Thereafter, frames are converted to grey scale channel for less computations and are subjected to image enhancement techniques such as, histogram equalization, normalization, noise removal and filtering to improve its brightness and smoothness. The average and smoothneing filters are applied to the images to eliminate the undesirable noise, and

Fig. 5. A depiction of skip connections in ResNet-50 (a) plain layer network (b) Residual learning blocks.

Fig. 6. A summary of fine-tuned ResNet-50 model.

for faster and efficient computing, the training images are normalized by dividing each pixel intensity value with 255 that gives values between 0 and 1. The images are categorized into two classes namely; with mask and without mask. A label encoding method is applied to each frame and assign numerical values to the both the classes i.e., 0 and 1 respectively for with mask and without mask. To further increase the dataset, the concept of data augmentation is used to introduce variations in the images through a series of operations such as, rotation, flipping, scaling zooming, etc. Thereafter, these pre-processed images are further given as an input to the pre-trained deep learning model.

3.1.3. Fine tuning of pre-trained model

In the proposed work, DCNN is used due to its superior performance compared to conventional classification methods for facemask detection via video summarization. The training of DCNN is costly since it takes a long time for training purpose and has a lot of computational overhead. Hence, the conception of transfer learning is used to train the model more quickly and efficiently. As it enables the neural network's trained knowledge in terms of parametric weights to be transferred to the new model to improve the performance that is trained on smaller number of samples. The ImageNet dataset that constitutes of 14 million images and it is used to train several benchmark pre-trained models, such as, VGGNet, AlexNet, MobileNet, ResNet50, GoogleNet, Inception, etc. Among all, the pre-trained model ResNet50 is used in the our work (i.e., CoSumNet), for facemask detection via video summarization as shown in Fig. 4. The ResNet (i.e., residual network) was first introduced in 2015 by Ren S. et al. [46] in their research paper titled "Deep Residual Learning for Image Recognition". It has some advantages as compared to other pre-trained models such as the presence of residual blocks and skip connections along with identity mapping function. The ResNet model comprises of these residual blocks and the skip connections are present inside the network's residual blocks. The problem of training a deep network has been resolved by the employment of these blocks and it is one of the most robust and popular deep learning models. The architecture is then transformed into the residual network by these skip connections or residual blocks. The CoSumNet model has undergone hyper tuning, and the original ReNet50 includes 1000 classes in the last fully-connected layer. To build CoSumNet, the last layer from the original model is removed and a new layer with two classes is augmented as depicted in Fig. 4.

Another critical issue in DCNNs include the problem of exploding and vanishing gradient that is overcome by ResNet pre-trained architecture via skip connections. The researchers are using DCNN for computer vision related tasks by adding a greater number of layers for achieving high accuracy. These additional numbers of layers may help to solve the complex problems more accurately. While higher number of layers are added to the model, it can extract the deep level features, but these models result in the issue of degradation. In other words, as the number of layers increases, the accuracy may eventually get saturated and begin to slowly deteriorate. As a result, the model's performance

Fig. 7. An illustration of model building and summary generation.

declines on both the training and testing dataset resulting in overfitting problem. Instead, it might be the result of the network's initialization, an optimization function, or more crucially an issue with vanishing or exploding gradients. Hence, ResNet50 model was developed with the intent of solving this issue by incorporating the concept of skip connections that present inside these residual blocks as depicted in Fig. 5. These skip connections operate in two different ways: firstly, these solve the problem of vanishing gradient by creating an alternative shortcut for the gradient that is to be used. Secondly, these provide the model an ability to learn the identity function to reduce the computational overhead without adding new parameters. The core principle of ResNet50 is the introduction of an "identity shortcut connections" that bypasses one or more network levels. The strategy behind this network is that rather than having layers learn the underlying mapping, they let the network fit the residual mapping via skip connection, which skips training from a few layers and connects directly to the output. Thus, let the network fit, instead of using the initial mapping of H(x) as depicted in Eq. (3) where, F(x) is the mapping function and x is the input of the model. Fig. 5 (a) depicts the plain layer network whereas, residual blocks architecture is depicted in Fig. 5 (b).

$$F(x) = H(x)-x \text{ which gives } H(x) = F(x) + x.$$
(3)

As our model does not contain large number of samples in the training dataset, we employ the conception of domain adaptation through ResNet50. The model is fine-tuned by discarding its last fully connected layer that originally contains 1000 units and then replacing it with a two units (i.e., with mask and without mask). The classification layer help to classify frames to binary classes. In last layer, a ReLu and SoftMax activation function is used to produce probabilistic output, the mathematical representation of these functions is shown in Eqs. (4) and (5). The summary of fine-tuned ResNet50 model is shown Fig. 6.

$$Relu: f(x) = max(0, x) \tag{4}$$

$$SoftMax: (xi) = \frac{exp(xi)}{\sum_{i} exp(xi)}$$
(5)

3.1.4. Model building and summary generation

After the fine tuning of pre-trained model, the summarization model is built to generate short summaries of with or without mask as shown in Fig. 7. Thereafter, the model classifies the images into two classes (i.e., with and without mask) and these are stored in two clusters. Each cluster contain the images that belongs to the respective class and the redundant frames are removed. The images in each cluster are timestamped (ts). As the image-1 that occurs at ts-1 belong to with mask class is to be placed in cluster 1 and similarly, for ts-2 the image-2 is placed under cluster 2 that belong to without mask class.

The clusters containing face mask images (i.e., with and without mask) are converted to video by using the VideoWriter function to generate a short summary of a larger video. Thus, the summarized video consist of two summaries that include human wearing face mask and without face mask.

3.1.5. Covid-19 monitoring

In the testing phase, the trained CoSumNet model monitors the video captured through CCTV videos in crowded scenes. Initially the frames are extracted from the video and then pre-processing of each frame is carried out. Thereafter, each pre-processed frame is examined by applying CoSumNet model to detect the frames with mask and withoutmasks. The frame with mask are converted to a shorter video and for human without mask frames, an alert is sent to concerned COVID-19 protocol violators. In this manner, our CoSumNet is used for monitoring the further spread of the COVID-19 in crowded scenes.

3.2. Proposed algorithms

An algorithm 1 for building the CoSumNet model is presented in this section. Suppose ' V_l ' be the video dataset that is given as an input to the model and it returns output as 'M' i.e., CoSumNet model. Let 'L' is the size of learning dataset ' V_l ' and Φ_M , Φ_N and L are the empty lists for face mask detection with two classes (i.e., Φ_M for with mask and Φ_N for without mask).

Algorithm 1. To build the CoSumNet model.

Table 1

A summary of benchmark face mask dataset.

Class	Training images	Validation images	Testing images
With mask	5000	400	483
Without mask	5000	400	509
Total	10,000	800	992

label the mask and non-mask frames such as '0' for \hat{Z}_M and '1' for \hat{Z}_N . The pre-trained model i.e., P_t is loaded and stored in Ψ , in pre-trained model the last layer i.e., fully connected layer is discarded and a new layer is added having 2 class (i.e., with and without mask) along with the SoftMax activation function. The model is fitted on training dataset on 'l' number of iterations, wherein the x-train and y-train are the dataset and the labels. The model then predicts on x-test and y-test dataset to check

Input: Video dataset V_l (learning dataset)
Output: CoSumNet 'M'
Begin
$\mathbb{L} \leftarrow V_l $
$\boldsymbol{\Phi}_{M} = [], \boldsymbol{\Phi}_{N} = [], \mathbf{L} = []$
for $k = 1$ to L do
$L \leftarrow L$. append [frames_extraction- $V_l(k)$]
end for
<i>for</i> f in L do
if face-mask-detector (f) = True
$\phi_M \leftarrow \phi_M.append(f)$
else
$\Phi_N \leftarrow \Phi_N. append(f)$
end for
$\Phi'_M \leftarrow \text{pre-processing}(\Phi_M)$
$\Phi'_N \leftarrow \text{pre-processing}(\Phi_N)$
$\hat{\mathbf{Z}}_{M} \leftarrow \text{extract-label} (\Phi'_{M})$
$\hat{\mathbf{Z}}_N \leftarrow \text{extract-label}(\Phi'_N)$
$[0] \leftarrow \text{encode}(\ddot{\mathbf{Z}}_M)$
$[1] \leftarrow \text{encode}(\ddot{\mathbf{Z}}_N)$
$\Psi \leftarrow \text{load-model}(P_t)$
$\Psi \leftarrow \Psi$. layers-fc = false
$\Psi \leftarrow \Psi$. add. Layers. Dense (2, Activation = SoftMax)
$\Psi \leftarrow \Psi$. If (x-train, y-train, iterations = l) $\hat{X} \leftarrow \Psi$ modiat (x test x test)
$1 \leftarrow 1. \text{ predict } (x \text{-iest}, y \text{-iest})$
$S_{i} \leftarrow \text{frame to yideo} (C_{i} + t_{i})$
$S_1 \leftarrow \text{frame to video}(C_1, t_{s1})$
End

Initially, the frames are extracted from the original video ' V_l ' and these extracted frames are appended to the list 'L'. Thereafter, the frames 'f' in list 'L' are checked by applying face-mask-detector i.e., if frame 'f' is mask frame then append to list Φ_M otherwise append to list Φ_N . The pre-processing of with mask ' Φ_M ' and without mask frames ' Φ_N 'is done and stored in Φ'_M and Φ'_N . Afterwards labels are extracted from Φ'_M and Φ'_N and stored in \hat{Z}_M and \hat{Z}_N . The label encoding is used to that whether the model ' Ψ ' predicted the correct output or not. Thereafter, the two clusters C_1 and C_2 along with timestamps t_{s1} and t_{s2} generates the summary S_1 and S_2 by applying the VideoWriter function that converts frames to video.

Algorithm 2. Frames extraction ().

Input: Original video 'V'
Output:
$$f = [f_1, f_2, f_3 \dots f_n]$$

Begin
 $I = []$
 $\dot{v} = VideoCapture (V)$
Test = True
 $C = 1$
While (Test) do
 $|$
Test $f \leftarrow \dot{v}$. read ()
if Test == True
 $|$
 $I \leftarrow I. append (f)$
 $C = C + 1$
else
do nothing
end while
End

Fig. 8. Few random sample images of training dataset for learning CoSumNet model.

Table 2 The performance evaluation of CoSumNet on various hyperparameters.

Trial no.	Batch size	Epochs	Units	Activation function	Optimizer	Learning rate	Dropout rate	Accuracy	Loss	Val-accuracy	Val-loss
0000	100	70	416	Softmax	PMSprop	0.01	0.4	0.003125021	0.46301003	0.99650001	0 401533756
0000	40	90	128	Sigmoid	Adam	0.01	0.4	0.993123021	0.020583821	0.99050001	0.0081721
0001	20	90 70	288	Tanh	SGD	0.01	0.4	0.99237301	0.020303021	0.99730000	0.0001721
0002	60	100	448	sigmoid	SGD	0.001	0.3	0.9950250190	0.0021760201	0.993000004	0.03324664
0003	80	100	352	Sigmoid	BMSprop	0.001	0.3	0.900374974	0.0221702201	0.997500001	0.01260719
0005	30	60	96	Sigmoid	Adam	0.001	0.0	0.988125026	0.025052707	0.997300002	0.01200715
0005	10	10	352	Relu	Nadam	0.001	0.5	0.906123020	0.0020200740	0.9965000152	0.018461737
0007	40	70	416	Relu	SGD	0.001	0.5	0.9958750009	0.01405882580	0.9905000132	0.0114082053
0007	40	10	96	linear	SGD	0.001	0.3	0.9883750081	0.0396207235	0.9973000023	0.01204310636
0000	10	10	128	tanh	Adam	0.0001	0.4	0.9916250109	0.0239780042	0.9975000023	0.00204010000
0010	100	50	512	tanh	Adam	0.001	0.5	0.9980000257	0.0060474420	0.9975000023	0.0150552224
0011	20	70	512	tanh	Adadelta	0.001	0.0	0.9791250228	0 14507345855	0.9810000061	0.1381151527
0012	20	70	192	sigmoid	Nadam	0.001	0.0	0.9996250271	0.0017552506	0.99750000238	0.0107171405
0013	60	70	384	softmax	Adadelta	0.001	0.2	0 43112498521	0.69376713037	0.010999999994	0.69807255268
0014	60	10	64	softmax	Adadelta	0.0001	0.4	0.44150000810	0 70367795228	0.99759999238	0.6385808587
0015	100	50	416	linear	SGD	0.0001	0.3	0.9973750114	0.00859333295	0.99750000238	0.01076564751
0016	10	100	160	softmax	RMSprop	0.001	0.3	0.99812501668	0.28012663125	0.99650001525	0.31615498661
0017	80	100	384	sigmoid	Nadam	0.01	0.2	0.99449998140	0.01822070591	0.99650001525	0.01256569381
0018	40	100	448	linear	RMSprop	0.01	0.5	0.98587501049	0.12540563941	0.99699997901	0.03086781315
0019	80	10	64	softmax	Adadelta	0.01	0.3	0.62787497043	0.68803036212	0.87449997663	0.68458998203
0020	40	70	160	softmax	Adam	0.0001	0.1	0.99787497520	0.29425156116	0.99650001525	0.33429950475
0021	20	70	256	tanh	Adam	0.0001	0.3	0.99837499856	0.00409954413	0.99750000238	0.01237275544
0022	10	30	320	linear	Nadam	0.001	0.3	0.99075001478	0.04417301341	0.99650001525	0.02367977052
0023	80	100	352	relu	Nadam	0.01	0.1	0.99800002574	0.00698381755	0.99599999189	0.03181468322
0024	80	70	416	tanh	Adam	0.0001	0.5	0.99774998426	0.00526154320	0.99750000238	0.01320550963
0025	10	30	352	linear	Nadam	0.01	0.5	0.99512499570	0.03881689161	0.99550002813	0.05906426906
0026	10	70	448	sigmoid	RMSprop	0.001	0.0	0.99175000190	0.02545415237	0.99650001525	0.01455886196
0027	100	30	192	linear	SGD	0.0001	0.3	0.98912501335	0.03286636620	0.99650001525	0.011849628761
0028	60	10	448	softmax	Adadelta	0.01	0.5	0.54350000619	0.69263589382	0.92750000953	0.69002425670
0029	60	70	128	tanh	Adam	0.001	0.3	0.99787497520	0.00570006947	0.99699997901	0.01659318804
0030	40	10	480	softmax	RMSprop	0.01	0.2	0.99225002527	0.47251915931	0.99599999189	0.50032711029
0031	60	30	320	relu	RMSprop	0.01	0.3	0.99624997377	0.01784181781	0.99500000476	0.07296397536
0032	60	10	224	tanh	Adam	0.001	0.3	0.99112498760	0.02337403036	0.99250000715	0.03457861766
0033	100	70	160	sigmoid	Nadam	0.01	0.2	0.99849998950	0.00392116140	0.99750000238	0.00905037485
0034	60	10	64	softmax	Adadelta	0.0001	0.4	0.64275002479	0.67733192443	0.42399999499	0.69378501176
0035	40	90	128	sigmoid	Adam	0.01	0.4	0.98925000429	0.024343026801	0.99699997901	0.01468339934
0036	80	100	352	sigmoid	RMSprop	0.01	0.3	0.99225002527	0.02433313056	0.99699997901	0.01320157386
0037	40	70	416	relu	SGD	0.001	0.5	0.99550002813	0.01449323166	0.99650001525	0.01474225241
0038	10	10	128	tanh	Adam	0.0001	0.4	0.99162501096	0.020106781274	0.99699997901	0.01258400175
0039	100	50	512	tanh	Adam	0.001	0.5	0.99862498044	0.00359291164	0.99599999189	0.01905821822

(continued on next page)

Table 2 (continued)

	-	-									
Trial no.	Batch size	Epochs	Units	Activation function	Optimizer	Learning rate	Dropout rate	Accuracy	Loss	Val-accuracy	Val-loss
0040	20	70	192	sigmoid	Nadam	0.01	0.0	0.99299997091	0.02120191790	0.99699997901	0.01040361449
0041	100	50	416	linear	SGD	0.0001	0.3	0.99762499332	0.00685428734	0.99750000238	0.007510609459
0042	20	70	256	tanh	Adam	0.0001	0.3	0.99312502145	0.01714055985	0.99750000238	0.01688857376
0043	80	70	416	tanh	Adam	0.0001	0.5	0.98912501335	0.03256998211	0.99650001525	0.00971710495
0044	100	70	160	sigmoid	Nadam	0.01	0.2	0.99424999952	0.01894477568	0.99750000238	0.01195430755
0045	60	30	96	sigmoid	Adam	0.001	0.0	0.99000000953	0.02578973025	0.99699997901	0.01249769981
0046	100	50	416	linear	SGD	0.0001	0.3	0.99762499332	0.00779821584	0.99699997901	0.01404683198
0047	20	70	256	tanh	Adam	0.0001	0.3	0.99887502193	0.00337565620	0.99750000238	0.01615223102
0048	100	70	160	sigmoid	Nadam	0.01	0.2	0.99987500905	0.00051083037	0.99800002574	0.01699433475
0049	100	90 70	128	sigmoid	Nadam	0.01	0.4	0.999900001287	0.00209082239	0.99800002574	0.00905867107
0051	40	90	128	sigmoid	Adam	0.01	0.4	0.99762499332	0.00559038296	0.997500002374	0.010341539047
0052	100	90	192	relu	SGD	0.001	0.5	0.99725002050	0.00867352169	0.99750000238	0.01019121147
0053	10	50	192	linear	Adadelta	0.01	0.4	0.90287500619	0.24673399329	0.96450001001	0.17362597584
0054	80	70	128	relu	RMSprop	0.001	0.3	0.99712502956	0.01154503319	0.99849998950	0.01019868999
0055	100	90	128	tanh	Adadelta	0.01	0.2	0.93924999237	0.24461148679	0.95399999618	0.25854030251
0056	40	30	320	linear	SGD	0.0001	0.0	0.99924999475	0.00246139499	0.99750000238	0.00962431635
0057	20	50	128	linear	SGD	0.01	0.4	0.99699997901	0.00976431369	0.99599999189	0.01776131056
0058	40	100	64	sigmoid	SGD	0.001	0.0	0.99787497520	0.01462342496	0.99550002813	0.02185641415
0059	100	10	128	sigmoid	Adadelta	0.001	0.2	0.96112501621	0.34548604488	0.93449997901	0.43978336453
0060	100	50 30	384 288	relu	Adam	0.01	0.4	0.98949998017	0.05898441574	0.99849998950	0.01144394278
0062	100	10	288 480	linear	SGD	0.001	0.1	0.99512499570	0.01213162485	0.9900001323	0.02240190429
0063	20	10	512	softplus	Adam	0.001	0.2	0.99787497520	0.00629788264	0.99599999189	0.01175250671
0064	60	30	384	softplus	RMSprop	0.001	0.5	0.98487502336	0.20643137395	0.99750000238	0.02703285962
0065	40	30	224	sigmoid	Adadelta	0.001	0.3	0.91925001144	0.34768009185	0.94150000810	0.47824099659
0066	10	90	224	relu	Nadam	0.0001	0.3	0.99049997329	0.02616733685	0.99800002574	0.01088339369
0067	80	70	128	relu	RMSprop	0.001	0.3	0.73925000429	0.6918494105	0.47949999570	0.69314712285
0068	60	50	384	linear	Adam	0.01	0.4	0.99750000238	0.01080444920	0.99800002574	0.03180281072
0069	60	30	384	softplus	RMSprop	0.001	0.5	0.98937499523	0.04778867959	0.99849998950	0.01026585325
0070	10	90	224 102	relu	Nadam	0.0001	0.3	0.99150002002	0.02445608936	0.99800002574	0.01116688549
0072	80	70	128	relu	BMSprop	0.001	0.3	0.99774998426	0.01048607006	0.99849998950	0.00804141070
0073	60	30	384	softplus	RMSprop	0.001	0.5	0.99725002050	0.01082730572	0.99750000238	0.01936586014
0074	10	70	352	linear	Adadelta	0.001	0.2	0.99287497997	0.02770804986	0.99099999666	0.03427483886
0075	10	90	256	softmax	Adadelta	0.001	0.3	0.56887501478	0.69162487983	0.44100001454	0.69366991519
0076	60	100	384	relu	Nadam	0.0001	0.5	0.99699997901	0.01184887718	0.99750000238	0.01586479693
0077	20	10	288	linear	Adam	0.001	0.1	0.99787497520	0.01028930861	0.99849998950	0.00782436970
0078	80	10	224	sigmoid	SGD	0.001	0.3	0.99725002050	0.01098053716	0.99599999189	0.01502980943
0079	20	70	160	tann	SGD	0.01	0.3	0.99637502431	0.01242144778	0.996999997901	0.01124484837
0081	40	100	96	softmax	SGD	0.001	0.2	0.99800002574	0.06501466035	0.99650001525	0.02423273133
0082	20	10	288	linear	Adam	0.001	0.1	0.98799997568	0.10711442679	0.99800002574	0.02327713184
0083	60	100	384	relu	Nadam	0.0001	0.5	0.99837499856	0.00645826803	0.99750000238	0.02095812000
0084	20	70	160	tanh	SGD	0.01	0.3	0.99787497520	0.00702037755	0.99650001525	0.01156758423
0085	80	10	192	softplus	RMSprop	0.001	0.2	0.99849998950	0.00707628438	0.99900001287	0.00133153598
0086	40	100	32	relu	Adadelta	0.01	0.1	0.99087500572	0.03839541971	0.9900000953	0.05220552161
0087	80	50	320	sigmoid	Adadelta	0.01	0.4	0.38774999976	1.14498078823	0.99999128788	0.24693456292
0088	60 40	50 100	448	relu	Adadelta	0.001	0.5	0.9943/499046	0.022355308/5	0.99299997091	0.025/3654428
0009	80	50	256	tanh	SGD	0.001	0.2	0.99874997138	0.00333301013	0.99730000238	0.02200219407
0091	40	100	320	sigmoid	SGD	0.0001	0.2	0.99612498283	0.01538820471	0.99500000476	0.01834912598
0092	60	70	352	relu	Adam	0.01	0.1	0.99075001478	0.02881800197	0.99849998950	0.00620197458
0093	40	30	320	softmax	Nadam	0.001	0.5	0.99750000238	0.16746371984	0.99650001525	0.19839082658
0094	80	90	448	relu	Adadelta	0.01	0.1	0.99225002527	0.06781533360	0.98799997568	0.07827771455
0095	10	100	160	sigmoid	SGD	0.0001	0.4	0.99587500095	0.02279310673	0.99550002813	0.01907427795
0096	10	10	96	sigmoid	Nadam	0.0001	0.0	0.99924999475	0.00184981222	0.99800002574	0.01036994066
0097	10	50	352	sigmoid	Nadam	0.01	0.0	0.99924999475	0.00367802148	0.99750000238	0.00890957936
0098	100 60	100	224	Sigmoid	Nadam	0.01	0.2	0.9908/5005/2	0.03419919312	0.99650001525	0.01/02136/32
0100	40	90 70	320	tanh	Nadam	0.001	0.2	0.998374998569	0.00402011112	0.99650001525	0.02188012003
0100	100	50	192	Softmax	Adadelta	0.001	0.3	0.626999974250	0.69016116857	0.97149997949	0.68385344743
0102	40	90	384	relu	RMSprop	0.01	0.3	0.98837500810	0.05198936536	0.99750000238	0.02010488510
0103	80	90	192	tanh	Nadam	0.0001	0.3	0.99900001287	0.00244123954	0.99849998950	0.01031357888
0104	100	100	256	Softmax	RMSprop	0.0001	0.5	0.99774998426	0.29207515716	0.99650001525	0.32633757591
0105	60	70	352	relu	Adam	0.01	0.1	0.99924999475	0.00254925177	0.99800002574	0.00936054345
0106	80	90	192	tanh	Nadam	0.0001	0.3	0.99349999427	0.01714254729	0.99750000238	0.00784064270
0107	10	10	96	Sigmoid	Nadam	0.0001	0.0	0.99924999475	0.00266717863	0.99750000238	0.01300043705
0108	10	50 90	352 384	Sigiii010 relu	RMSprop	0.01	0.0	0.9993/498569	0.00228/20188	0.998000025/49	0.009930101/5
0110	60	70	352	relu	Adam	0.01	0.1	0.99924999475	0.00419729528	0.99849998950	0.01151769515
0111	10	50	352	Sigmoid	Nadam	0.01	0.0	0 99874997138	0.00398347852	0.99800002574	0.01053883228

The Algorithm 2 explains the process of frames extraction. It takes an original video 'V' as input and it gives output as extracted frames 'f' ranges from 1 to n. Initially an empty list 'I' is taken to store the frames extracted from the video and initialize the counter. The VideoCapture function is used to capture the video 'V' from a given path and while checking the condition it extracts frames one after another. These extracted frames are appended to the list 'I' and counter is incremented till it reaches the last frame of original video.

To enhance the quality of mask and non-mask images present in the video dataset the Algorithm 3 is used for the pre-processing of these images. Initially, the algorithm takes Φ_M and Φ_N i.e., original frames as input and the output are Φ'_M , Φ'_N i.e., processed frames. The x-train and y-train are the training set of the dataset, and ' n_1 ' and ' n_2 ' be the size of mask and non-mask frames. For the two classes Φ_M , and Φ_N , firstly the resizing ' β ' of image ' I_i ' occurs that can resize all the images into a standard size and stores into ' r_i '. Thereafter, by applying histogram normalization techniques the resize image ' r_i ' stores as ' n_i '. In addition, the normalization takes place by dividing all the pixels of images with the highest grey level i.e., 255 and gives output as enhance image q_i . Finally, the processed images ' q_i ' are appended to x-train set and the label encoding of ' q_j ' are stored into ' L_j ' and afterwards these labels ' L_j ' are stored into the y-train set. Finally, the x-train contains the processed mask and non-mask frames ' Φ'_M ' and ' Φ'_N ', whereas, y-trains contains the labels of ' Φ'_M ' and ' Φ'_N '.

Algorithm 3. Pre-processing ().

•••	Trial 110 Complete [00h 03m 18s] val_accuracy: 0.9975000023841858									
	Best val_accuracy So Far: 1.0 Total elapsed time: 04h 48m 03s									
	Search: Running Trial #111									
	Value	Best Value So Far	Hyperparameter							
	0.1	0.4	dropout_rate							
	relu	softmax	activation							
	60	60	batch_size							
	70	10	epochs							
	352	64	units							
	0.01	0.0001	learning_rate							
	Adam	Adadelta	optimizer							
	30	2	tuner/epochs							
	10	0	tuner/initial_epoch							
	2	3	tuner/bracket							
	2	0	tuner/round							
	0105	None	tuner/trial_id							

Fig. 9. The optimal parameters selected after hyperparameter tuning of CoSumNet model.

image as ' Φ'_{M} ' and ' Φ'_{N} '. Then the labels are extracted from these processed images and stored as ' \hat{Z}_{M} ' and ' \hat{Z}_{N} ' along with encoding of 0 and 1. Finally the model 'M' is predicted on testing set and compute the performance by evaluating the actual summary S_{a1} and S_{a2} with that of predicted summaries i.e., S_{p1} and S_{p2} .

Suppose that a video 'v' of 'k' frames with size of each frame is $m \times n$. The overall complexity to process a video in our CoSumNet model is O (kmn).

To validate the CoSumNet model 'M' the Algorithm 4 is proposed, wherein the input given to the model is 'M' and output is the performance of summarization in terms of ACC, precision, recall and F-score. Initially, the test video is given as an input to 'M', that can extract the frames and stored into an empty list 'L' and thereafter each frame is checked for face-mask-detector. If the frame belongs to mask class, then it is appended to ' Φ_M ' and for non-mask it is appended to ' Φ_N '. Afterwards, the pre-processing of frames takes place by applying the resizing, normalization, quality enhancement operation to get the enhanced

Algorithm 4. To validate the CoSumNet model.

Input: CoSumNet model 'M' Output: Performance of summarization model (ACC, Precision, Recall, F-score) Begin $\mathfrak{l} \leftarrow |V_l|$ $\Phi_M = [], \Phi_N = [], L = []$ *for* k = 1 to L do $\begin{array}{c|c} L \leftarrow L. \text{ append } [\text{frames}_\text{extraction}-V_l(k)] \\ end \text{ for} \end{array}$ for f in L do *if* face-mask-detector (f) = True $\Phi_M \leftarrow \Phi_M$. append(f) L else $\Phi_N \leftarrow \Phi_N$. append(f)end for $\begin{aligned} \Phi'_{M} &\leftarrow \text{pre-processing}\left(\Phi_{M}\right) \\ \Phi'_{N} &\leftarrow \text{pre-processing}\left(\Phi_{N}\right) \end{aligned}$ $\hat{\mathbf{Z}}_{M} \leftarrow \text{pre-processing} (\boldsymbol{\Psi}_{N}) \\ \hat{\mathbf{Z}}_{M} \leftarrow \text{extract-label} (\boldsymbol{\Phi}'_{M}) \\ \hat{\mathbf{Z}}_{N} \leftarrow \text{extract-label} (\boldsymbol{\Phi}'_{N}) \\ [0] \leftarrow \text{encode} (\hat{\mathbf{Z}}_{M}) \\ \end{cases}$ $\begin{array}{l} [1] \leftarrow \text{encode} \ (\hat{Z}_N) \\ \text{Ý-pred} \leftarrow \text{M. predict} \ (x\text{-test, y-test}) \\ \text{ACC, Precision, Recall, F-score} \leftarrow \text{Evaluate} \ [[S_{a1}, S_{a2}], \ [S_{p1}, S_{p2}]] \end{array}$ End

Table 3

The performance of CoSumNet at various search space.

S.no.	Parameter	Search space	Performance			Selected parameter
			Value	Accuracy	Loss	
1.	Learning	[0.01, 0.001,	0.01	0.90287	0.09713	
	rate	0.0001]	0.001	0.91925	0.08075	0.0001
			0.0001	0.99837	0.00163	
2.	Epochs	[10, 30, 50, 70, 90,	10	0.96112	0.03888	
		100]	30	0.71325	0.28675	
			50	0.62699	0.37301	
			70	0.98637	0.01363	90
			90	0.99312	0.00688	
			100	0.98637	0.01363	
3.	Optimizer	['Adam', 'SGD',	Adam	0.99825	0.00175	
		'Nadam',	SGD	0.98637	0.01363	
		'RMSprop',	Nadam	0.99041	0.00959	
		Adadelta	RMSprop	0.73925	0.26075	Adam
			Adadelta	0.91925	0.08075	
4.	Batch size	[10, 20, 40, 60, 80,	10	0.90287	0.09713	
		100]	20	0.97912	0.02088	
			40	0.98837	0.01163	
			60	0.99112	0.00888	-
			80	0.62787	0.07213	60
			100	0.93924	0.06076	
5.	Activation	['softmax',	Softmax	0.99812	0.00188	
	function	'softplus', 'relu',	softplus	0.98487	0.01513	
		'tanh', 'sigmoid',	relu	0.98837	0.01163	
		linear j	tanh	0.97912	0.02088	Softmax
			sigmoid	0.96112	0.03888	
			linear	0.90287	0.09713	
6.	Dropout	[0.0, 0.1, 0.2, 0.3,	0.0	0.97912	0.02088	
	rate	0.4, 0.5]	0.1	0.96212	0.03788	
	1		0.2	0.93924	0.06076	0.4
	1		0.3	0.91925	0.08075	
			0.4	0.99312	0.00688	
	1		0.5	0.98912	0.01088]

* Highlighted values in Table 3 indicates the optimal hyperparameters for CoSumNet.

Fig. 10. Performance of CoSumNet model (a), (c). depicts model's accuracy at various values of optimizers and learning rate. (b), (d). shows performance of Adam optimizer and 0.0001 learning rate at different trails ranging frame 1 to 110.

4. Result analysis and discussions

In this section, we evaluate the performance of proposed CoSumNet on different experiments. Firstly, we present a description of benchmark dataset namely; Face Mask Detection \sim 12 K Images Dataset, that includes training, testing and validation set. Secondly, various experiments are carried out that include hyper tuning of proposed CoSumNet model along with the evaluation of model performance in known as well as known environment. Additionally, the proposed model is evaluated on cross-dataset scenario along with a variety of un-seen face masks. Lastly, the COVID-19 face mask violators summary generation testing is performed, where the separate summaries of with and without face masks are generated.

4.1. Benchmark face-mask-dataset

The face mask dataset contain the images of human with and without mask and is downloaded from Kaggle website named as "Face Mask Detection \sim 12K Images Dataset" [47]. The benchmark dataset that are used for our work contains 12,000 images captured through different video scenes covering diverse environments. The sample face masks images were acquired through a high-definition video camera. The images were bifurcated into two categories i.e., with mask and without mask images. Furthermore, the dataset consists of three subsets namely, training, testing and validation as shown in Table 1.

The samples of with and without face mask images present in dataset are shown in Fig. 8. As the face mask dataset constitutes of traing and testing set that includes with and without mask images of persons.

4.2. Evaluation metrics

To measure the performance of CoSumNet model, we choose standard metrics such as accuracy, precision, recall, f-score and error rate to evaluate our propose model.

Accuracy: It's the proportion of subjects who have been correctly identified to the total number of subjects. The accuracy may be computed by using Eq. (6).

$$Accuracy = \frac{True \ Positive + True \ Negative}{Total \ number \ of \ samples}$$
(6)

Precision: The number of true positives divided by the total number of positive predictions is known as precision. The precision may be calculated by using Eq. (7).

$$Precision = \frac{True \ Positive}{True \ Positive + False \ Positive}$$
(7)

Recall: The number of observations model accurately predicted out of the total number of observations is referred to as recall. The recall may be computed by using Eq. (8).

$$Recall = \frac{True \ Positive}{True \ Positive + False \ Negative}$$
(8)

F-score: It's the precision and recall's harmonic mean (average). The F1Score may be computed by Eq. (9).

$$F - score = 2*\frac{precision*Recall}{Precision + Recall}$$
(9)

Error rate It is calculated as the number of all incorrect predictions divided by the total number of the dataset as depicted in Eq. (10).

Fig. 11. Performance of CoSumNet model (a), (c). depicts model's accuracy at various values of activation function and dropout rate. and (b), (d). shows performance of Softmax activation function and 0.4 dropout rate at different trails ranging frame 0 to 104.

$$Error = \frac{False \ Positive + False \ Negative}{Total \ number \ of \ samples}$$
(10)

4.3. Experimental results

In this section, the effectiveness of the CoSumNet model is analysed through a series of experiments.

4.3.1. Hyper parameter tuning of CoSumNet model

The CoSumNet is hyperparameter tuned to choose the optimal parameters of model so that it is ready for real-time testing. The various parameters include batch size, epochs, units, activation function, optimizer, learning rate, and dropout rate as shown in Table 2. The CoSumNet model is tuned via a large number of trials ranging from 1 to 110 and at each trial the model performance is evaluated based on training accuracy and loss along with validation accuracy and loss. In each trial the model is trained on the various hyperparameters and then the optimal parameters are selected, and thereafter, the selected parameters are used to test the CoSumNet model in an unknown environment.

Fig. 9 shows the highest performance of CoSumNet at trial 110 along with the optimal parameters. It can be observed that an accuracy of 99.9 % is achieved with the selected optimal parameters of the model as well as it takes 3 min and 18 s. The optimal values of various hyperparameters for the CoSumNet model include such as "Adadelta" optimizer, 0.0001 learning rate, 10 epochs, 60 batch size, SoftMax activation function, and 0.4 dropout rate.

The selection of optimal hyperparameters has a significant impact on the performance of proposed CoSumNet model. Table 3 depicts the performance of each hyperparameters at different search space along with the value of optimal parameter selected so far. The CoSumNet model evaluated at various search space ranging from learning rate {0.01, 0.001, 0.0001}, optimizer {Adam, Nadam, SGD, RMSprop, Adadelta}, epochs {10,30,50,70,90,100}, batch size {10,20,40,60,80,100}, activation function {Relu, Softmax, Softplus, linear, Sigmoid, tanh}, and dropout rate {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}. Finally, the model performs better on search space values such as, 0.0001 learning rate, 90 epochs, Adam optimizer, 60 batch size, softmax activation function and 0.4 dropout rate.

The analysis of CoSumNet model at various values of optimizers and learning rate is depicted in Fig. 10. It is clearly inferred from Fig. 10 (a) that the model exibit promising results at "Adam" optimizer and Fig. 10 (b) depicts the performance of "Adam" in terms of accuracy and loss at different trials ranging from 1 to 110. Similarly, the Fig. 10 (c) infers that CoSumNet model indicates superior performance at a learning rate of 0.000, and whereas, Fig. 10 (d) depicts the accuracy and loss at a learning rate of 0.0001 with various trials ranging from 8 to 107.

The Fig. 11 depicts an analysis of CoSumNet model at various values of activation functions and dropout rates. It is clearly inferred from Fig. 11 (a), that the model performs better at "Softmax" activation function and Fig. 11 (b) depicts the performance of "Softmax" activation in terms of accuracy and loss with different trials ranging from 0 to 104. Similarly, the analysis from Fig. 11 (c) signifies that CoSumNet model shows better performance at a dropout rate of 0.4. Fig. 11 (d) depicts the accuracy and loss at a dropout rate of 0.4 with different trials ranging from 0 to 96.

The performance anlysis of CoSumNet model at different epochs and batch sizes is shown in Fig. 12. It can be clearly seen from Fig. 12 (a) that

Fig. 12. Performance of CoSumNet model (a), (c). depicts model's accuracy at various values of epochs and batch size. (b), (d). represents performance of 90 epochs and 60 batch size at different trails ranging frame 1 to 109.

the model performs better at 90 epochs and whereas, Fig. 12 (b) depicts the performance at an epoch of 90 in terms of accuracy and loss with different trials ranging from 1 to 109. Similarly, the Fig. 12 (c) depicts that CoSumNet exibit better performance at a batch size of 60. On the

other hand, Fig. 12 (d) illustrates the accuracy and loss of at a batch size of 60 with different trials ranging from 3 to 110.

Table 4

An evaluation of CoSumNet model in known environment.

Epochs	Loss	Accuracy	Validation loss	Validation accuracy	Execution time
3	0.0330	0.9948	0.0257	0.9975	17 s 108 ms/step
5	0.0184	0.9966	0.0144	0.9987	16 s 106 ms/step
10	0.0097	0.9984	0.0068	0.9987	17 s 107 ms/step
15	0.0058	0.9986	0.0047	0.9953	17 s 108 ms/step
20	0.0048	0.9984	0.0036	0.9946	17 s 110 ms/step
25	0.0030	0.9994	0.0029	0.9971	17 s 110 ms/step
30	0.0029	0.9992	0.0025	0.9975	17 s 108 ms/step
35	0.0015	0.9996	0.0022	0.9978	17 s 110 ms/step
40	0.0015	0.9985	0.0019	0.9981	17 s 108 ms/step
45	0.0013	0.9998	0.0017	0.9983	17 s 111 ms/step
50	0.0013	0.9987	0.0018	0.9982	17 s 110 ms/step
55	0.0012	0.9988	0.0026	0.9987	17 s 108 ms/step
60	0.0011	0.9989	0.0025	0.9987	17 s 109 ms/step
65	0.0010	0.9990	0.0020	0.9987	17 s 109 ms/step
70	0.0009	0.9991	0.0021	0.9987	17 s 110 ms/step
75	0.0008	0.9992	0.0018	0.9987	17 s 108 ms/step
80	0.0009	0.9991	0.0017	0.9987	17 s 108 ms/step
85	0.0007	0.9993	0.0015	0.9987	17 s 110 ms/step
90	0.0006	0.9994	0.0017	0.9987	17 s 111 ms/step
95	0.0010	0.9990	0.0018	0.9987	17 s 108 ms/step
100	0.0011	0.9989	0.0015	0.9987	17 s 109 ms/step

Fig. 13. The learning curves of CoSumNet model in known environment (a). validation accuracy (b) validation loss.

Fig. 14. A depiction of CoSumNet $\frac{16}{\text{model}}$ performance in known samples.

Table 5

Optimal Hyperparameters used for testing data.

Optimal parameters	Values
Optimizer	Adadelta
Learing rate	0.0001
Epochs	10
Steps per epoch	156
Batch size	60
Loss function	sparse_categorical_crossentropy
Activation function	Softmax
Dropout rate	0.4

Table 6

Performance of CoSumNet model on testing dataset.

Proposed CoSumNet model										
Classes	Accuracy	Precision	Recall	F-score	Loss					
With mask (0) Without Mask (1)	0.99923 0.99923	0.98919 0.98919	0.99791 0.99791	0.993526 0.993526	0.00077 0.00077					

4.3.2. Performance of CoSumNet in known environment

The performance of CoSumNet model evaluated on known samples is depicted in Table 4 and it is tested up to an epoch of 100. From the

analysis, it is clearly observed that the proposed model attains a superior performance at epoch 45, where an accuracy of 99.98 % is achieved with a of loss 0.0013 %.

The graphical representation of performance achieved in evaulation of the CoSumNet model is depicted in Fig. 13. The anlaysis from Fig. 13 (a) clearly infers that model results in better performance in the validation set. It achives an accuracy of 99.98 % and a loss of 0.0013 % in known environment.

Few samples of with and without mask images of "face mask detection dataset" that are correctly predicted and classified by the CoSumNet model are shown in Fig. 14.

It is clearly revealed that CoSumNet model performed well in known environment. As all the known samples of "face mask detection dataset" are correctly detected as "with" or "without mask" by the proposed CoSumNet model.

4.3.3. Mask detection in unseen environment

The performance of CoSumNet model in unknown environment is evaluated in this experiment. Table 5 shows the values of optimal parameters that are used for the testing the unseen face images. In the unknown or unseen environment, the samples of with and without face mask images are used to evaluate the performance of CoSumNet model. These samples are the test images that are not present in the benchmark

Fig. 15. The testing curve of CoSumNet model in unknown environment (a). testing accuracy (b). testing loss.

Fig. 16. Performance of CoSumNet model a. ROC curve b. Precision recall curve.

Fig. 17. A depiction of CoSumNet model performance in unknown samples.

Fig. 18. Performance evaluation of CoSumNet on a variety of face mask detection.

"face mask dataset" that is originally used for training the CoSumNet. The performance of CoSumNet model in the unknown or unseen environment is shown in Table 6. Furthermore, the various evaluation metrics are used such as accuracy, precision, recall, F-score and error rate to predict the model performance. It clearly inferred that CoSumNet model performs well on testing dataset as an accuracy of 99.923 % and a loss of 0.00077 % is attained.

A graphical representation of model in terms of accuracy and loss is

Table 7

Comparison of proposed model with state-of-the-art face mask detection techniques.

Year	Author(s)	Method	Performance evaluation				
			Accuracy	Precision	Recall	Error rate	
2020	Jiang M. et al. [40]	RetinaFaceMask based on MobileNetV1	-	82.3 %	89.1 %	_	
2021	Goyal H. et al. [34]	CNN-based face mask detection	98.0 %	97.0 %	98.0 %	0.02	
2022	Sethi S. et al. [35]	Ensemble face mask detection based on ResNet50	98.2 %	98.92 %	92.4 %	0.018	
2022	Hussain D. et al. [38]	DCNN	97.0 %	98.0 %	96.0 %	0.02	
		MobileNet-V2	98.0 %	98.0 %	98.0 %	0.014	
2022	Jayaswal R. et al. [44]	Single Shot Multi-box detector based on Inception V3	98.75 %	98.12 %	97.45 %	0.05	
2023	Our proposed model	CoSumNet	99.923 %	98.919 %	99.791 %	0.0007	

Fig. 19. A comparative analysis of our approach with existing similar SOTA face mask detection.

Table 8 Performance evaluation of our face mask detector with existing standard dataset.

Year	Name	No. of in	nages	Performance	Performance	
		With mask	Without mask	Accuracy	Loss	
2020	Face Mask Detection 7553 Images [48]	3725	3828	97.731 %	0.227	
2020	Face Mask Detection ~12 K Images Dataset [47]	6000	6000	99.923 %	0.001	
2021	Face Mask Detection [49]	2994	2994	98.22 %	0.018	
2021	Face Data Hybrid [50]	22.6 K	22.4 K	97.102 %	0.029	

Table 9

The performance evaluation of CoSumNet model for summary generation.

Original video	Length of video	No. of frames extracted	Scene	No. of selected frames	Summary length
Video 1	20 s	600 frames	Indoor scene	150 frames	5 s
Video 2	1 min	1800 frames	Outdoor scene	450 frames	15 s
Video 3	1 min 20 s	2400 frames	Indoor scene	600 frames	20 s
Video 4	30 s	900 frames	Outdoor scene	240 frames	8 s
Video 5	1 min	1800 frames	Indoor scene	450 frames	15 s

shown in Fig. 15 and depicts the accuracy of CoSumNet in unseen samples reaches up to 99.923 % as well as a loss up to 0.00077 %. It shows that our model results in a promising performance on testing dataset. Fig. 15 (a) highlight the performance in terms of accuracy on

testing set and Fig. 15 (b) depicts the testing loss of CoSumNet.

The performance of CoSumNet model in terms of ROC (i.e., receiver operating curve) is depicted in Fig. 16. The analysis from the figure clearly reveals that model performs well on testing dataset as the AUC (i. e., area under curve) of proposed model is 0.999. Fig. 16 (a) shows the ROC of CoSumNet, whereas Fig. 16 (b) present the precision recall curve of model.

The performance of CoSumNet model on testing images or unknown samples is depicted in Fig. 17. It is clearly inferred that majority of the images are correctly classified and predicted by the CoSumNet except last two samples that are bounded in red coloured box. The actual prediction of last two image is "without mask" whereas the model classifies these as "with mask". Hence, the model demonstrates satisfactory performance on unknown samples.

Moreover, we have evaluated the effectiveness of our video face mask detector with a variety of unseen face masks that has not seen by the model. The performance of CoSumNet for detecting few unknown face masks prediction is shown in Fig. 18.

It is clearly observed that in all the selected sample images the face mask is correctly predicted along with green bounding box. For evaluating the proposed model, we have specifically chosen a variety of face masks created with different fabrics.

4.3.4. Comparison with SOTA face mask detection techniques

In this section, our method for face mask detection employed in CoSumNet is compared with existing similar approaches. The comparative analysis is depicted in Table 7, which clearly exhibit that our approach outperforms similar methods in terms of performance particularly with an accuracy of 99.923 %. However, other similar methods have also achieved promising performance with different face masks, but our approach is robust in detecting a variety of face masks in the video frames with very small error rate of 0.0007. Moreover, our face mask detection technique in videos shows excellent performance both in known and unknown scenarios specifically in detecting face masks which has not been seen by the model. In addition, the technique used in

Fig. 20. The CoSumNet summaries generated from real-time video captured from crowded scenes.

our CoSumNet video summarization model demonstrates high precision and recall for intelligently detecting face masks with precision and recall of 98.919 % and 99.791 % respectively.

The comparative analysis of CoSumNet face mask detector with other similar methods in terms of various performance metrics is graphically illustrated in Fig. 19. The efficacy is clearly seen from Fig. 19 that indicates the superiority of the face mask detector.

Additionally, the face mask detection method employed in CoSum-Net is evaluated on a set of publicly available standard face mask datasets and results are highlighted in Table 8. It can be observed that the CoSumNet face mask detector is also very effective and shows excellent performance in the cross-dataset environment.

4.3.5. CoSumNet for video summary generation

The CoSumNet model is used to evaluate and generate the summaries from the original videos and these summaries are depicted in Table 9. In addition, a detailed description of length of original video along with the number of frames extracted from that specific video is also presented. Moreover, the scene in which the video is captured and after the summarization process the selected frames as well as the length of summary is evaluated. The analysis from Table 9 clearly inferred that length of summarized video is far less than original video and it satisfies the criteria of video summarization. The frames that are present in summarized video are the detected and classified samples of with and without mask images. Hence, two summaries are generated namely, with mask and without mask summary. The summary generation process of the original videos is depicted in Fig. 20. The analysis shows the description of each video, wherein firstly the frames are extracted from an original video and thereafter the CoSumNet model generates the samples of with and without face mask images.

In addition, the two summaries are generated that contain "with" and "without mask" human. The original videos were captured through CCTV installed in indoor or outdoor scenes to evaluate the performance of proposed CoSumNet model. The samples of "with mask" images are shown via green bounding box and, similarly, a red bounding box shows "without face" mask images. Finally, two summaries are generated from the model i.e., "with mask" and "without mask", where the former includes "with mask" human video scene and the later contain "without mask" human.

The detailed experimental evaluation of the proposed CoSumNet model advocates its effectiveness in COVID-19 protocol monitoring via face mask detection. It offers several advantages in the prevailing conditions of COVID-19 pandemic, that include: (i). CoSumNet exhibits outstanding performance in both seen and unseen scenarios for generating respective short summaries with mask and non-mask categories. (ii). It is an efficient framework that employs the notion of transfer learning, therefore learning the model requires comparatively lesser training overhead. (iii). The proposed approach is robust even with smaller face mask dataset, it is mainly due to the usage of pre-trained ResNet-50 deep learning model. (iv). The real-time deployment of CoSumNet can help the controlling agencies to effectively monitor the violation of face mask protocol, particularly in densely crowded public scenes.

However, one of the limitations of the CoSumNet is to cover large number of face masks that are manufactured through various fabrics in different regions of the world. Furthermore, appropriate wearing of face mask in the video frames is a further challenge that requisite more exploration in future.

5. Conclusions

In this work, we developed a novel and efficient video summarization-based model for COVID-19 protocol monitoring (i.e., without mask violators). Our approach has been evaluated in a diverse range of scenarios such as cross-dataset analysis, unseen face masks etc. In brief, the proposed technique is effective and efficient due to usage of a fine-tuned pretrained deep neural network (i.e. ResNet-50) for training the CoSumNet model. The efficacy of our approach can be observed in generating accurate short summaries that include human who violate the face mask protocols. Additionally, a benchmark dataset has been used for training the underlying classification model for CoSumNet that include a variety of human with and without face masks. Our approach has been evaluated on shorter length videos for monitoring COVID-19 protocols, therefore the future work may focus on longer videos. Though, the CoSumNet results in an accuracy of 99.92 % in unseen scenario, the further work may involve in enhancing the performance in large number of face masks datasets. Besides, the future work may include to upgrade the CoSumNet for generating automatic triggers (i.e., alerts, chalans) to COVID-19 protocols via video summaries of face mask violators in public places.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

- Uherbelau HGJ, Services H. Available:. In: WHO's monthly operational update on COVID-19; 2022. p. 1–17. https://www.who.int/publications/m/item/monthlyoperational-update-on-covid-19—july-2022.
- [2] WHO. Driving impact in every country. Available:. 2020. https://apps.who.int/gb/ ebwha/pdf_files/WHA73/A73_24-en.pdf.
- [3] WHO. Available:. In: Weekly epidemiological update on COVID-19 29 June 2022 -Edition 98. Organization World Health; 2022. p. 16. https://www.who.int/publi cations/m/item/weekly-epidemiological-update-on-covid-19—29-june-2022.
- [4] Sabha A, Selwal A. Data-driven enabled approaches for criteria-based video summarization: a comprehensive survey, taxonomy, and future directions. Multimed Tools Appl 2023. https://doi.org/10.1007/s11042-023-14925-w.
- [5] Sabha A, Selwal A. HAVS: human action-based video summarization, taxonomy, challenges, and future perspectives. In: Proceedings of the 2021 IEEE international conference on innovative computing, intelligent communication and smart electrical systems. ICSES; 2021. p. 1–9. https://doi.org/10.1109/ ICSES52305.2021.9633804.
- [6] Choroś K. Categorization of sports video shots and scenes in tv sports news based on ball detection. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 8397. LNAI; 2014. p. 591–600. https://doi.org/10.1007/978-3-319-05476-6_60. no. PART 1.
- [7] Javed A, Irtaza A, Khaliq Y, Malik H, Mahmood MT. Replay and key-events detection for sports video summarization using confined elliptical local ternary patterns and extreme learning machine. Appl Intell 2019;49(8):2899–917. https:// doi.org/10.1007/s10489-019-01410-x.
- [8] Hasan T, Boril H, Sangwan A, Hansen JHL. Multi-modal highlight generation for sports videos using an information-theoretic excitability measure. EURASIP J Adv Signal Process 2013;2013(1):1–17. https://doi.org/10.1186/1687-6180-2013-173.

- [9] Liu C, Huang Q, Jiang S, Xing L, Ye Q, Gao W. A framework for flexible summarization of racquet sports video using multiple modalities. Comput Vis Image Understand 2009;113(3):415–24. https://doi.org/10.1016/j. cviu.2008.08.002.
- [10] Baillie M, Jose JM. Audio-based event detection for sports video. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). 2728; 2003. p. 300–9. https://doi.org/10.1007/3-540-45113-7_30.
- [11] Tabish M, Tanooli Zur R, Shaheen M. Activity recognition framework in sports videos. Multimed Tools Appl 2021. https://doi.org/10.1007/s11042-021-10519-6.
- [12] Shih H. A survey on content-aware video analysis for sports. IEEE Trans Circ Syst Vid Technol 2017;99(9):1–20.
- [13] Ali H, Sharif M, Yasmin M, Rehmani MH, Riaz F. A survey of feature extraction and fusion of deep learning for detection of abnormalities in video endoscopy of gastrointestinal-tract. Artif Intell Rev 2020;53(4):2635–707. https://doi.org/ 10.1007/s10462-019-09743-2.
- [14] Münzer B, Schoeffmann K, Böszörmenyi L. Content-based processing and analysis of endoscopic images and videos: a survey. Multimed Tools Appl 2018;77(1): 1323–62. https://doi.org/10.1007/s11042-016-4219-z.
- [15] Feng W, Liu R, Zhu M. Fall detection for elderly person care in a vision-based home surveillance environment using a monocular camera. Signal Image Video Process 2014;8(6):1129–38. https://doi.org/10.1007/s11760-014-0645-4.
- [16] Luna E, Miguel JCS, Ortego D, Martínez JM. Abandoned object detection in videosurveillance: survey and comparison. Sensors (Switzerland) 2018;18(12). https:// doi.org/10.3390/s18124290.
- [17] Beghdadi A, Asim M, Almaadeed N, Qureshi MA. Towards the design of smart video-surveillance system. In: 2018 NASA/ESA Conference on Adaptive Hardware and Systems (AHS); 2018. p. 162–7.
- [18] Gowsikhaa D, Abirami S, Baskaran R. Automated human behavior analysis from surveillance videos: a survey. Artif Intell Rev 2014;42(4):747–65. https://doi.org/ 10.1007/s10462-012-9341-3.
- [19] Sultani W, Chen C, Shah M. Real-world anomaly detection in surveillance videos. IEEE Xplore 2018:6479–88. https://doi.org/10.48550/arXiv.1801.04264.
- [20] Sreenu G, Saleem Durai MA. Intelligent video surveillance: a review through deep learning techniques for crowd analysis. J Big Data 2019;6(1):1–27. https://doi. org/10.1186/s40537-019-0212-5.
- [21] Xu J, Sun Z, Ma C. Crowd aware summarization of surveillance videos by deep reinforcement learning. Multimed Tools Appl 2021;80(4):6121–41. https://doi. org/10.1007/s11042-020-09888-1.
- [22] Muhammad K, Ahmad J, Mehmood I, Rho S, Baik SW. Convolutional neural networks based fire detection in surveillance videos. IEEE Access 2018;6(March): 18174–83. https://doi.org/10.1109/ACCESS.2018.2812835.
- [23] Milotta FLM, Furnari A, Battiato S, Signorello G, Farinella GM. Egocentric visitors localization in natural sites. J Vis Commun Image Represent 2019;65(2). https:// doi.org/10.1016/j.jvcir.2019.102664.
- [24] del Molino AG, Tan C, Lim JH, Tan AH. Summarization of egocentric videos: a comprehensive survey. IEEE Trans Hum Mach Syst 2017;47(1):65–76. https://doi. org/10.1109/THMS.2016.2623480.
- [25] Sahu A, Chowdhury AS. Multiscale summarization and action ranking in egocentric videos. Pattern Recogn Lett 2020;133:256–63. https://doi.org/10.1016/j. patrec.2020.02.029.
- [26] Sahu A, Chowdhury AS. Summarizing egocentric videos using deep features and optimal clustering. Neurocomputing 2020;398:209–21. https://doi.org/10.1016/j. neucom.2020.02.099.
- [27] Ghafoor HA, Javed A, Irtaza A, Dawood H, Dawood H, Banjar A. Egocentric video summarization based on people interaction using deep learning. Math Probl Eng 2018;2018:1–12. https://doi.org/10.1155/2018/7586417.
- [28] WHO [Online]. Available:. In: Considerations in adjusting public health and social measures in the context of COVID-19. World Health Organisation Interim Guidance; 2021. p. 1–13. https://www.who.int/publications/i/item/consideration s-in-adjusting-public-health-and-social-measures-in-the-context-of-covid-19-int erim-suidance.
- [29] World Health Organization [Online]. Available:. In: COVID-19 : occupational health and safety for health workers. World Health Organization; 2021. p. 1–16. https://www.who.int/publications/i/item/WHO-2019-nCoV-HCW_advice-2021.1.
- [30] World Health Organization [Online]. Available:. In: COVID-19 weekly epidemiological update. World Health Organization; 2022. p. 1–33. https://www. who.int/publications/m/item/covid-19-weekly-epidemiological-update.
- [31] WHO, ILO. Preventing and mitigating COVID-19 at work [Online]. Available:. In: Preventing and mitigating COVID-19 at work: policy brief, 19 May 2021, no. May; 2021. p. 1–21. https://www.who.int/publications/i/item/WHO-2019-nCoV-wo rkplace-actions-policy-brief-2021-1.
- [32] Hopkins J. Coronavirus Second Wave, Third Wave and Beyond: What Causes a COVID Surge. https://www.hopkinsmedicine.org/health/conditions-and-diseases/ coronavirus/first-and-second-waves-of-coronavirus; 2021.
- [33] Kapoor MSM. From 8,000 to 1 lakh in just 62 days; 2nd Covid-19 wave is more infectious than 1st. https://www.businesstoday.in/coronavirus/story/from-8 000-to-1-lakh-in-just-62-days-2nd-covid-19-wave-more-infectious-than-1s-292 744-2021-04-06; 2021.
- [34] Goyal H, Sidana K, Singh C, Jain A, Jindal S. A real time face mask detection system using convolutional neural network. Multimed Tools Appl 2022. https:// doi.org/10.1007/s11042-022-12166-x. no. November 2021.
- [35] Sethi S, Kathuria M, Kaushik T. Face mask detection using deep learning: an approach to reduce risk of coronavirus spread. J Biomed Inform 2021;120(June): 103848. https://doi.org/10.1016/j.jbi.2021.103848.

- [36] Li S, et al. Multi-angle head pose classification when wearing the mask for face recognition under the COVID-19 coronavirus epidemic. In: 2020 International Conference on High Performance Big Data and Intelligent Systems, HPBD and IS 2020; 2020. https://doi.org/10.1109/HPBDIS49115.2020.9130585.
- [37] Bosheng Q, Li D. Identifying facemask-wearing condition using image superresolution with classification network to prevent COVID-19. MDPI Sensor 2020;20 (18):1–23. https://doi.org/10.3390/s20185236.
- [38] Hussain D, Ismail M, Hussain I, Alroobaea R, Hussain S, Ullah SS. Face mask detection using deep convolutional neural network and MobileNetV2-based transfer learning. Wirel Commun Mob Comput 2022;2022:1–10. https://doi.org/ 10.1155/2022/1536318.
- [39] Nagavi TC, Sharanya RB, Minchu S, Kumar R, Manuprasad. COVID-19 face mask detection using deep learning. In: Proceedings of IEEE International Conference on Signal Processing, Computing and Control. 2021; 2021. p. 141–5. https://doi.org/ 10.1109/ISPCC53510.2021.9609487.
- [40] Jiang M. Retinafacemask: A Face Mask Detector. arXiv; 2020. 2005.03950v2 [cs. CV] 8 Jun.
- [41] Fan X, Jiang M. RetinaFaceMask : a single stage face mask detector for assisting control of the COVID-19 pandemic. IEEE SMC 2021;2021. https://doi.org/ 10.48550/arXiv.2005.03950.
- [42] Wang Z, et al. Masked face recognition dataset and application. 2003.09093v2 [cs. CV]. In: Computer Vision and Pattern Recognition. 23. arXiv; 2020. p. 1–3. https:// doi.org/10.48550/arXiv.2003.09093. Mar 202.

- [43] Jayaswal R, Dixit M. Traitement du signal detection of hidden facial surface masking in stored and real time captured images : a deep learning perspective in Covid time. Traitement du Signal 2021;38(6):1875–85. https://doi.org/10.18280/ ts.380632.
- [44] Jayaswal R, Dixit M. AI-based face mask detection system: a straightforward proposition to fight with Covid-19 situation. Multimed Tools Appl 2022. https:// doi.org/10.1007/s11042-022-13697-z.
- [45] Jayaswal R. A face mask detection system : an approach to fight with COVID-19 scenario. Concurr Comput 2022;34(28):1–19. https://doi.org/10.1002/cpe.7394.
- [46] SJ, He K, Zhang X, Ren S. Deep residual learning for image recognition. IEEE Xplore 2015;45(8):770–8. https://doi.org/10.1109/CVPR.2016.90.
- [47] Jangra A. "Face Mask Detection ~12K Images Dataset," Kaggle repository. https: //www.kaggle.com/datasets/ashishjangra27/face-mask-12k-images-dataset; 2020.
- [48] Gurav O. "Face Mask Detection Dataset 7553 Images," Kaggle repository. https ://www.kaggle.com/datasets/omkargurav/face-mask-dataset; 2020.
- [49] Kumar V. 'Face Mask Detection,' Kaggle repository. https://www.kaggle.com/da tasets/vijaykumar1799/face-mask-detection; 2021.
- [50] Kaushik M. "facedatahybrid," Kaggle repository. https://www.kaggle.com/datas ets/mrviswamitrakaushik/facedatahybrid; 2021.