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Abstract
Purpose This study aimed to compare the effect of an image-based (MAKO) system using a gap-balancing technique with 
an imageless (OMNIbot) robotic tool utilising a femur-first measured resection technique.
Methods A retrospective cohort study was performed on patients undergoing primary TKA with a functional alignment 
philosophy performed by a single surgeon using either the MAKO or OMNIbot robotic systems. In all cases, the surgeon’s 
goal was to create a balanced knee and correct sagittal deformity (eliminate any fixed flexion deformity). Intra-operative 
data and patient-reported outcomes (PROMS) were compared.
Results A total of 207 MAKO TKA and 298 OMNIbot TKAs were analysed. MAKO TKA patients were younger (67 vs 
69, p=0.002) than OMNIbot patients. There were no other demographic or pre-operative alignment differences. Regarding 
implant positioning, in MAKO TKAs the femoral component was more externally rotated in relation to the posterior condylar 
axis (2.3° vs 0.1°, p<0.001), had less valgus femoral cuts (1.6° vs 2.7° valgus, p<0.001) and more varus tibial cuts (2.4° 
vs 1.9° varus, p<0.001), and had more bone resected compared to OMNIbot TKAs. OMNIbot cases were more likely to 
require tibial re-cuts than MAKO (15% vs 2%, p<0.001). There were no differences in femur recut rates, soft tissue releases, 
or rate of achieving target coronal and sagittal leg alignment between robotic systems. A subgroup analysis of 100 MAKO 
and 100 OMNIbot propensity-matched TKAs with 12-month follow-up showed no significant difference in OKS (42 vs 43, 
p=0.7) or OKS PASS scores (83% vs 91%, p=0.1). MAKO TKAs reported significantly better symptoms according to their 
KOOS symptoms score than patients that had OMNIbot TKAs (87 vs 82, p=0.02) with a higher proportion of KOOS PASS 
rates, at a slightly longer follow-up time (20 months vs 14 months, p<0.001). There were no other differences in PROMS.
Conclusion A gap-balanced technique with an image-based robotic system (MAKO) results in different implant position-
ing and bone resection and reduces tibial recuts compared to a femur-first measured resection technique with an imageless 
robotic system (OMNIbot). Both systems achieve equal coronal and sagittal deformity correction and good patient outcomes 
at short-term follow-ups irrespective of these differences.
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Introduction

Successful total knee arthroplasty (TKA) requires precise 
implant positioning and alignment [1]. It has been observed 
that a significant proportion of patients experience ongo-
ing symptoms following TKA, with rates up to 33–54% 
being reported [2]. Furthermore, disturbed gait kinemat-
ics and reduced range of motion are common [3]. These 
findings have led to a vigorous pursuit of tools and tech-
niques to improve the accuracy and consistency of implant 
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positioning, along with more patient-specific alignment 
strategies with the aim of improving clinical outcomes.

Evidence is emerging that tibio-femoral compartmental 
balancing affects pain and kinematics up to two years after 
TKA [4–8]. What defines a ‘balanced’ knee, and what 
thresholds are used to set boundaries on laxity remains 
the focus of much ongoing debate and research. A com-
monly utilized approach is one that aims for equal laxity 
in the medial and lateral compartments in full extension, 
with a slight lateral laxity being acceptable in flexion. 
This definition is based on the observation that the medial 
compartment is constrained by the rigid medial soft tis-
sue structures of the knee (superficial and deep medial 
collateral ligament complex) and is relatively immobile, 
compared to the lateral compartment that shows a larger 
amount of femoral rollback and is more lax, particularly 
in flexion [9–16], similar to that seen in the native knee, 
and is supported by published literature [17].

There are multiple ways to achieve this balance; cut the 
bones perpendicular to the mechanical axis in the coro-
nal plane, rotate the femur parallel to the transepicon-
dylar axis in the axial plane, and match the tibial slope, 
and then sequentially release ligaments to overcome 
any residual imbalance (mechanical alignment philoso-
phy). An alternate approach is to position the implants 
with the aim to recreate the anatomy of the native knee, 
making tibiofemoral resections that aim to recreate the 
pre-diseased knee with minimal soft tissue releases and 
accepting that patients native soft tissue laxity (kinematic 
alignment (KA) philosophy) [18]. A more recent tech-
nique has been described where the surgeon starts with 
a plan based on KA principles, but implant position is 
adjusted according to the patients’ soft tissue envelope to 
keep within defined limits and to also achieve tibiofemo-
ral compartment balancing (functional alignment) [19]. 
In these cases, there are again many ways to reach the 
final implant position, with 2 common strategies being 
via a measured resection (bone cut depth to match implant 
thickness) or gap-balancing (alter bone cut depth based 
on the soft tissue laxity).

Measured resection involves positioning the implants 
to recreate the patients’ starting joint lines in all planes, 
accounting for the amount of chondral and/or bone loss 
compared to the healthy state. The distal femoral cuts in 
this method are planned parallel to the chondral lateral 
distal femoral angle (LDFA) the posterior femoral cuts 
parallel to the chondral posterior condylar axis (PCA) and 
the tibia parallel to the chondral medial proximal tibial 
angle (MPTA). Primary gap balancing involves selecting 
a starting point for implant position and then measuring 
the gaps that result and adjusting implant position to bal-
ance them. With traditional manual instrument tools, this 

involves a subjective assessment of the resultant balance 
by the surgeon’s feel. With navigation assistance, there was 
an improvement in being able to infer gaps from alignment 
curves. This has been advanced further with some robotic 
systems such as the MAKO that are able to predict gaps in 
a virtual environment prior to actual bone cutting, and then 
measure actual resultant gaps during surgery, and adjust 
implant at either step as required [20]. Consideration of gap 
targets means the wide natural variation of soft tissue laxity 
that exists between patients [16, 21, 22] can be incorporated 
into the positioning of the implant in all three planes using 
objective, reproducible and definable targets.

Multiple proprietary robotic platforms have been devel-
oped for TKA in the last decade, and the capabilities vary 
significantly between systems. The technique a surgeon 
decides to use will be influenced by the capabilities of the 
tool available to the surgeon for the execution of the sur-
gery. Image-based systems (such as MAKO) re-create a 3D 
virtual model for pre-operative and intra-operative plan-
ning. This enhances the surgeon’s ability to anticipate issues 
that may rise from variations in patient anatomy and allows 
for pre-operative fine-tuning of implant positioning [23]. 
However, the cost and radiation exposure are disadvantages 
[24], as are the size and low transportability of the machine 
itself. Imageless systems such as OMNIbot reduce radiation 
exposure and do not incur the cost of pre-operative imaging, 
but subsequently rely on the operator’s accuracy to correctly 
register landmarks[25]. Anatomical mapping in cases of 
large deformity, bone loss, or post-trauma may be prone 
to registration error [26], and there is not an option for vir-
tual gap balancing allowing pre-cut adjustment based on 
gap data in a femur-first approach. Effectively both systems 
allow for “gap balancing”, but in different ways and at dif-
ferent parts of the surgical workflow. The MAKO allows for 
it in a virtual environment with quantified virtual extension 
and flexion gaps and true 6-degree of freedom adjustment of 
both femoral and tibial components being possible because 
it’s done prior to bone cutting, whereas the OMNIbot is 
gap balanced by the surgeon after initial bone cuts (tibial 
first) with the surgeon calculating balance by subjective 
feel combined with inferences from alignment curves, and 
the adjustments being reactionary to the cuts already made 
resulting in some limitation in what options are available.

There is currently no literature comparing the resultant 
effect of these different robotic systems on implant position 
or outcomes. The aim of this study was to compare the effect 
of using an image-based (MAKO) robotic system with a 
complete virtual gap balancing technique feature compared 
to an imageless (OMNIbot) robotic tool with femur-first 
measured resection technique and alignment inferred gap 
quantification, on implant positioning and limb alignment in 
patients undergoing primary TKA. The hypothesis was that 
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the image-based system would lead to less bone resection 
and a higher percentage of implants within the surgeon’s 
aimed implant range.

Methods and materials

This study was performed in line with the principles of 
the Declaration of Helsinki. Approval was granted by the 
Northern Sydney Local Health District Human Research 
Ethics Committee (2019/ETH08340).

This was a retrospective review of prospectively col-
lected data of consecutive patients undergoing primary 
TKA performed by a single high-volume arthroplasty 
surgeon at two institutions. All cases were undertaken 
between June 2018 to November 2021 using either the 
MAKO or OMNIbot robotic systems. This date was 
chosen to nullify the effect of the initial learning curve 
associated with using the MAKO system [27, 28].

Patients were included if they underwent a robotically 
assisted TKA using either the MAKO or OMNIbot robotic 
systems. Patients were excluded in cases of revision surgery, 
or if they received TKA by an alignment philosophy other 
than functional alignment. Patients received the Omni Apex 
(Global Orthopaedics, Australia) cruciate retaining implant 
or the MAKO Stryker Triathlon (Stryker, Kalamazoo, MI) 
cruciate retaining implant based on the robotic system utilised.

Surgery

All surgery was performed via a medial parapatellar 
approach and functional alignment philosophy [29]. The 
patella was resurfaced in all cases, all osteophytes were 
removed prior to the initial balance assessment, and all 
components were cemented.

MAKO TKA

For TKA performed with the MAKO, a virtual measured 
resection implant starting position with adjustments to the 
femur and tibia positions in the virtual environment prior 
to any bony cuts being made, based on quantified virtual 
gaps provided by the software. Both femur and tibia can 
be easily adjusted to achieve the surgeon’s desired implant 
position and balance concurrently.

OMNIbot TKA

For TKA performed with OMNIbot, initial resections 
of femur and tibia were performed using measured 

resection principals with any further adjustments made 
after these initial bone cuts by recutting the tibia as 
needed to achieve balance goals using surgeon-based 
feel and navigation curves to guide the tibial recut 
(effectively gap balancing the tibia of a fixed measured-
resection femur).

Once trial components were inserted, the navigation 
was used to measure the range of motion and laxity and (in 
MAKO cases) gaps. The goal in the sagittal plane was to 
achieve full extension under gravity, (defined as 2° flexion 
to 2° hyperextension holding the foot by the heel and lifting 
the leg). Where full extension was not achieved, a posterior 
capsular release was performed. If the capsular release was 
insufficient to achieve full extension with the smallest poly-
ethylene insert, a re-resection of the distal femur would be 
performed. Any releases or extra resections were recorded. 
Where the knee was hyperextending, thicker polyethylene 
inserts were used until this was corrected. Tightness in 
flexion was assessed intra-operatively (surgeon feel in the 
OMNIbot, measured gaps with the MAKO) and addressed 
by changing the tibial slope angle.

Coronal balancing

Functional alignment was defined as follows:

 I. Femoral component: within 6° valgus and 1° varus
 II. Tibia component: within 5° varus and 1° valgus
 III. Final limb alignment: hip-knee-ankle (HKA) angle 

within 5° varus and 3° valgus

Coronal plane balancing was assessed throughout a 
range of motion, with the aim of achieving equal gaps 
(within 1mm) medial and lateral in extension (0°). In 
90° flexion, more lateral laxity was tolerated. Balancing 
was considered achieved if the medial and lateral gap 
were equal (within 1mm) in extension, the medial gap 
was equal in extension and flexion (within 1mm), and 
the lateral flexion gap was within 0–3mm of the medial 
flexion gap.

The OMNIbot in femur-first workflow shows pre- and 
post-operative laxity by way of curves. Laxity is calcu-
lated by subtracting the end coronal range of motion on 
varus and valgus stress (performed by the senior surgeon) 
at 0°, 30°, and 90° of flexion (Fig. 1). The MAKO depicts 
the gaps in the tibiofemoral compartments in two posi-
tions (0° and 90°). Laxity is calculated by subtracting 
the thickness of the implant) from the measured number 
(Fig. 2).

Imbalances were addressed via recutting the tibia into 
more varus or valgus or slope as required, up to the func-
tional alignment limits. Any residual imbalance after these 
limits were reached was addressed with soft tissue release.

1223International Orthopaedics (2023) 47:1221–1232
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Data collection

Pre-operative patient demographics were collected. 
Intraoperative data was collected from the operative 

reports and screenshots taken from the robotic sys-
tems. Final resection angles and depths, final limb 
alignment, releases performed, and implants used 
were recorded.

Fig. 1  OMNIbot gap assessment

Gap Laxity: This graph shows gap laxity (calculated by subtracting end coronal range of 

motion on varus and valgus stress). Note this is after cuts have been made.
Post implantation alignment 

Fig. 2  MAKO gap assessment

Pre-operative plan 

– showing planned angle and 

depth of cuts 

Anticipated gaps in tibiofemoral compartments in extension that 

the plan (left side of screen) will deliver – the implant positioning 

(left) can be manipulated to alter these gaps to achieve desired 

medial and lateral gaps

Fig. 3  Equations used to 
determine the amount of bone 
resected versus implant inserted

OMNIbot

Distal femoral resections = measured resection (which included cartilage) - 9mm (distal femoral component) 

Posterior femoral resections = measured resection (which included cartilage) - 11mm (posterior femoral 

component) 

Tibial resections = measured resection (which included cartilage) – poly thickness

MAKO

Femoral resections = measured resection (+2mm for cartilage) – 8.5mm (distal and posterior femoral 

component) 

Tibial resections = measured resection(+2mm cartilage)–poly thickness

Negative values indicate more implant was placed into the joint than bone was removed (bone preserving). For the Stryker 

resection depths 2mm were added to both the measured femoral and tibial resections to account for the fact they were 

based on bony landmarks

1224 International Orthopaedics (2023) 47:1221–1232
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Bone resection

To account for differences in the implant designs between 
the two groups, the amount of bone resected versus implant 
inserted was determined by the equations in Fig. 3.

Patient‑reported outcomes (PROMS)

Pre-operatively and more than 1 year postoperatively, 
patients answered the Oxford Knee score (OKS), Veterans 
Rand 12-item survey (VR-12), and Knee injury and Osteo-
arthritis Outcome score (KOOS).

Statistical analysis

All statistical analyses were performed on an intent-to-
treat basis. Continuous parametric data was analysed using 
unpaired Student’s t-tests and chi-square tests for categorical 
data. Significance was set at p>0.05 for all tests. Statistical 
analysis was performed using SPSS (v26).

Results

A total of 505 functionally aligned TKAs were performed; 
298 (108 bilateral) OMNIbot and 207 (92 bilateral) were 
performed using the MAKO (Fig. 4).

Patient demographics

MAKO patients were younger (67 vs 69, p=0.002) than 
OMNIbot patients (Table 1). There were otherwise no sig-
nificant differences.

Implant position

Angle of cuts

The MAKO femoral components were more externally 
rotated in relation to the posterior condylar axis (2.3° vs 
0.1°, p<0.001) and were less valgus (1.6° vs 2.7° valgus, 
p<0.001) than OMNIbot femoral components. There were 
no differences in external rotation in relation to the TEA 
(0.3° vs 0.3°, p=0.9) or femoral component flexion (2.2° vs 
2.1°, p=0.6) between the two groups.

MAKO tibial components were more varus (2.4° vs 1.9° 
varus, p<0.001) and had less of a tibial slope (3.4° vs 3.6°, 
p=0.02) than OMNIbot tibial components (Table 2).

Fig. 4  Patient selection

Table 1  Pre-operative patient characteristics

*p<0.05 compared using independent t-tests

OMNIbot MAKO P value

Age, mean ± STD (range) 70 ± 9 (41-91) 67 ± 8 (44-87) 0.001*
Side Left:Right (% right) 145:153 (51%) 89:118 (57%) 0.2
Gender, Male:female  (% male) 163:135 (55%) 104:103 (50%) 0.3
Pre-op coronal, mean ± STD (range) 3.2° ± 5.3° varus (18 valgus – 18 varus) 4.1° ± 6.6° varus (15 

valgus to 15 varus)
0.06

Pre-op sagittal, mean ± STD (range) 6.6° ± 6.6° flexion (34° flexion – 12° extension) 6.5° ± 8.1° flexion (64 
flexion – 10 extension)

0.8

BMI, Mean ± STD (range) 31 ± 6 (22–42) 32 ± 9 (20–56) 0.4
Tourniquet, mean ± STD (range) 56 ± 13 min  (34 – 120) 61 ± 15 min (42–91) 0.08
Pre-op max Flexion ROM, mean ± STD (range) 114° ± 13 (80–135) 110° ± 20 (80–130) 0.2

1225International Orthopaedics (2023) 47:1221–1232
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Bone resection

Both systems demonstrate less bone resected than implant 
inserted on average (were bone preserving).

For the femoral component, OMNIbot TKAs were more bone 
preserving (compared to the MAKO TKAs. However, only the 
medial posterior femoral cut had a difference between the systems of 
greater than 1mm (OMNIbot-0.3mm vs MAKO-1.9mm, p<0.001).

Regarding the tibia, OMNIbot TKAs were more bone pre-
serving both medially and laterally compared to the MAKO 
TKAs (medially-3.9mm vs 2.2mm, p<0.001, laterally-3mm 
vs 1.8mm, p<0.001) (Fig. 5).

Post‑operative limb alignment and inserts

With MAKO TKA, final HKA was overall more varus 
(1.1° vs 0.6°, p<0.001) and more likely to be outside 
3° from the mechanical axis as a group (7% vs 3%, 
p=0.03). Both groups achieved high levels of compo-
nents in the targeted coronal HKA and tibial coronal 
range (99% vs 99%, p>0.99). The OMNIbot system 
had a higher rate of components in the targeted femoral 
coronal range, though both showed excellent rates of 
achieving the desired range (99.7% vs 98%, p=0.04) 
(Table 3).

Table 2  Angles of intra-operative cuts

All measurements in degrees *p<0.05 compared using independent t-tests ** p<0.05 compared using chi-square

OMNIbot MAKO P value

Femur coronal cut, mean ± STD (range) 2.7° ± 1.5 valgus (6 valgus - 2 varus) 1.6°± 1.7 valgus (6 valgus - 3 varus) <0.001*
Femur Sagittal cut, mean ± STD (range) 2.2° ± 1.6 flexion (5 flexion – 2 extension) 2.1°± 1.7 Flexion (6 flexion – 4 extension) 0.6
Rotation Femur PCA, mean ± STD (range) 0.1° ± 0.9 external rotation (3 external – 2 

internal)
2.3°± 2.1 external rotation (7 external - 4 

internal)
<0.001*

Rotation Femur TEA, mean ± STD (range) 0.3°± 3.3 external rotation (8 external – 9 
internal)

0.3°± 2.2 external rotation (6 external to 5 
internal)

0.9

Tibia Coronal cut, mean ± STD (range) 2.1°± 1.1 varus (6 varus – 2 valgus) 2.6°± 1.3 varus (5 varus - 3 valgus) <0.001*
Tibia Sagittal cut, mean ± STD (range) 3.6°± 1.2 slope (1 – 9) 3.4°± 0.8 slope (1 – 6) 0.02*

Fig. 5  Change in amount resected minus implant put in. Positive values denote more bone was resected than prosthesis put in, while negative 
values show more implant was put in than bone resected. * p<0.001

1226 International Orthopaedics (2023) 47:1221–1232
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Recuts and soft tissue releases

OMNIbot TKAs were more likely to have a tibial recut than 
MAKO TKAs (15% vs 2%, p<0.001). There were no differ-
ences in femur recut rates or soft tissue releases (Table 4). 
There was no difference in soft tissue releases when further 

broken down according to the location and extent of the 
release (Table 5).

PROMS

A total of 100 MAKO knees with completed OKS-12 scores 
at more than 12 months post-operatively were age-and side-
matched with 100 OMNIbot knees at more than 12 months. 
There was no difference in cohort demographics other than 
MAKO patients were generally younger (70 vs 68 p=0.03) 
(Table 6).

There was no difference in OKS scores or OKS PASS 
rates (Omni 43 and 91%, and MAKO 42 and 83% respec-
tively) (Fig. 6A/C). MAKO TKAs reported significantly 
better symptoms according to their KOOS symptoms score 

Table 3  Post-operative limb alignment and patella resection

*p<0.05 compared using independent t-tests

OMNIbot MAKO P value

Post-op coronal alignment, mean ± STD (range) 0.6°± 1.5 varus (8 valgus 
to 5 varus)

1.1°± 1.7 varus (4 valgus 
to 5 varus)

0.01*

Coronal HKA with 3° of mechanical axis, n (%) (97%) (93%)
Post-op sagittal alignment, mean ± STD (range) 0.2 °± 1.4 flexion (7 flex-

ion to 7 hyperextension)
0.4°± 1.3 Flexion (5 

flexion to 4 hyperexten-
sion)

0.1

Within 5°of full extension, n (%) 296 knees (99%) 201 knees (100%) 0.5
Patella native, mean ± STD (range) 23±3 mm (15-29) 23±3 mm (16-29) 0.3
Minimum Polyethylene, n (%) 149 knees (50%) 118 knees (43%) 0.1
Coronal HKA, n (%) (Within 5° varus to 3° valgus of mechanical axis) 294 knees (99%) 198 knees (99%) >0.99
Femoral coronal cut, n (%) (Within 6° valgus and 1° varus) 298 knees (99.7%) 200 knees (98%) 0.04*
Max range Tibia coronal cut, n (%) (Within 1° valgus and 5° varus) 293 knees (99%) 203 knees (99%) >0.99

Table 4  Intra-operative recuts and soft tissue releases

* p<0.05 compared using chi-square test

OMNIbot MAKO P value

Bone recut Femur, n (%) 22 knees (7%) 11 knees (5%) 0.5
Bone recut Tibia, n (%) 46 knees (15%) 5 knees (2%) <0.001*
Soft tissue release, n (%) 39 knees (13%) 29 knees (14%) 0.8

Table 5  Breakdown of soft 
tissue releases based on location 
and degree of release

Type of release Minor (partial/piecrust) Major release

MCL releases Number (percentage) Number (percentage)
  OMNIbot 18 knees (6%) 1 knees (0.3%)
  MAKO 12 knees (6%) 1 knee (0.5%)

Lateral releases: LCL, ITB, popliteus Number (percentage) Number (percentage)
  OMNIbot 3 knees (1%) 3 knees (1%)
  MAKO 2 knees (1%) 7 knees (3%)

PCL Number (percentage) Number (percentage)
  OMNIbot 6 knees (2%) 3 knees (1%)
  MAKO 5 knees (2%) 2 knees (1%)

Anterior: retinaculum releases Number (percentage) Number (percentage)
  OMNIbot 0 knees (0%) 1 knee (0.2%)
  MAKO 3 knees (2%) 0 knees (0%)

Posterior: Fabella, posterior capsule, menis-
cofemoral ligament

Number (percentage) Number (percentage)

  OMNIbot 4 knees (1%) 3 knees (1%)
  MAKO 3 knees (2%) 0 knee (0%)

1227International Orthopaedics (2023) 47:1221–1232
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than OMNIbot TKAs (87 vs 82, p=0.02) (Fig. 6B) and had 
a higher rate of KOOS symptoms PASS scores (58% vs 78%, 
p=0.02) (Fig. 6C), though while both groups were a mini-
mum of 12 months post-surgery there was a significant dif-
ference in follow-up time between the KOOS scores, with 
MAKOs being collected later (14 vs 20 months, p<0.001) 
(Table  7). Other KOOS subsets showed no differences 
(Fig. 6B/C).

Discussion

The improvement in accuracy and consistency of roboti-
cally assisted TKA to achieve alignment goals compared to 
conventional techniques has seen a rapid rise both in their 
utilisation and number of robotic tools available to choose 
from. Multiple propriety systems are now available, with 
little data available currently comparing the effect of differ-
ent robotic platforms on intra-operative implant positioning, 
ability to achieve alignment goals, or patient outcomes in 
TKA. This study compared the effect of using two different 
robotic tools (MAKO and OMNIbot) and their associated 
implants (Triathalon and Apex) on implant positioning and 
short-term patient outcomes, by a single high-volume sur-
geon using the same alignment and balancing philosophy 
(functional alignment), and same goals of the surgery.

The most important finding of this study was that using a 
femur-first measured resection technique with an imageless 
robotic system (OMNIbot) compared to a quantified total 
gap balanced technique with the image-based robotic system 
(MAKO) results in both having a very high rate (99%) of 
achieving coronal and sagittal alignment goals intra-opera-
tively, are both bone preserving, showed no difference in the 
rate of soft tissue releases, and achieved high rates of patient 
satisfaction when used by a single high volume arthroplasty 
surgeon. These results are achieved with slightly different 
alignment, different individual component positions, and 
different workflows depending on the system being used.

TKA performed with the MAKO robot resulted in less 
valgus femoral and more varus tibial components, more 

externally rotated femoral components, and slightly more 
varus limb alignment on average. Equal rates of balanced 
knees were achieved, with low rates of soft-tissue release 
and no differences between the groups, though the OMNIbot 
system required more tibial recuts to achieve balance, due to 
the workflow of that system. Despite these alignment differ-
ences, PROMS at a minimum of 12 months were excellent in 
both groups. OKS were high in both groups and equivalent 
(43 in OMNIbot and 42 in MAKO), and while KOOS was 
higher in the MAKO group, it was at a later time point (20 
months vs 14 months),

Whilst the obvious difference between the two platforms 
is that one is imageless (OMNIbot) and the other is image-
based (MAKO), another and perhaps more important dif-
ference is the ability to virtually calculate and measure gaps 
and thus adjust implant position prior to any cuts with the 
use of the MAKO. This ability allows for a true 6-degree of 
freedom adjustment of both the femur and/or tibia to achieve 
balance with the MAKO which is not possible with the 
OMNIbot in femur-first workflow because the assessment 
of achieved gaps can only be made AFTER preliminary cuts 
and trials are made—thus, there are restrictions in how much 
adjustment of implant position is possible with this approach 
(only the tibia can be easily recut other than distal femoral 
resection depth). This explains why the MAKO required less 
tibial re-cuts, reflecting the advantage of having a system 
that provides virtual gap information based on the surgeon’s 
starting plan and allows imbalance to be corrected before the 
bony cut is made. The same adjustment to the tibal slope is 
made to balance the knee, but with the MAKO it is done 
in the virtual environment prior to any bone cuts, while 
with OMNIbot is done in the real world after the initial cuts 
have been performed. Interestingly, despite this advantage, 
OMNIbot surgical times were on average five min faster 
than MAKO TKA (56 vs 61 min of tourniquet time) perhaps 
reflecting things like the ergonomics of using the bulkier 
MAKO device.

Debate remains regarding appropriate gap targets. Tradi-
tionally, balancing has been defined as equal tension in both 
compartments [33]. However wide variations in laxity have 

Table 6  Matching of MAKO 
and OMNIbot patients for 
PROM measurements

OMNIbot (n=100) MAKO (n=100) P value

Age, mean ± STD (range) 70±6 (56–86) 68±7 (54–87) 0.03*
Side, Left:Right, (% right) 46:54 (54%) 43:57 (57%) 0.8
Gender, Male:female (% male) 60:40 (40%) 49:51 (51%) 0.2
Pre-op coronal, mean ± STD (range) 2.4°± 5 varus (18 valgus 

– 10 varus)
3.3°± 6 varus (15 

valgus – 15 varus)
0.3

Pre-op sagittal, mean ± STD (range) 6°±6 flexion (21 flexion – 
10 hyperextension))

6°±7 flexion (27 flex-
ion – 10 hyperexten-
sion)

0.8

Pre-op OKS, mean ± STD (range) 28± 7 (10–42) 27± 9 (5–46) 0.3
BMI, mean ± STD (range) 31±5 (22–42) 32±6 (20–50) 0.7
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Fig. 6  PROM outcomes at 
more than 1-year post-operative 
showing A average OKS scores 
(STD), B average KOOS sub-
scale scores (STD), and C per-
centage of knees with a patient 
acceptable symptoms state 
(PASS)—scores above: OKS 
>37, KOOS pain >84.5, KOOS 
symptoms >80.5 and KOOS 
ADL >83. *p<0.05 [30, 31]
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been demonstrated in non-arthritic knees [16]. Furthermore, 
it has been observed for varus-aligned knees, there is greater 
laxity in the lateral than the medial compartment, and more 
laxity in flexion than extension [16], although some more 
recent studies suggest that laxity in flexion may be equal to 
that in extension [9]. Whilst these subtle variations exist in 
the literature to defining what is a well-balanced knee, many 
authors accept some asymmetry between the medial and lat-
eral compartments [9–16, 34, 35]. It is unclear if this should 
be replicated in prosthetic knees; however, the current study 
suggests that aiming for equal gaps in extension and flexion 
on the medial side whilst allowing for either symmetrical 
or a slight lateral laxity in flexion, achieves excellent clinal 
outcomes, and can be done with different individual compo-
nent positing as described. While the true optimal balance 
targets remain focal points of ongoing research, one of the 
other benefits of all the navigation and robotic platforms is 
that they allow for increased quantitative data collection that 
will help future researchers answer this question as datasets 
increase in size. With the multifactorial nature of patient 
satisfaction in TKR, it is likely that “big data” analysis will 
be the tool for answering this question moving forward.

Despite the improved accuracy and consistency of roboti-
cally assisted TKA to achieve alignment goals compared 
to conventional techniques [36], there is currently limited 
data demonstrating differences in outcomes between sys-
tems or philosophies, with medium to long-term data still 
to come [26, 37]. This is the first study to compare PROMS 
between two different robotics TKA systems. We found that 
the PROMS scores were similar between the two systems, 
with the OMNIbot TKAs reporting slightly higher OKS 
scores (43 vs 42, p=0.7) while MAKO TKAs reported 
slightly, higher KOOS scores, with the only significant dif-
ference being the KOOS symptoms at more than one year 
post-operatively (87 vs 82, p=0.02) and the associated PASS 
rate on the KOOS score. The KOOS difference in symptoms 
may be due to the difference in follow-up time between the 
KOOS scores, with the MAKOs being collected later for 
the KOOS questionnaire (14 vs 20 months, p<0.001), and 
TKA symptoms having been shown to improve over time 
[31, 32]. It should also be noted that none of the differences 
came close to the minimal clinical important difference 
(MCID) for KOOS or OKS scores indicating that there was 

no clinically significant difference in short-term outcomes 
between the groups [38, 39], and excellent scores in both. 
Studies analysing longer-term data may tease out if there is 
a functional difference between these two robotic systems.

This study has limitations. Firstly, this study compares 
not just robotic systems, but also implants (Triathalon and 
Apex). Whilst the same philosophy and constraint was used 
(CR) in all cases, the implants differ slightly in geometry 
and some differences in achieved kinematics and patient out-
comes may be due to prosthesis design features. However, 
this comparison reflects clinical practice, as most robotic 
platforms are “closed” platforms and only allow for their 
use with a single implant. Furthermore, the registry reports 
very good implant survival with the use of both prostheses 
[40]. There remains a degree of subjectivity in assessing 
balance, even with increasingly quantitative systems, as the 
force used for ligament stressing is surgeon dependent and 
will have a degree of variation. Finally, results were obtained 
from a high-volume single surgeon, and the results may not 
be applicable to lower volume surgeons, or those practis-
ing a different technique or alignment philosophy to that 
described.

Conclusion

This is the first study to directly compare robotic TKAs 
using either a quantified gap-balancing technique (MAKO) 
or a measured resection technique (OMNIbot) which shows 
that while the two techniques and systems result in different 
implant positions and rates of recuts, both systems achieve 
equal coronal and sagittal deformity correction and achieve 
good patient outcomes at short term follow-up
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