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Abstract

The lipocalin (LCN) family members, a group of small extracellular proteins with 160–180 amino 

acids in length, can be detected in all kingdoms of life from bacteria to human beings. They are 

characterized by low similarity of amino acid sequence but highly conserved tertiary structures 

with an eight-stranded antiparallel β-barrel which forms a cup-shaped ligand binding pocket. In 

addition to bind small hydrophobic ligands (i.e., fatty acids, odorants, retinoids, and steroids) 

and transport them to specific cells, lipocalins (LCNs) can interact with specific cell membrane 

receptors to activate their downstream signaling pathways, and with soluble macromolecules 

to form the complex. Consequently, lipocalins exhibit great functional diversity. Accumulating 

evidence has demonstrated that lipocalin family proteins exert multiple layers of function in the 

regulation of many physiological processes and human diseases (i.e., cancers, immune disorders, 

metabolic disease, neurological/psychiatric disorders, and cardiovascular disease). In this review, 

we firstly introduce the structural and sequence properties of lipocalins. Next, six lipocalins 

including apolipoprotein D (ApoD), ApoM, lipocalin 2 (LCN2), LCN10, retinol-binding protein 

4 (RBP4), and Lipocalin-type prostaglandin D synthase (L-PGDS) which have been characterized 

so far are highlighted for their diagnostic/prognostic values and their potential effects on coronary 

artery disease and myocardial infarction injury. The roles of these 6 lipocalins in cardiac 

hypertrophy, heart failure, diabetes-induced cardiac disorder, and septic cardiomyopathy are also 

summarized. Finally, their therapeutic potential for cardiovascular disease is discussed in each 

section.
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1. Introduction

Lipocalins (LCNs), a group of typically small extracellular proteins with 160–180 amino 

acids in length, belong to the calycin superfamily that also includes other 4 families: 

acid-binding proteins (ABPs), avidins, triabins, and metalloproteinase inhibitors (MPIs) 

(Flower, North, & Attwood, 1993). The term “lipocalin” was initially proposed by Pervaiz 

& Brew in 1987 for a group of proteins including α1-microglobulin (A1M, also referred 

to as protein HC), human α1-acid glycoprotein (AGP), bovine β-lactoglobulin, and serum 

retinol-binding protein (RBP), which was based on their sequence homologies, disulfide 

bond pattern, and functional similarities in their ability to bind lipophilic molecules inside 

a cup-shaped protein fold (Pervaiz & Brew, 1987). Over the past decades, there are >1000 

LCN genes identified among bacteria, plants, fungi, animals, and at least 20 LCN-like genes 

exist in the human genome (Charkoftaki, et al., 2019; Du, et al., 2015; Urzua, et al., 2006). 

Interestingly, lipocalin genes have a conserved arrangement of exons/introns with a primary 

pattern including 7 exons and 6 introns (C. Guo, et al., 2010; Hamil, et al., 2003; Suzuki, 

et al., 2006). They are usually organized into clusters at the same chromosome, which may 

be generated by functional divergence or duplications with evolutionary time (Hamil, et al., 

2003; Suzuki, et al., 2004; Suzuki, et al., 2006). For example, human LCN genes are mostly 

detected in the Chromosome 9, and mouse LCNs are mostly clustered in chromosome 2 

(Fig. 1). Furthermore, 18 of 20 human LCN genes have mouse orthologs (Table 1) which 

share a high degree of similarity (Charkoftaki, et al., 2019; Du, et al., 2015; Urzua, et 

al., 2006). Among all 20 LCN genes, LCN7 shows the highest percent similarity (90%), 

whereas LCN15 and LCN13 (OBP2A) display the lowest percent identity (39%) to their 

mouse orthologs (Table 1). Please note that LCN1 (also known as tear per-albumin or von 

Ebner’s gland protein) (Glasgow, et al., 1993; Holzfeind, Merschak, Wojnar, & Redl, 1997; 

Lassagne, Ressot, Mattei, & Gachon, 1993) and PAEP [progestagen-associated endometrial 

protein, also referred to as glycodelin (GD), a secreted immunosuppressive glycoprotein] 

(Joshi, Smith, & Stokes, 1980) are found only in human, whereas Lcn3, 4, 5 11, 16, 17 and 

all the functional major urinary protein genes (MUPs) exist only in mouse (Charkoftaki, et 

al., 2019). Human LCN6 gene is the orthologous gene of mouse Lcn5 (Hamil, et al., 2003).

LCNs were originally characterized to transport or store a range of small hydrophobic 

molecules such as odorants, retinol, steroid hormones, and various secondary metabolites 

(Flower, 1995, 1996; Flower, North, & Sansom, 2000). However, owing to their common 

molecular recognition patterns that include: 1) binding to specific cell membrane receptors, 

2) high affinity to small hydrophobic molecules, and 3) the transient formation of complexes 

with soluble macromolecules, it is now becoming increasingly clear that lipocalins 

exert multiple layers of biological functions in the modulation of cell proliferation, 

differentiation, death, and ageing (Akerstrom, Flower, & Salier, 2000; Flower, 1995, 

1996; Grzyb, Latowski, & Strzalka, 2006). They are also associated with the regulation 
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of immune response/inflammation, smell reception, reproduction, cancer development, 

metabolic disorders, and cardiovascular remodeling (Ganfornina, Akerstrom, & Sanchez, 

2022; Redl & Habeler, 2022; Virtanen, 2021). As carrier proteins, LCNs could act in 

the general clearance of intracellular and extracellular hydrophobic molecules (Flower, 

1996). Clinically, LCNs have been extensively explored as biochemical biomarkers for the 

diagnosis of human disease (Bacci, Cavallari, de Rozier-Alves, Alves Bda, & Fonseca, 

2015; Bergwik, Kristiansson, Allhorn, Gram, & Akerstrom, 2021; Krol-Grzymala, et al., 

2022; Sawyer, 2021; Sivalingam, et al., 2017; Steinhoff, Lass, & Schupp, 2021; Wong 

& Tse, 2021; Zabetian-Targhi, Mahmoudi, Rezaei, & Mahmoudi, 2015). In this review, 

we firstly introduce the structural and sequence properties of LCNs, and then summarize 

their diverse roles in coronary artery disease, cardiac vessel integrity, myocardial infarction, 

cardiac hypertrophy, and their associated heart failure. We also highlight both beneficial and 

detrimental effects of LCNs in diabetic and septic cardiomyopathy. Finally, their therapeutic 

potentials to the treatment of cardiovascular disease are discussed.

2. Characterization of Lipocalin Family Proteins

It is well recognized that the similarity of amino acid sequences among lipocalin family 

members is very low falling below 20% (Flower, et al., 2000). However, their three-

dimensional structure is highly preserved with eight antiparallel β-strands (labelled A-H) 

forming a fold or calyx in a cylindrical manner with a “closed end” on one side and an 

“open end” on the opposite side (Flower, et al., 2000) (Fig. 2). The “open end” provides 

an access into the central cavity for the internal ligand-binding with and transporting small 

hydrophobic compounds including lipids, odorants (e.g., pheromones), retinoids, and steroid 

hormones (Flower, et al., 2000; Grzyb, et al., 2006; Schlehuber & Skerra, 2005). The eight 

β-strands, connected by seven loops (L1-L7), coil in a right-handed manner around a central 

axis and interact through transversal hydrogen bonds (Grzyb, et al., 2006). The first loop 

L1 is a large and flexible omega-type loop which functions as a dynamic lid for the “open 

end” of the β -barrel, and the other six are short hairpin-type loops (Flower, et al., 1993) 

(Fig. 2). Previous work has performed analysis for the conservation of amino acid sequence 

and structure within lipocalin proteins and identified that there is a common lipocalin fold 

characterized by three large structurally conserved regions (SCRs): SCR1 (strand A and its 

preceding 310-like helix), SCR2 (strands F and G, and their linking loop L6), and SCR3 

(strand H and adjoining residues) (Flower, et al., 1993; Flower, et al., 2000) (Fig. 2). Despite 

the fact that other SCRs of the common core are identified, they are small and can be 

neglected. For example, one recent study by Du et al showed that human lipocalin proteins 

share four SCRs (Du, et al., 2015).

Notably, some LCNs contains three SRCs, whereas other LCNs have only one or two SCRs 

(Flower, et al., 2000). Accordingly, the LCN family can be divided in two groups: kernel 

LCNs and outlier LCNs. The Kernel lipocalins, representing a core set of LCNs, share 

three conserved sequence motifs corresponding to the three main SCRs of the lipocalin fold 

(Flower, et al., 2000; Grzyb, et al., 2006). The outlier LCNs typically share no more than 

two SCRs and are more diverse. Based on this categorization, A1M, ApoD, complement 

C8 gamma chain (C8γ), LCN2, lipocalin-type prostaglandin D2 synthase (L-PGDS), PEAP, 

RBP4, and all mouse MUPs belong to kernel lipocalins; while AGP1, AGP2, ApoM, LCN1, 
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LCN13, and LCN14 are included in the outlier category (Charkoftaki, et al., 2019; Du, et 

al., 2015; Flower, et al., 2000; Grzyb, et al., 2006). It is important to note here, among 

all apolipoproteins (ApoA, ApoB, ApoC, ApoD, ApoE, ApoF, ApoH ApoL, ApoM), both 

ApoD and ApoM share no amino acid sequence similarities with other apolipoproteins but 

< 20% homology with lipocalins and both contain distinct SCR motifs which ApoD protein 

has all three SCRs of LCN (kernel lipocalin), whereas ApoM protein contains one SCR only 

(outlier lipocalin) (Charkoftaki, et al., 2019; Du, et al., 2015).

Although lipocalin proteins are structurally highly conserved and similar, their binding 

ligands and receptors are divergent, leading to their functional different (Akerstrom, et 

al., 2000; Ganfornina, et al., 2022; Grzyb, et al., 2006; Redl & Habeler, 2022; Virtanen, 

2021). For example, LCN1, one of four major proteins in human tears functions as a lipid 

sponge on the ocular surface (Glasgow, et al., 1993; Holzfeind, et al., 1997; Lassagne, et al., 

1993). LCN2 can bind metalloproteinase 9 (MMP9), lipoprotein receptor-related protein 2 

(LRP2), toll-like receptor 4 (TLR4), and 24p3R to mediate various inflammatory response 

(Guardado, Ojeda-Juarez, Kaul, & Nordgren, 2021; Jaberi, et al., 2021). LCN7 (also named 

tubulointerstitial nephritis antigen-like 1, TINAGL1) acts as a matricellular regulator of 

angiogenesis through activation of the TGF-β signaling pathway and increased secretion of 

VEGF (Brown, et al., 2010; L. Sun, Dong, Gu, Guo, & Yu, 2019). LCN13 and LCN14 may 

regulate glucose homeostasis (Buhler, et al., 2021; Cho, Zhou, Sheng, & Rui, 2011; Lee, 

et al., 2016; Zhou & Rui, 2013). In addition, LCNs could be internalized into cells, and 

transferred to lysosomes either for degradation [i.e., L-PGDS] or performing their function 

there (Mohri, et al., 2006; Nagata, et al., 2009). They can also interact with mitochondria 

in damaged cells (Kristiansson, et al., 2020; Olsson, et al., 2013). For example, Olsson et al 
previously showed that A1M could bind with high affinity to apoptotic cells and is localized 

to mitochondria through specifically binding to a subunit of Complex I (Olsson, et al., 

2013). Furthermore, extracellular LCNs exist in diverse formats: bound to protein partners, 

lipoprotein particles, or membrane vesicles, which may yield varied effects (Redl & Habeler, 

2022; Virtanen, 2021). As lipid-associated proteins, LCNs have been well studied in the 

regulation of metabolic diseases (see reviews elsewhere (Bacci, et al., 2015; Christoffersen, 

2021; Frances, Tavernier, & Viguerie, 2021; Jaberi, et al., 2021; Nono Nankam & Bluher, 

2021; Zabetian-Targhi, et al., 2015)). However, recent years have also witnessed the great 

progress made on the investigation of major LCNs (i.e., ApoD, ApoM, LCN2, LCN10, 

L-PGDS, and RBP4) in the field of cardiovascular diseases, as what we focus on below.

3. Lipocalins in Coronary Artery Disease and Myocardial Infarction

Coronary artery disease (CAD) is recognized to be the leading cause of death worldwide 

(Frak, et al., 2022; Hetherington & Totary-Jain, 2022; Schuett, Lehrke, Marx, & Burgmaier, 

2015). The critical pathological change observed in CAD patients is atherosclerosis with 

the cholesterol and lipid-based blockage that usually causes chronic inflammation and 

myocardial infarction (Frak, et al., 2022; Hetherington & Totary-Jain, 2022; Schuett, et 

al., 2015). LCNs are secreted proteins and can be detected in the blood, urine, and other 

body fluids (Akerstrom, et al., 2000; Flower, 1995, 1996; Ganfornina, et al., 2022; Grzyb, et 

al., 2006; Redl & Habeler, 2022; Virtanen, 2021). Over past decades, therefore, tremendous 

effort has been made to define lipocalins as diagnostic and prognostic biomarkers for 
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atherosclerosis and ischemic heart disease. Currently, several LCN proteins (i.e., LCN2 

and RBP4) have been identified as risk factors to promote atherosclerosis and myocardial 

injury (Cheng, et al., 2014; Dong, Li, & Tang, 2015; Hemdahl, et al., 2006; G. Huang, 

et al., 2012; F. Li, Xia, Li, & Yang, 2014; Lindberg, et al., 2012; Y. Liu, Wang, Chen, 

& Xia, 2015; Sahinarslan, et al., 2011; Shibata, et al., 2020; Sivalingam, et al., 2018; 

Soylu, et al., 2015; Wan, et al., 2014). By contrast, multiple LCNs (i.e., ApoD, ApoM, 

and L-PGDS) are found to have anti-atherogenic properties and protective effects against 

myocardial infarction injury (Ahnstrom, et al., 2008; Annema, et al., 2022; Hosbond, et al., 

2014; Inoue, et al., 2008; Kurano & Yatomi, 2018; Sarjeant, et al., 2003; Su, Jiao, Yang, & 

Ye, 2009; H. Sun, et al., 2019; Tsukamoto, et al., 2013; X. Zhang, et al., 2021). Therefore, 

the following contents focus on the roles of LCN2, RBP4, ApoD, ApoM, and L-PGDS in 

CAD and ischemia heart disease.

3.1. Lipocalins serve as biomarkers for coronary artery disease and ischemic heart 
disease:

3.1.1. Apolipoprotein D (ApoD)—Apolipoprotein D (ApoD) is an atypical 

apolipoprotein with a structure like lipocalins and belongs to LCN family (Weech, et al., 

1991). While it is a component of the high-density lipoprotein (HDL), its relative abundance 

in HDL particles is low (1–2%) (Rassart, Desmarais, Najyb, Bergeron, & Mounier, 2020). 

Nonetheless, the majority of circulating ApoD (~ 83%) is carried by HDL particles, while a 

small fraction is bound to low-density lipoproteins (LDLs) and very low-density lipoproteins 

(VLDLs) (Blanco-Vaca, Via, Yang, Massey, & Pownall, 1992; Rassart, et al., 2020; Soiland, 

et al., 2007; Weech, et al., 1991). Recently, increasing evidence has indicated that aberrant 

expression of ApoD is linked to the altered lipid metabolism and risk of CAD (Annema, 

et al., 2022; Sarjeant, et al., 2003; H. Sun, et al., 2019; Tsukamoto, et al., 2013; X. Zhang, 

et al., 2021). For example, Sun et al (2019) utilized iTRAQ labeling followed by 2D LC-

MS/MS to compare the urinary proteome of CAD cohorts (n=22) to healthy controls (n=22) 

(H. Sun, et al., 2019). Their results revealed that urine ApoD levels were significantly lower 

in CAD patients than healthy cohorts. Further analysis showed that ApoD together with 

TFF1 (Trefoil Factor 1) could diagnose CAD with 85% sensitivity and 99% specificity. 

However, Tsukamoto et al (2013) (Tsukamoto, et al., 2013) reported that increased 

ApoD deposition is detectable in the atherosclerotic lesions of humans, and the plasma 

ApoD levels were markedly increased in an atherosclerotic mouse model (ApoE-KO). To 

clarify such a difference, a recent study by Zhang et al (2021) conducted a deep RNA-

sequencing on whole blood collected from a cohort of CAD patients with early myocardial 

infarction (MI, n=55), high coronary artery calcification (CAC) without prior MI (n=72), 

and controls (n=71) (X. Zhang, et al., 2021). They observed that ApoD was significantly 

downregulated in all CAD patients with either early MI or high CAC, compared with 

controls. Controversially, Annema et al (2022) measured serum levels of ApoD in 531 

Caucasian individuals who underwent coronary angiography (356 males and 175 females) 

and follow-up period over a median of 5.8 years (Annema, et al., 2022). These authors 

found that the higher cumulative incidence rates of mortality and adverse cardiovascular 

events is positively associated with the increased serum levels of ApoD. These data suggest 

that high levels of circulating ApoD could be a biomarker of poor prognosis in patients 

with suspected or established coronary artery disease. Collectively, it will be warranted 
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to investigate whether the elevation of serum ApoD levels in human patients may either 

contribute to CAD development or alternatively, implicate a compensatory mechanism or is 

an innocent bystander.

3.1.2. Apolipoprotein M (ApoM)—Apolipoprotein M (ApoM) was initially identified 

by Xu et al (1999) (N. Xu & Dahlback, 1999) as an apolipoprotein. However, later 

studies found that unlike most apolipoproteins, ApoM protein structure has a hydrophobic 

binding pocket resembling lipocalin proteins (Christoffersen, et al., 2006). ApoM is mainly 

synthesized in the liver and kidney, and to a minor extent, in adipose tissue (Christoffersen, 

et al., 2008; Sramkova, et al., 2019). While ApoM in the circulation is primarily carried by 

HDLs, it can bind to other lipoprotein subtypes including LDL, VLDLs, and chylomicrons 

(Christoffersen, et al., 2006; N. Xu & Dahlback, 1999). At present, numerous clinical 

investigations have focused on the role of ApoM in the prognosis of patients with coronary 

heart disease and myocardial infarction (Ahnstrom, et al., 2008; Kurano & Yatomi, 2018; 

Su, et al., 2009). Disappointingly, two earlier studies by Ahnström et al (2008) and Su et 
al (2009) suggest that plasma levels of apolipoprotein M are not associated with the risk 

of coronary artery disease (Ahnstrom, et al., 2008; Su, et al., 2009). However, Wolfrum 

et al (2005) found that silencing of ApoM expression in mice with small interfering RNA 

(siRNA) resulted in the accumulation of large (Wolfrum, Poy, & Stoffel, 2005), cholesterol-

rich HDL particles, due to impaired conversion of HDL to pre-β-HDL, a subclass of 

lipid-poor apolipoproteins that serves as a key acceptor of peripheral cellular cholesterol 

(Wroblewska, 2011). This study suggests that reduced expression of ApoM may influence 

HDL and cholesterol metabolism and further affect the susceptibility to CAD. Along this 

line, the subsequent studies were shifted to explore single nucleotide polymorphisms (SNPs) 

of the proximal promoter region of ApoM gene in the whole blood of CAD patients (H. 

Guo, Zhao, Zhang, Chen, & Zhang, 2015; Jiao, et al., 2007; W. W. Xu, et al., 2008; P. H. 

Zhang, et al., 2016; Z. Zhang, Chu, & Yin, 2013; L. Zheng, et al., 2014; L. Zheng, et al., 

2009). These SNPs may affect the transcription activity and expression levels of ApoM (H. 

Guo, et al., 2015; Jiao, et al., 2007; W. W. Xu, et al., 2008; P. H. Zhang, et al., 2016; Z. 

Zhang, et al., 2013; L. Zheng, et al., 2014; L. Zheng, et al., 2009). So far, at least 5 SNPs 

have been identified including T-1628G, C-1065A, T-855C, and T-778C, and C-724del that 

are linked to CAD and myocardial infarction (H. Guo, et al., 2015; Jiao, et al., 2007; W. 

W. Xu, et al., 2008; P. H. Zhang, et al., 2016; Z. Zhang, et al., 2013; L. Zheng, et al., 

2014; L. Zheng, et al., 2009). For example, both Jiao et al (2007) and Zheng et al (2009) 

reported that there is a prominent association between the T-778C polymorphism and the 

risk of CAD in the Chinese population (Jiao, et al., 2007; L. Zheng, et al., 2009). Xu et al 
(2008) analyzed T-855C mutant allele in 418 CAD patients and 372 controls and showed 

that T-855C polymorphism carriers had an increased risk for CAD (W. W. Xu, et al., 2008). 

Accordingly, Zheng et al (2014) reported that occurrences of alleles T-1628G, T-855C and 

C-724del were significantly higher in CAD patients compared to non-CAD patients (L. 

Zheng, et al., 2014). They further confirmed that −855C and −724del could decrease ApoM 

expressions. These results were also validated by Zhang et al (2016) who showed that 

T-855C in the ApoM promoter could be a biomarker and provides binding sites for AP-2α, 

leading to a reduction of ApoM transcription activity (P. H. Zhang, et al., 2016).
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Furthermore, Guo et al (2015) investigated the relationship between −724del in the ApoM 

promoter and myocardial infarction. They observed that the −724Del frequency in the MI 

group was significantly higher than that in the controls (H. Guo, et al., 2015), Accordingly, 

plasma ApoM levels were remarkably decreased but the total cholesterol (TC) levels 

were dramatically increased in MI patients with −724Del allele, in comparison to control 

samples. These results indicate that −724del polymorphism of ApoM promoter suppresses 

its transcription activity, leading to the downregulation of ApoM protein expression, and 

increased the risk of MI. Nonetheless, it remains unclear and needs to further determine 

whether other ApoM SNPs in addition to −724del could serve as a biomarker for ischemic 

heart disease.

3.1.3. Lipocalin 2 (LCN2)—LCN2 was initially identified from simian virus 40 

(SV-40)–infected mouse kidney cells in 1989 by Hraba-Renevey et al (Hraba-Renevey, 

Turler, Kress, Salomon, & Weil, 1989) and later, the LCN2 protein was isolated from 

human neutrophil granules, and named neutrophil gelatinase-associated lipocalin (NGAL) 

(Kjeldsen, Johnsen, Sengelov, & Borregaard, 1993). At the present, LCN2 is defined as 

a pleiotropic glycoprotein that belongs to the lipocalin family (Charkoftaki, et al., 2019). 

In addition to secretion by activated neutrophils, LCN2 can be also released by multiple 

cell types including endothelial cells, macrophages, epithelial cells, kidney tubular cells and 

hepatocytes (Flo, et al., 2004). The expression of NGAL is dynamically altered in several 

acute and chronic pathological processes such as cell differentiation and proliferation, 

fibrosis, inflammation, iron trafficking, and metabolic disorders (Helanova, Spinar, & 

Parenica, 2014). NGAL has gained increasing attention as a potent early biomarker of 

renal injury, inflammation and more recently as a valuable biomarker of atherosclerosis and 

ischemic heart disease (Cheng, et al., 2014; Hemdahl, et al., 2006; Lindberg, et al., 2012; 

Sahinarslan, et al., 2011; Shibata, et al., 2020; Sivalingam, et al., 2018; Soylu, et al., 2015).

In the case of atherosclerotic arteries, numerous groups have reported that increased levels of 

serum or urinal LCN2 correlate with atherosclerosis risk factors, disease severity burden and 

mortality. For example, Ni et al (2013) measured serum LCN2 levels in a Chinese cohort of 

261 in-patients who underwent coronary angiography (169 men and 92 postmenopausal 

women; CAD: 188 and non-CAD: 73). They observed that serum LCN2 levels were 

significantly higher in male patients than females and interestingly, significant differences or 

correlations were seen only in men with CAD, compared to non-CAD (Ni, et al., 2013).

Similarly, Lahiri et al (2018) reported that plasma LCN2 in patients admitted with acute 

coronary syndromes (ACS) can be considered as a possible new risk marker in ACS because 

it is able to predict hospital mortality (Lahiri, Alex, & George, 2018). Likewise, Soylu 

et al (2015) collected peripheral blood samples from 45 patients with normal coronary 

arteries (NCA) who underwent coronary angiography and 47 patients with non-ST elevation 

ACS (NSTE-ACS) (Soylu, et al., 2015). They observed that serum levels of LCN2 were 

remarkably higher in the NSTE-ACS group, in comparison to with the NCA control 

samples. Further analysis showed that higher levels of LCN2 were correlated well with 

the complexity of lesion and severity of CAD patients with NSTE-ACS. These results 

suggest that serum levels of LCN2 on admission are positively associated with the burden of 

atherosclerosis in ACS patients with NSTE.
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In the case of patients with STEMI (ST segment elevation myocardial infarction), Kirbis et 
al (2015) prospectively measured admission and in-hospital urine LCN2 by investigating 61 

consecutive STEMI patients after primary percutaneous coronary intervention. They found 

that urine LCN2 was elevated very early after STEMI, suggesting it might be a marker 

of high risk for acute heart failure in an individual patient (Kirbis, Gorenjak, & Sinkovic, 

2015). Similarly, Lindberg et al (2012), Helanova et al (2015), Barbarash et al (2017), 

Li et al (2019) consistently demonstrated that higher LCN2 level in the blood of patients 

with STEMI is an independent predictor of mortality (Barbarash, et al., 2017; Helanova, et 

al., 2015; C. Li, et al., 2019; Lindberg, et al., 2012). Together, these clinical observations 

strongly implicate that LCN2 is a risk biomarker for CAD and IHD (ischemic heart disease).

3.1.4. Lipocalin-type prostaglandin D synthase (L-PGDS): L-PGDS was 

originally discovered by Clausen (1961) as a β-trace in human cerebrospinal fluid (Clausen, 

1961), and later was found to be identical to human L-PGDS (Hoffmann, et al., 1993; 

Watanabe, Urade, Mader, Murphy, & Hayaishi, 1994). L-PGDS is unique in its bifunctional 

character as both an enzyme synthesizing prostaglandin D2 (PGD2) (Urade, Fujimoto, & 

Hayaishi, 1985) and a lipophilic ligand-carrier protein of the lipocalin family (Urade & 

Hayaishi, 2000b). The amino acid sequence of L-PGDS has the homology with the lipocalin 

family members and possesses a typical lipocalin fold of β-barrel (Urade & Hayaishi, 

2000a). While L-PGDS was initially detected in the central nervous system and male genital 

organs of various mammals (Clausen, 1961), it is also distributed in myocardial cells, 

atrial endocardial cells, and smooth muscle cells of the arteriosclerotic intima (Urade & 

Hayaishi, 2000a, 2000b). Eguchi et al (1997) reported that L-PGDS is accumulated in the 

atherosclerotic plaque of coronary arteries with severe stenosis. They further measured the 

plasma levels of L-PGDS in human patients with stable angina and showed that the L-PGDS 

levels were significantly higher in the cardiac vein than in the coronary artery (Eguchi, et 

al., 1997). These results indicate that L-PGDS is present in the stenotic site of patients with 

stable angina and can be secreted from the myocardium into the coronary circulation.

Along this line, a multicenter cooperative study by Inoue et al (2008) measured serum levels 

in a large cohort of 1013 consecutive patients with stable CAD and 241 controls (Inoue, et 

al., 2008). Their results indicated that the L-PGDS levels in CAD patients were significantly 

lower than controls. Multiple regression analysis further revealed that the L-PGDS level 

was the most powerful independent predictor of the coronary severity score. This study 

suggests that the reduced L-PGDS levels are related to the severity of CAD, and the 

measurement of serum L-PGDS levels can be helpful for screening of stable CAD prior to 

coronary angiography. Hosbond et al (2014) reported that L-PGDS is not a biomarker of 

atherosclerotic manifestations (Hosbond, et al., 2014), however, this investigation is based 

on a single blood test from a small cohort of 30 patients with ACS which appears to be less 

valuable.

3.1.5. Retinol binding protein 4 (RBP4)—The RBP4 was initially discovered by 

Quadro et al (1999) as an adipokine that binds specifically to vitamin A (retinol) and 

delivering it from the liver to target tissues and is therefore regulating circulating levels of 

vitamin A (Quadro, et al., 1999). RBP4 is produced mainly by the liver and adipose tissue 
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(Christou, Tselepis, & Kiortsis, 2012). Accordingly, RBP4 has been well characterized to 

involve the development of obesity and insulin resistance (Christou, et al., 2012). RBP4 has 

been proposed to involve in the pathophysiology of CAD, but accumulated findings on the 

association of RBP4 levels with CAD are inconsistent and even opposite, as reviewed below.

An earlier clinical investigation by Mallat et al (2009) demonstrated that serum level of 

RBP4 does not provide added value for predicting CAD risk beyond traditional risk factors 

(Mallat, et al., 2009). Subsequently, Sun et al (2013) determined plasma levels of full-length 

and several C-terminally truncated subfractions of RBP4 among 468 women who developed 

CHD and 472 matched controls in the Nurses’ Health Study cohort (Q. Sun, et al., 2013). 

They observed that higher circulating full-length and total RBP4 levels but not truncated 

RBP4 are significantly associated with increased risk of woman patients with CHD in a 

time-dependent fashion. Consistently, a later study by Liu et al (2015) who also measured 

the plasma levels of RBP4 in 447 women (246 with ACS and 201 with stable CAD), 

and plasma levels of RBP4 were remarkably higher in stable CAD patients with complex 

coronary lesions than in those with simple lesions (Y. Liu, et al., 2015). Further multiple 

logistic regression analysis indicated that higher levels of RBP4 independently correlated 

with a 23% higher risk for complex lesions, and total plasma levels of RBP4 were predictors 

of cardiac death in female patients.

Regardless gender, Calo et al (2014) investigated the relationship between RBP4 levels 

and the presence and severity of CAD (Calo, Maiolino, Pagnin, Vertolli, & Davis, 2014), 

Lambadiari et al (2014), Li et al (2014), Perumalsamy et al (2021), Qian et al (2022), and 

Nar et al (2021) determined the relationship between RBP4 levels and the presence/severity 

of CAD. All these studies consistently observed that serum levels of RBP4 were greatly 

elevated in CAD patients compared to non-CAD cohorts, and independently correlated with 

CAD severity and adverse cardiovascular outcomes (Lambadiari, et al., 2014; F. Li, Xia, Li, 

et al., 2014; Nar, Sanlialp, & Nar, 2021; Perumalsamy, Ahmad, & Huri, 2021; Qian, Yan, 

Xu, Fang, & Ma, 2022).

Controversially, Wang et al (2018) investigated the role of RBP4 and the possible correlation 

between RBP4 levels and sex hormones, especially testosterone and estradiol, in CAD 

patients (n = 440) and healthy controls (n = 218) (H. Wang, et al., 2018). They observed that 

serum levels of RBP4 were significantly lower in male CAD patients, especially those with 

acute MI (myocardial infarction), than in control samples. However, there was no significant 

difference in serum RBP4 levels in female CAD patients between both groups. In addition, 

these authors found that RBP4 levels positively correlated with testosterone in male CAD 

patients (r = 0.124, p< 0.05). Logistic regression analysis revealed that RBP4 is a protective 

factor for CAD. Finally, they conclude that serum levels of RBP4 are significantly decreased 

and positively related with testosterone in men with CAD. Higher levels of RBP4 correlate 

well with lower risk of CAD. These results indicate that RBP4 could play a potential 

protective role for male but not for female CAD patients, which is totally opposite with other 

groups’ findings, mentioned above.

Taken together, numerous epidemiological studies have investigated the correlation of serum 

RBP4 levels with the risk of CAD over the past years. Most studies have revealed similar 
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findings that elevated serum RBP4 levels are positively related to CAD (Calo, et al., 2014; 

Lambadiari, et al., 2014; F. Li, Xia, Li, et al., 2014; Y. Liu, et al., 2015; Mallat, et al., 

2009; Nar, et al., 2021; Perumalsamy, et al., 2021; Qian, et al., 2022; Q. Sun, et al., 2013), 

whereas a nonsignificant or even negative correlations between RBP4 levels and CAD have 

also documented in other studies (Cubedo, et al., 2014; T. Liu, et al., 2019; Pan, et al., 2020; 

H. Wang, et al., 2018). Therefore, further studies will be performed to discern whether RBP4 

levels really correlate with the risk of CAD, using a large cohort of CAD patients from 

multiple center and different races/populations.

3.2 Protective effects of ApoD, ApoM and L-PGDS against CAD and MI

As mentioned above, ApoD, a member of lipocalin family, plays a critical role in 

transporting lipids and other small hydrophobic molecules for metabolism (Sanchez & 

Ganfornina, 2021). Given that majority of circulating ApoD is bound with HDL, and 

dyslipidemia with increased LDL/ triglyceride and decreased HDL levels often predisposes 

an individual at risk to CAD (Sanchez & Ganfornina, 2021), ApoD therefore should have 

a great impact on the pathogenesis of CAD and its related myocardial infarction injury. In 

this regard, an earlier study by Sarjeant et al (2003) investigated whether ApoD could affect 

vascular smooth muscle cell (VSMC) proliferation, a critical culprit for atherosclerosis 

and arterial restenosis after angioplasty (Sarjeant, et al., 2003). They firstly observed 

that ApoD is accumulated in human atheromatous plaque but not in normal coronary 

arteries, suggesting the regulatory effect of ApoD on VSMCs during atherosclerosis. Further 

experimental results revealed that intracellular accumulation of ApoD can selectively inhibit 

PDGF-BB–induced VSMC proliferation by preventing translocation of phospho-ERK1/2 

to the nucleus. These data suggest that an increased ApoD deposition in atherosclerotic 

lesions could be ascribed to a compensatory response of ApoD to help cholesterol 

removal from peripheral cells or derive from the consequence of defects in ApoD-mediated 

cholesterol trafficking (Sarjeant, et al., 2003). Indeed, Tsukamoto et al (2013) utilized a 

double-knockout mouse model (dKO) with homozygous null mutations in the HDL receptor 

(SR-BI) and apolipoprotein E (ApoE) genes which spontaneously develops occlusive, 

atherosclerotic CAD and ischemic heart failure (Tsukamoto, et al., 2013). They observed 

that the expression of ApoD in the dKO hearts was dramatically upregulated by 80-fold at 

the age of 43 days, compared with control mouse hearts. Interestingly, in mouse ischemic 

hearts, the expression of ApoD was substantially upregulated in non-infarcted but not 

in infarcted tissue at 48 h post-MI (Tsukamoto, et al., 2013). Considering that ApoD 

was previously shown to protect against hypertoxic stress in flies and mice and to be 

activated by neuronal injury (Sanchez & Ganfornina, 2021), therefore, Tsukamoto et al 
(2013) hypothesized that elevation of ApoD may be a protective mechanism of cardiac 

cells (cardiomyocytes, endothelia cells, etc.) in response to vessel occlusion and consequent 

ischemic stress (Tsukamoto, et al., 2013). Using ApoD-overexpressing and ApoD-KO mice, 

these authors clearly identified ApoD as a powerful protector against myocardial infarction 

injury (Tsukamoto, et al., 2013). Collectively, the mechanism underlying ApoD-mediated 

cardio-protection against ischemia injury is associated with: 1) a reduced atherosclerosis by 

disrupting p-ERK nuclear translocation; 2) an increased cell viability in cardiomyocytes and 

vessel endothelia cells (ECs), possibly due to the properly folded conformation of ApoD and 
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its antioxidant activity, 3) increased internalization of plasma-derived ApoD, and/or (4) a 

regulation of cell differentiation related to the angiogenic response (Fig. 3).

Like ApoD, circulating ApoM also binds to HDL particles. Earlier studies showed 

that ApoM-bound HDL had atheroprotective effects against LDL-oxidation via 
stimulating cholesterol efflux from macrophages and regulating pre-beta HDL formation 

(Christoffersen, et al., 2008; Christoffersen, et al., 2006; Sramkova, et al., 2019; Wolfrum, 

et al., 2005). However, a later study by Christoffersen et al (2011) discovered that ApoM 

could function as a chaperon to the bioactive sphingolipid, sphingosine-1-phosphate (S1P), 

with ~70% of S1P bound to ApoM (Christoffersen, et al., 2011). Further experimental 

results from other groups indicate that the complex of HDL-ApoM/S1P is able to 

connect HDL with endothelial cells to maintain an intact endothelial barrier and limit 

endothelial inflammation and apoptosis (Y. Liu & Tie, 2019; Ruiz, Frej, et al., 2017; 

Ruiz, Okada, & Dahlback, 2017). So far, several studies have showed that ApoM and 

S1P individually provide anti-atherogenic potential (Elsoe, et al., 2012; X. S. Huang, 

Zhao, Hu, & Luo, 2007; Wolfrum, et al., 2005). However, high levels of either ApoM 

or S1P could be associated with dyslipidemia (Hajny, Borup, Elsoe, & Christoffersen, 

2021). In this regard, there are some discrepancies about the understanding of the 

ApoM/S1P-mediated protection against atherogenesis. For example, overexpression of 

ApoM in LDL-R-deficiency mice demonstrated protective effects against atherosclerosis 

(Christoffersen, et al., 2008; Sramkova, et al., 2019; Wolfrum, et al., 2005). However, such 

ApoM-mediated favorable consequence on atherosclerosis was only displayed in mouse 

models with unchanged LDL-cholesterol in comparsion to controls (Christoffersen, et 

al., 2008). Otherwise, elevation of ApoM levels caused even accelerated atherosclerosis 

(Christoffersen, 2021). The mechanism underlying such opposite results is unclear, but 

the impact of ApoM on the circulating LDL/VLDL particles and the lipoprotein lipase 

activity may play a role. Regarding S1P, overexpression of S1P showed beneficial to 

suppress or retard the progression of atherosclerosis in animal models through reduced 

macrophage apoptosis (Feuerborn, et al., 2017), but super-physiological concentrations of 

S1P displayed in SGLT2-knockout mice could induce dyslipidemia (Bektas, et al., 2010) 

which would have a potential harmful consequence on the cardiovascular system. Using 

ApoM-transgenic mice in which plasma levels of S1P are elevated by 3-fold, Morel et 

al (2016) showed that elevation of ApoM/S1P significantly reduced myocardial infarction 

injury by phosphorylating the gap junction protein connexin 43, and short-term treatment 

with S1P has a therapeutic potential in the fight against myocardial infarction damage 

(Morel, et al., 2016). Collectively, the complex of ApoM/S1P may have either beneficial or 

harmful consequence on the cardiovascular system. Therefore, it will be greatly needed for 

more investigations to understand the interplay between these molecules.

Unlike ApoD and ApoM as HDL-binding proteins, L-PGDS is the only member of LCN 

family characterized as an enzyme involved in the synthesis of Prostaglandin D2 (PGD2), 

a molecule that involves in the regulation of many patho-physiological functions (Urade, 

2021). In addition, L-PGDS binds retinoids, thyroids, amyloid β (Aβ) peptides, and diverse 

types of lipophilic ligands (Hoffmann, et al., 1993; Urade, et al., 1985; Urade & Hayaishi, 

2000a, 2000b; Watanabe, et al., 1994). Currently, it is well documented that L-PGDS 

has neuro-protective effects against damage following either acute or chronic neurological 
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disorders (Hoffmann, et al., 1993; Urade, et al., 1985; Urade & Hayaishi, 2000a, 2000b; 

Watanabe, et al., 1994). Nonetheless, accumulating evidence has implicated that L-PGDS 

is highly expressed in the heart including in cardiomyocytes (Eguchi, et al., 1997; Han, et 

al., 2009; Katsumata, et al., 2014; Otsuki, et al., 2003; Tokudome, et al., 2009). Importantly, 

Tokudome et al (2009) reported that glucocorticoid-mediated protection during myocardial 

ischemia/reperfusion (I/R) is largely ascribed to the activation of L-PGDS-derived PGD2 

biosynthesis in cardiomyocytes (Tokudome, et al., 2009). Consistently, Katsumata et al 
(2014) showed that PGD2 protects heart against I/R injury by activating Nrf2 predominantly 

via PGF(2α) receptor (Katsumata, et al., 2014). While reduced L-PGDS levels may 

contribute to the severity of CAD, it remains unclear whether elevation of L-PGDS is 

beneficial for the treatment of CAD. In addition, future studies will be needed to explore 

whether L-PGDS has a therapeutic value in ischemic heart disease.

3.3 Detrimental effects of LCN2 and RBP4 in CAD and MI.

LCN2 was initially identified as a protein isolated from specific neutrophil granules released 

at sites of infection and inflammation in human and was validated to be covalently bound 

with neutrophil gelatinase (Kjeldsen, et al., 1993). LCN2 has bacteriostatic properties 

through its sequestering iron from bacterial siderophores (Holmes, Paulsene, Jide, Ratledge, 

& Strong, 2005; Nairz, et al., 2009). In the case of atherosclerotic arteries, LCN2 may 

play a key role in vascular remodeling, because LCN2 can form a complex with MMP-9 

and thereby, prevent MMP-9 degradation and reinforces its proteolytic activity contributing 

to the formation of an unstable atherosclerotic plaque (Hemdahl, et al., 2006). Indeed, the 

complex of LCN2/MM9 has been detected in atherosclerotic plaques and its concentration 

is increased in plaques with intramural hematoma and central necrosis (Cruz, Gaiao, Maisel, 

Ronco, & Devarajan, 2012; Hemdahl, et al., 2006; Leclercq, et al., 2007; te Boekhorst, et al., 

2011). Recently, to evaluate the functional role of Lcn2 in different stages of atherosclerosis, 

Amersfoort et al (2018) generated a double knockout mouse model in which the expression 

of low-density lipoprotein receptor (LDLR) and Lcn2 are deficient (Amersfoort, et al., 

2018). They showed that the contribution of Lcn2 to experimental atherosclerosis is 

stage-dependent as it appears to limit lesion development, whereas it potentially involves 

plaque instability at more advanced stages of atherosclerosis. In the case of ischemic heart 

disease, Sung et al (2017) observed that myocardial Lcn2 was significantly upregulated 

in mouse ischemic hearts, compared to sham-group (Sung, et al., 2017). Accordingly, 

both Lcn2-KO mice displayed less cardiac ischemic injury than WT mice. Furthermore, 

treatment with recombinant Lcn2 protein promoted ischemia-induced cardiac cell death and 

myocardial dysfunction through inhibiting the protective autophagic response to ischemia. 

Consistently, Xu et al (2012) showed that LCN2 could induce cardiomyocyte apoptosis 

by increasing intracellular iron accumulation (G. Xu, et al., 2012). In addition, Song et al 
(2018) showed that holo-Lcn2 (Lcn2-siderophore-iron, 1:3:1) promotes mitochondrial ROS 

generation and suppresses mitochondrial oxidative phosphorylation in the cultured adult rat 

cardiomyocytes, which may contribute to ischemia-triggered cardiac damage (Song, et al., 

2018). Put all together, these data suggest that Lcn2 may play a detrimental role in the 

pathogenesis of coronary artery disease and ischemic heart disease.
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Regarding RBP4, while it is well appreciated as a plasma transport protein for delivering 

retinol from liver to the tissues, it may have harmful effects in the pathophysiology of CAD 

and myocardial infarction injury, as summarized in Figure 4. For example, Li et al (2014) 

treated rat aortic smooth muscle cells (RASMCs) with different doses of RBP4 (1 and 4 

μg/mL) and observed that RBP4 stimulated aberrant VSMC proliferation and migration via 
activation of the MAPK pathway, which may contribute to the formation of atherosclerotic 

plaques in vivo (F. Li, Xia, Sheikh, et al., 2014). Moreover, Liu et al (2017) reported 

that increased levels of RBP4 in aortic atherosclerotic lesions of both human and mice 

could promote the formation of macrophage-derived foam cells through the activation of 

scavenger-receptor CD36-mediated cholesterol uptake via the Toll-like receptor 4, but not 

retinol, thus accelerating the progression of atherosclerosis (Y. Liu, et al., 2017). Lastly, 

RBP4 can play important role in the regulation of endothelial inflammatory response and 

mitochondrial dysfunction, both of which greatly accelerate or influence atherogenesis in 

the coronary artery (J. Wang, et al., 2015). As for the detrimental role of RBP4 in ischemic 

heart disease, Zhang et al (2021) recently showed that RBP4 was significantly increased 

both in vivo ischemic mouse hearts and in vitro hypoxic cardiomyocytes (K. Z. Zhang, et al., 

2021). These authors further found that the elevation of RBP4 may activate cardiomyocyte 

pyroptosis upon acute myocardial infarction, evidenced by that overexpression of RBP4 

greatly stimulated LRP3 inflammasome and Caspase-1 activities and thereby, promoting 

gasdermin-D (GSDMD)-mediated pyroptosis. Using co-immunoprecipitation assay, the 

same authors identified that RBP4 bound directly with NLRP3 in cardiomyocytes. What’s 

more, silencing of RBP4 in mouse hearts significantly reduced infarct size, limited AMI-

induced pyroptosis and myocardial depression, in comparison to control samples. Taken 

together, these observations clearly indicate that RBP4 is a harmful factor by promoting 

cardiomyocyte pyroptosis via interaction with NLRP3 in the ischemic heart.

4. Lipocalins in Cardiac Hypertrophy and Heart Failure

Pathological cardiac hypertrophy occurs usually in response to hypertension, increased 

workload, or chronic stress, which finally leads to heart failure and is the single most 

important risk factor for cardiovascular death (Frieler & Mortensen, 2015). Among human 

lipocalin proteins, two members including RBP4 and LCN2 have been well characterized to 

positively regulate pathological cardiac remodeling and heart failure, as summarized below.

Solini et al (2009) observed that serum RBP4 levels are elevated in patients with 

hypertension without metabolic syndrome (Solini, Santini, Madec, Rossi, & Muscelli, 

2009). Consistently, Kraus et al (2015) utilized animal model and showed that elevation 

of serum RBP4 levels raises blood pressure (BP), whereas Lowering RBP4 reduces BP 

through enhanced eNOS-mediated vasodilatation (Kraus, et al., 2015). These studies suggest 

that RBP4 may play a direct role in the regulation of BP and involve pressure overload-

induced cardiac hypertrophy. Moreover, Gao et al (2016) also observed that circulating 

levels of RBP4 and adipose expression of RBP4 are significantly increased in cardiac 

hypertrophic mice induced by transverse aortic constriction and angiotensin-II (Ang-II) 

infusion, compared to controls (Gao, et al., 2016). Importantly, treatment of neonatal 

cardiomyocyte with RBP4 greatly increased myocyte size and enhanced protein synthesis 

together with elevated expression of hypertrophic markers by activating TLR4/MyD88-
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mediated inflammatory pathways. Supportively, Rbp4-knockout mice are protected from 

Ang-II-induced cardiac hypertrophy (Kraus, et al., 2015).

Recently, Marques et al (2017) utilized genetic and environmental experimental mouse 

models to assess the association of LCN2 with concentric cardiac hypertrophy and its 

relation to the normal variation of human heart size and cardiac hypertrophy in diabetes 

mellitus (Marques, et al., 2017). They clearly demonstrated that higher levels of LCN2 

are well correlated with cardiac hypertrophy, whereas adult Lcn2-knockout mice display 

significantly smaller hearts than wild-type controls. In human studies, higher LCN2 
expression was also found to correlate well with cardiac hypertrophy in healthy individuals 

and in patients with type 2 diabetes mellitus. The further in vitro studies by Marques et 
al revealed that overexpression of Lcn2 in neonatal cardiomyocytes activates hypertrophic 

pathways, causing an increase in cardiomyocyte size but a decrease in their proliferation 

(Marques, et al., 2017). Collectively, this study suggests that Lcn2 is able to positively 

regulate cardiac hypertrophy. In support of these findings, Kim et al (2018) investigated the 

association between plasma levels of LCN2 and cardiac hypertrophy in patients with chronic 

kidney disease (CKD). They showed that higher plasma levels of LCN2 were independent 

predictors of cardiac hypertrophy and heart failure in patients with pre-dialysis CKD (Kim, 

et al., 2018).

More recently, Del Gaudio et al (2021) reported that loss of ApoM and loss of S1P 

transporter, Spns2, both can exaggerate cardiac hypertrophy in hypertension (Del Gaudio, 

et al., 2021), suggesting a protective role of ApoM/S1P signaling in hypertension and 

pathological cardiac hypertrophy. As for other lipocalin family members, while the 

expression levels of cardiac LCN6 and LCN10 in human patients with end-stage heart 

failure have been detected to be significantly lower than healthy controls (di Salvo, et al., 

2015), their possible roles in cardiac hypertrophy are very limited.

5. Lipocalins in Diabetes-Induced Cardiac Dysfunction

Patients with diabetes have an increased risk of developing cardiovascular remodeling 

(Gustafsson, et al., 2004). Diabetes-induced heart failure (also termed as diabetic 

cardiomyopathy, DCM) occurs usually in the absence of other cardiac risk factors e.g. 

coronary artery disease, hypertension, or congenital heart diseases (Y. Zheng, Ley, & 

Hu, 2018). Over the past decades, a variety of mediators/factors including insufficient 

myocardial angiogenesis, cardiac fibrosis, cell death, lipid accumulation, inflammation, and 

oxidative stress have been defined as contributors to DCM (Jia, Hill, & Sowers, 2018). 

In this regard, lipocalin family members are well recognized to regulate lipid metabolism, 

insulin sensitivity, inflammatory response, oxidative stress, and angiogenesis, which are 

expected to play fundamental role in diabetic cardiomyopathy. However, the effects of 

lipocalins on the heart during diabetes have relatively less been studied. For example, LCN2 

is a proinflammatory adipokine which is significantly elevated in the patients with obesity 

and diabetes (Y. Wang, et al., 2007) and clinical studies have also observed that there 

is a strong positive correlation between circulating LCN2 and heart failure (Chan, Sung, 

& Sweeney, 2015). Nonetheless, it remains unclear whether elevation of LCN2 directly 

contribute to diabetic cardiomyopathy.
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Recently, we observed that the expression of Lcn2 is remarkably increased, whereas the 

Lcn10 expression is significantly downregulated in macrophages under metabolic stress 

conditions (Q. Li, et al., 2022). Accordingly, using a global knockout mouse model, 

we showed that ablation of Lcn10 could exacerbate diabetes-induced cardiomyopathy 

by skewing macrophages towards a pro-inflammatory phenotype and increased cardiac 

inflammatory response (Q. Li, et al., 2022). Mechanistically, we identified that Lcn10 

deficiency in macrophages largely prevented Nr4a1 translocation to nuclei and disrupted its 

anti-inflammatory signaling pathway (Q. Li, et al., 2022). Our study suggests that reduction 

of Lcn10 may contribute to diabetes-induced cardiac dysfunction. Future investigations 

would be needed to elucidate whether elevation of Lcn10 expression/activity in macrophages 

or directly administration of recombinant Lcn10 protein has therapeutic potential for the 

treatment of diabetes-induced low-grade inflammation and concomitant cardiomyopathy. 

In addition, it will be warranted to explore whether other lipocalin family members are 

involved in diabetes cardiomyopathy.

6. Lipocalins in Sepsis-Induced Cardiomyopathy

Sepsis is a life-threatening syndrome due to multi-organ dysfunction induced by a 

dysregulated immune response to infection (Rudd, et al., 2020). Importantly, myocardial 

depression has been elucidated to be a major culprit to the increased risk of mortality 

and morbidity in patients with severe sepsis (Lin, et al., 2022). Although decades of 

intensive study, the precise mechanisms underlying sepsis-triggered immune dysregulation 

and cardiac dysfunction remain obscure (Beesley, et al., 2018; Carbone, Liberale, Preda, 

Schindler, & Montecucco, 2022; Hollenberg & Singer, 2021). As mentioned above, lipocalin 

family proteins have demonstrated diverse properties in the regulation of oxidative stress, 

immune response, vascular permeability, and cell survival, all of which are associated 

with sepsis. Therefore, in this regard, lipocalins may play good, bad, or ugly roles in the 

modulation of sepsis-triggered cardiomyopathy, which are discussed below.

Among human lipocalin family members, LCN2 is well characterized to serves as the 

potential biomarker in the assessment of severity and prediction of prognosis of patients 

with sepsis (Bagshaw, et al., 2010; Lentini, de Cal, Clementi, D’Angelo, & Ronco, 2012; 

Martensson, et al., 2010). In addition, Wang et al (2017) and Liu et al (2022) both 

observed that high plasma LCN2 correlates with high mortality and myocardial dysfunction 

in severe sepsis and septic shock (W. Liu, et al., 2022; B. Wang, et al., 2017). These 

clinical investigations suggest that increased levels of Lcn2 may have harmful effects and 

contribute to the pathogenesis of sepsis. However, an earlier study by Flo et al. (2004) 

demonstrated that exogenous Lcn2 directly inhibited the growth of Escherichia coli (E. coli) 

via its binding specificity for siderophores (Flo, et al., 2004). Furthermore, the presence or 

administration of Lcn2 protected against oxidative stress through upregulation of antioxidant 

enzymes (e.g., superoxide dismutase, heme oxygenase 1) in vivo during sepsis (Srinivasan, 

et al., 2012; Zhao, Wei, & Xu, 2015). Indeed, numerous studies have suggested that Lcn2 

protects from organ failure in sepsis models (H. Li, et al., 2018; Srinivasan, et al., 2012; 

Wu, et al., 2010; Zhao, et al., 2015). Accordingly, Lcn2-null mice exhibited an increase 

in the bacterial burden and exacerbated sepsis (Bellmann-Weiler, et al., 2013; Z. Liu, 

Petersen, & Devireddy, 2013; Nairz, et al., 2015; Toyonaga, et al., 2016; Warszawska, et 
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al., 2013). Therefore, in view of all these data, it could be hypothesized that Lcn2 offers 

therapeutic promise against sepsis-induced myocardial cardiomyopathy. Controversially, a 

recent study by Huang et al (2022) showed that LCN2 deficiency led to the improvement of 

cardiac function in bacterial endotoxin (LPS)-induced septic mice through the inhibition of 

ferroptosis in cardiomyocytes (Y. Huang, et al., 2022). The in vitro studies further revealed 

that Lcn2 induced cardiomyocyte ferroptosis by increasing intracellular labile iron pool 

(LIP) via interacting with its receptor 24p3R on the surface of myocytes. Another study by 

Liu et al (2022) indicated that LCN-2 may involve in the process of septic cardiomyopathy 

through stimulating lipid accumulation and mitochondrial dysfunction (W. Liu, et al., 2022). 

Therefore, future studies with directly injection of recombinant Lcn2 protein into bacterial 

sepsis model rather than endotoxin-induced sepsis model are warranted to discern whether 

Lcn2 may harness host immune system to protect against sepsis-induced heart failure or 

Lcn2 may cause cardiomyocyte ferroptosis and lipid toxicity, leading to septic myocardial 

injury (Fig. 5).

Recently, Wang et al (2021) explored whether circulating Lcn10 serves as a prognostic tool 

in septic patients with myocardial depression (L. Wang, et al., 2021). They demonstrated 

that higher levels of serum LCN10 in septic patients are well correlated with the incidence of 

cardiac depression triggered by sepsis. Importantly, LCN10 appears a more reliable for the 

prediction of 28-day mortality than other biomarkers used clinically (L. Wang, et al., 2021). 

Using Lcn10-KO mouse model, we elucidated that loss of Lcn10 significantly promoted 

sepsis-induced cardiac dysfunction through increasing vascular leakage (Zhao H, 2023). 

By contrast, both endogenous and exogenous elevation of Lcn10 significantly reduced 

endothelial permeability and improved cardiac function during sepsis (Zhao H, 2023). Our 

results suggest that injection of recombinant Lcn10 protein could have therapeutic effects 

against sepsis-caused cardiomyopathy and mortality.

Unlike increased circulating LCN2 and LCN10 in septic patients, Kumaraswamy et al 
(2012) and Frej et al (2016) observed that the plasma levels of ApoM were significantly 

reduced in patients with severe sepsis (Kumaraswamy, Linder, Akesson, & Dahlback, 

2012) (Frej, et al., 2016). As a carrier of S1P in HDL for endothelial barrier protection 

(Christoffersen, et al., 2011; Y. Li, et al., 2020), the decreased ApoM could contribute to 

the increased vascular leakage observed in sepsis. Indeed, Fan et al (2020) reported that 

the plasma levels of HDL/S1P were significantly decreased and negatively correlated with 

endothelial damage in sepsis, both in the animal model and in the septic patients (Fan, et al., 

2020). The in vivo HDL/S1P injection significantly reduced lung oedema and endothelial 

leakage in septic rats (Fan, et al., 2020). In addition, Kurano et al (2018) showed that ApoM 

protected mice from LPS-induced organ injury and death (Kurano, et al., 2018). Therefore, it 

will be very interesting to examine whether elevation of either ApoM or S1P has therapeutic 

potential for the improvement of sepsis-induced cardiac dysfunction and survival. As for 

the role of other lipocalin family members in sepsis-induced myocardial depression, there is 

very limited information in the literature.
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7. Summary and Future Perspectives

Lipocalin family proteins, albeit the very low similarity of their amino acid sequences 

(< 20%), share a common three-dimensional structure (named lipocalin-fold) consisting 

of an eight-stranded antiparallel β -barrel (Charkoftaki, et al., 2019; Du, et al., 2015; 

Flower, et al., 1993; Pervaiz & Brew, 1987). They are not only important carriers of 

preferentially hydrophobic molecules, but also bind other ligands (i.e., siderophores, intact 

proteins) and membrane receptors (Akerstrom, et al., 2000; Flower, 1995, 1996; Flower, et 

al., 2000; Ganfornina, et al., 2022; Grzyb, et al., 2006; Redl & Habeler, 2022; Virtanen, 

2021). Furthermore, they can internalize in cells and traffic to intracellular organelles 

(i.e., mitochondria, lysosomes) and nuclei (Asimakopoulou, et al., 2017; Kurozumi, et al., 

2020; Yammine, Zablocki, Baron, Terzi, & Gallazzini, 2019). Consequently, they exert 

diverse biological and physiological effects (i.e., behavior, chemo-sensation, development, 

and reproduction) and are involved in a variety of pathological processes in many human 

diseases such as cancers, immune disorders, metabolic disease, neurological/psychiatric 

disorders, and cardiovascular disease. This review presents a detailed summary of major 

lipocalins in cardiovascular diseases which have been investigated so far. Since lipocalins 

are mainly extracellular proteins that can be detected in the blood, urine, and other body 

fluids, therefore, numerous studies have focused on the identification of lipocalins as 

biomarkers for the diagnosis and prognosis of cardiovascular diseases. In this review, we 

center on 6 major lipocalins including ApoD, ApoM, LCN2, LCN10, RBP4, and L-PGDS, 

and heavily summarize their diagnostic/prognostic values and their potential effects on 

coronary artery disease and myocardial infarction injury. We also highlight the roles of these 

6 lipocalins in cardiac hypertrophy and heart failure as well as diabetic cardiomyopathy and 

sepsis-induced myocardial depression. Their possible therapeutic strategies for the treatment 

of cardiovascular diseases are also discussed in each section.

Currently, the large number of lipocalins have been identified to date. However, the 

individual pathophysiological function and its underlying mechanisms remains largely 

unclear. In particular, the knowledge about lipocalin receptors, cellular uptake of 

lipocalins, and the related signaling pathways is still limited. In this regard, future studies 

will be greatly needed to elucidate whether lipocalins interact with the distinctive or 

common receptor on cardiovascular cells, and which lipocalin could be used to develop 

pharmaceutical drug for cardiovascular disease. It is important to note here that human 

lipocalins have been chosen as appropriate scaffolds for protein engineering to generate 

anticalin drugs, because lipocalin-fold has highly structural plasticity of their binding 

sites which can be modified to specifically recognize and tightly bind disease-related 

molecular targets (Achatz, Jarasch, & Skerra, 2022; Schiefner, Gebauer, Richter, & Skerra, 

2018; Schiefner & Skerra, 2015; Skerra, 2008). Anticalin proteins are usually generated 

by combinatorial design based on natural lipocalins which contain a densely central β-

barrel supporting four structurally variable loops that form a binding pocket (Rothe & 

Skerra, 2018). Accordingly, reshaping of this variable loop region could yield a different 

anticalin protein (lipocalin isotype) with distinct ligand specificities or physiological 

functions. Initial application of these anticalin proteins was driven by the discovery of some 

structural similarity between their binding sites and those of immunoglobulins (antibodies) 
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(Schlehuber & Skerra, 2005). The first LCN1-derived anticalin protein was developed for 

therapeutically targeting human VEGF-A, a key factor of tumor angiogenesis and ocular 

disease (Ferrara & Kerbel, 2005). The human LCN2 has been proved particularly successful 

for the design of binding proteins with novel specificities and so far, more than 20 Lcn2-

based anticalins have been generated towards different medically relevant target proteins, 

mainly in the areas of cancer and inflammatory diseases [see reviews elsewhere (Achatz, 

et al., 2022; Deuschle, Ilyukhina, & Skerra, 2021)]. Indeed, anticalin proteins can be 

produced by modified human lipocalins with specificities for prescribed targets of interest, 

ranging from small molecules to proteins/peptides. The affinities of the resulting anticalin 

proteins can be competitive for or even better than those accessible by antibody technology. 

Furthermore, anticalin proteins comprise a single polypeptide chain that folds into a stable 

eight-stranded β-barrel with exposed N- and C-terminals (neither of which is part of the 

binding pocket) which makes them ideal building blocks to generate multi-valent, multi-

paratopic and multi-specific proteins, thus offering novel therapeutic modalities for human 

diseases. Most importantly, anticalin proteins have low immunogenic potential, as they are 

modified from soluble human lipocalins that are enriched in plasma or other body fluids 

and only a limited number of amino acids are altered from their natural counterparts. All 

these advantages of anticalin proteins mentioned above make them attractive as therapeutics 

for cardiovascular disease. Therefore, it will be worthy to spend effort on developing such 

anticalin drugs aiming at cardiovascular disorders by selecting suitable targets, and then 

designing and modifying human lipocalins.
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CKD chronic kidney disease

dKO double-knockout mouse model

ECs endothelia cells

GD glycodelin

GSDMD gasdermin-D

HDL high-density lipoprotein

LCNs Lipocalins

LCN2 Lipocalin 2

LDLs low-density lipoproteins

LDLR low-density lipoprotein receptor

LIP labile iron pool

L-PGDS lipocalin-type prostaglandin D2 synthase

LPS lipopolysaccharide

LRP2 lipoprotein receptor-related protein 2

MMP9 metalloproteinase 9

MUPs major urinary protein genes

MPIs metalloproteinase inhibitors

NCA normal coronary arteries

NGAL neutrophil gelatinase-associated lipocalin

NSTE-ACS non-ST elevation ACS

PAEP progestagen-associated endometrial protein

PGD2 prostaglandin D2

RASMCs rat aortic smooth muscle cells

RBP4 retinol binding protein 4

ROS reactive oxygen species

SCRs structurally conserved regions

SNPs single nucleotide polymorphisms

STEMI ST segment elevation myocardial infarction
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TINAGL1 tubulointerstitial nephritis antigen-like 1

TLR4 toll-like receptor 4

VLDLs very low-density lipoproteins

VSMC vascular smooth muscle cell
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Figure 1: A lipocalin gene cluster located at the mouse chromosome 2 and the human 
chromosome 9.
Syntonically homologous cluster of lipocalin genes at the chromosomes is conserved 

between human and mouse. Each triangle symbol represents gene locus and gene 

orientation. Adapted from Suzuki et al. (2004).
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Figure 2: Structure of the lipocalin fold.
The eight β-strands of the antiparallel β-sheet plus one additional β-strand at the C-terminal 

are shown as arrows and marked A-H. The N-terminal 310 like helix and C-terminal α-helix 

are also marked. Connection loops are labelled L1-L7. There are four loops (L1, L3, L5, and 

L7) located at one end of the lipocalin L-barrel which open for the internal ligand-binding 

site. In parallel, there are three L-hairpin loops (L2, L4 and L6) at the other end and the 

N-terminal polypeptide chain crosses this end of the barrel to link strand A through a 

conserved 310 helix to close this end of the barrel. The three structurally conserved regions 

(SCRs) of the lipocalin fold (SCR1, SCR2, and SCR3) are labelled as heavy boxes. Adapted 

from Flower et al. (2000).
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Figure 3: ApoD-mediated protection against atherosclerosis and myocardial infarction (MI) 
injury.
Circulating ApoD can be internalized into the cell in which ApoD binds hydrophobic 

ligands, while may pile up as an intracellular reservoir to stimulate the effect on gene 

transcription of nuclear receptor ligands or prevent ligand translocation to the nucleus. ApoD 

is also able to exert endosomal trafficking of its bound ligands/proteins. In addition, ApoD 

can interact with transmembrane receptors and complex with other proteins either inside or 

outside the cell. Accordingly, ApoD has been identified to prevent pERK translocation to the 

nucleus, leading to the inhibition of aberrant VSMC proliferation and thereby, attenuation 

of atherosclerosis. Moreover, increased ApoD levels can protect cardiomyocytes (CMs) 

and vessel endothelial cells (ECs) against apoptosis and oxidation as well as promote cell 

differentiation-related angiogenesis, leading to reduced myocardial infarction (MI) injury.
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Figure 4: RBP4-mediated harmful effects on atherosclerosis and myocardial infarction (MI) 
injury.
Elevation of RBP4 can: 1) activate MAPK pathway and promote aberrant VSMC 

proliferation; 2) interact with TLR4 and activate CD36-mediated cholesterol uptake in 

macrophages (MФs) which form foam cells; 3) increase mitochondrial dysfunction and 

inflammation in endothelial cells (ECs). All these significantly accelerate atherogenesis. In 

addition, elevation of RBP4 can interact directly with NLRP3 in cardiomyocytes, leading to 

GSDMD (gasdermin-D)-dependent pyroptosis and thereby, aggravate myocardial infarction 

injury.
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Figure 5: Paradoxical role of LCN2 in sepsis-induced myocardial depression.
Increased levels of LCN2 could bind siderophore and limit bacteria to use of iron for 

growth, leading to reduced inflammation. In addition, Lcn2 can upregulate the expression of 

superoxide dismutase (SOD) and heme oxygenase-1 (HO-1), leading to reduced oxidative 

stress. Therefore, LCN2-mediated anti-inflammation and anti-oxidation should provide 

protection against sepsis-induced cardiac dysfunction. However, LCN2 is able to promote 

lipid accumulation and labile iron pool overload in cardiomyocytes, leading to apoptosis, 

necrosis, and ferroptosis, which exaggerate sepsis-induced cardiac injury.
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Table1.

List of the 24 LCN-like genes in the human and mouse—with gene symbols, chromosomal location, and their 

similarity, expressed as percent identity (%).

Gene symbol (human) Chromosome Gene symbol (mouse) Chromosome Similarity (identity%)

LCN1 (TLC, VEGP) 9q34 NA NA NA

LCN2 (NGAL) 9q34 Lcn2 2B; 2 22.09 cM 62

NA Lcn3–5 2; 2A3 NA

LCN6 (UNQ643) 9q34.3 Lcn6 2; 2A3 74

LCN7 (TINAGL1) 1p35.2 Lcn7 4; 4D2.2 90

LCN8 (EP17) 9q34.3 Lcn8 2; 2A3 70

LCN9 (HEL 129) 9q34.3 Lcn9 2; 2A3 54

LCN10 9q34.3 Lcn10 2; 2A3 64

NA NA Lcn11 2; 2A3 NA

LCN12 9q34.3 Lcn12 2; 2A3 56

LCN13 (OBP2A) 9q34 Lcn13 2; 2A3 39

LCN14 (OBP2B) 9q34 Lcn14 2; 2A3 50

LCN15 (UNQ2541) 9q34.3 Lcn15 2; 2A3 39

AMBP (A1M) 9q32-q33 Ambp 3 B3; 433.96 cM 77

APOD (Apolipoprotein D) 3q29 Apod 16 B2; 16 21.41 cM 74

APOM (Apolipoprotein M) 6p21 Apom 17; 17 B1 81

C8G 9q34.3 C8γ 2 A3; 2 17.31 cM 76

ORM1 (AGP1) 9q32 Orm1 4 B3; 4 33.96 cM 49

ORM2 (AGP2) 9q32 Orm2 4 B3; 4 33.96 cM 44

PAEP (GD) 9q34 NA NA NA

PTGDS (L-PGDS) 9q34.2-q34.3 Ptgds 2 A3; 2 17.28 cM 72

RBP4 (Retinol-bing protein-4) 10q23.33 Rbp4 19 C2; 19 32.75 cM 86
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