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Abstract
Spinal cord injury (SCI) leads to long-term and permanent motor dysfunctions, and nervous system abnormalities. Injury 
to the spinal cord triggers a signaling cascade that results in activation of the inflammatory cascade, apoptosis, and Zn(II) 
ion homeostasis. Trehalose (Tre), a nonreducing disaccharide, and l-carnosine (Car), (β-alanyl-l-histidine), one of the 
endogenous histidine dipeptides have been recognized to suppress early inflammatory effects, oxidative stress and to pos-
sess neuroprotective effects. We report on the effects of the conjugation of Tre with Car (Tre–car) in reducing inflammation 
in in vitro and in vivo models. The in vitro study was performed using rat pheochromocytoma cells (PC12 cell line). After 
24 h, Tre–car, Car, Tre, and Tre + Car mixture treatments, cells were collected and used to investigate Zn2+ homeostasis. 
The in vivo model of SCI was induced by extradural compression of the spinal cord at the T6–T8 levels. After treatments 
with Tre, Car and Tre–Car conjugate 1 and 6 h after SCI, spinal cord tissue was collected for analysis. In vitro results dem-
onstrated the ionophore effect and chelating features of l-carnosine and its conjugate. In vivo, the Tre–car conjugate treat-
ment counteracted the activation of the early inflammatory cascade, oxidative stress and apoptosis after SCI. The Tre–car 
conjugate stimulated neurotrophic factors release, and influenced Zn2+ homeostasis. We demonstrated that Tre–car, Tre and 
Car treatments improved tissue recovery after SCI. Tre–car decreased proinflammatory, oxidative stress mediators release, 
upregulated neurotrophic factors and restored Zn2+ homeostasis, suggesting that Tre–car may represent a promising thera-
peutic agent for counteracting the consequences of SCI.
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Introduction

Spinal cord injuries (SCIs) are severe, life-threatening medical 
conditions that alter the physical and psychological conditions 
of patients (Vural et al. 2020). SCI exhibits a global incidence 
of 10.5 cases per 100,000 people with consequent high costs 
(Kumar et al. 2018; Cao et al. 2011). Severe mechanical injury 
to the spinal cord mimics the pathophysiology of SCI; it causes 
tissue damage (Stahel et al. 2012), blood–brain barrier disrup-
tion, haemorrhage, oedema, axonal destruction and cell mem-
brane alterations (Kwiecien 2021). The second step of injury, 
referred to as secondary SCI, involves activation of a number 
of cellular and molecular processes concerning (1) the forma-
tion of free radicals (Hall and Braughler 1993), (2) oxidative 
and nitrosative stress (Bains and Hall 2012) (3) delayed cal-
cium influx (Du et al. 1999), (4) immune system response and 
(5) increased cytokines, with the upregulation of inflamma-
tory, autophagic and apoptotic agents (Abbaszadeh et al. 2020; 
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Aidemise Oyinbo 2011; Ludwig et al. 2017). Reactive oxygen 
species (ROS) and reactive nitrogen species (RNS) together 
with inflammatory mediators tune matrix metalloproteinases 
(MMPs), a large family of zinc-bound extracellular proteases 
that facilitate glial scar formation in the injured spinal cord 
(Hsu et  al. 2008). Specifically, MMP-2 and MMP-9 are 
involved in secondary SCI through degradation of basal com-
ponents of the blood spinal cord barrier (Noble et al. 2002). 
SCI induces extensive nerve cell apoptosis and necrosis fol-
lowing the secondary injury that disrupts the microenviron-
ment of axon regeneration (Tran et al. 2018); apoptosis is also 
considered the primary process responsible for partial or com-
plete loss of motor and sensory functions (Beattie et al. 2000; 
Ray 2020). After the initial mechanical injury and secondary 
SCI, long-standing progressive neurodegeneration occurs, and 
neurons fail to transmit electrical and chemical signals losing 
their outgrowth capacity (Aidemise Oyinbo 2011). SCI lacks 
effective therapeutics and exhibits poor healing. Currently, the 
main treatment for SCI is surgery combined with treatment 
with methylprednisolone sodium succinate (MP), which 
remains the most commonly administered drug after acute SCI 
(Evaniew et al. 2015; Fehlings et al. 2017). Although MP is an 
anti-inflammatory agent that can inhibit lipid peroxidation 
(Bracken 2001), it can cause serious trauma and many side 
effects and does not ameliorate neurite sprouting, remyelina-
tion of axons or hence, functional recovery (Ito et al. 2009). 
Therefore, the development of novel pharmacological agents 
for the successful and safe treatment of SCI is a priority for 
clinical practice. β-alanyl-l-histidine, a natural dipeptide 
known as carnosine (Car) (Gulewitsch and Amiradžibi 1900) 
is primarily found in skeletal muscle, but it is also present at 
mM concentrations in the olfactory bulb of mammals 
(Boldyrev et al. 2013). This endogenous dipeptide is a pH 
buffering agent (Posa and Baba 2020) and protects cells from 
ROS, RNS and reactive carbonyl species (RCS) damage by 
means of the histidine imidazole ring and the amino terminus 
of the β-alanine residue (Pavlov et al. 1993; Aldini et al. 2005; 
Nicoletti et al. 2007). l-carnosine forms different complex spe-
cies with metal ions [copper(II) and zinc(II) ions] (Dobbie and 
Kermack 1955) and its chelating ability induces different pro-
tective functions (Trombley et al. 2000; Kawahara et al. 2020). 
Among its different pleiotropic abilities (Cuzzocrea et al. 
2007; Oppermann et al. 2019; Zhao et al. 2019; Corona et al. 
2011; Spina-Purrello et al. 2010; Miceli et al. 2018; Caruso 
et al. 2019; Jain et al. 2020; Boakye et al. 2019; Attanasio et al. 
2013, 2009; Bellia et al. 2011; Greco et al. 2020), this dipep-
tide displays neuroprotective features, as attested by the 
reduced brain damage and improved functional outcomes 
observed in mouse models of focal ischaemic stroke (Rajani-
kant et al. 2007; Baek et al. 2014). Furthermore, l-carnosine 
is a good candidate for a successful and reliable agent for SCI 
models in rodents (Di Paola et al. 2011; Albayrak et al. 2015) 
due to its protective effects against inflammation (Kubota et al. 

2020), brain oxidative stress, apoptosis and autophagy (Xie 
et al. 2017). However, the potential therapeutic action of Car 
is drastically hampered by its hydrolysis due to serum (Teufel 
et al. 2003; Bellia et al. 2014) and tissue (Lenney et al. 1985) 
carnosinase enzymes. Serum degradation of the dipeptide can 
be prevented by the use of (1) carriers (Kim et al. 2020), (2) 
d-carnosine (Di Paola et al. 2011), or (3) l-carnosine deriva-
tives (Bellia et al. 2012; Menini et al. 2019). Car derivatives 
and their conjugates with different polysaccharides can block 
or delay dipeptide degradation (Bellia et al. 2012). Different 
reports on the behavior of Car conjugates with trehalose (Tre) 
show that this disaccharide not only protects l-carnosine from 
hydrolysis induced by carnosinase (Rizzarelli et al. 2007) but 
also potentiates the protective functions of the dipeptide 
(Grasso et al. 2017) and retains the metal ion complex species 
formation of the dipeptide (Grasso et al. 2011). Trehalose (see 
Scheme 1) (1-α-d-glucopyranosyl-α-d-glucopyranoside) is a 
stable, soluble and nonreducing disaccharide detected in many 
lower-order organisms (Elbein et al. 2003), including yeast, 
fungi, invertebrates and plants, but is not present in mammals 
(Tapia and Koshland 2014; Wiemken 1990). In addition, the 
disaccharide does not exert toxicity despite the high concentra-
tions usually tested (Richards et al. 2002). It is a preserving 
and stabilizing agent for cell membranes under stress condi-
tions, such as high temperature, freezing, osmotic shock, and 
dehydration (Crowe et al. 1983) and an effective molecule in 
preventing protein aggregation (Liu et al. 2005; Attanasio et al. 
2007). Furthermore, recent reports have shown that trehalose 
not only inhibits inflammatory and oxidative stress (Minutoli 
et al. 2008; Echigo et al. 2012) but also acts as an autophagy 
enhancer and chemical chaperone as indicated in different 
in vitro and in vivo assays (Fewell et al. 2014; Casarejos et al. 
2011), and it increases brain zinc levels in a mouse model of 
traumatic brain injury (Portbury et al. 2018). Although the 
exact biochemical pathways involved in trehalose’s effects on 
mammalian cells, including neuronal cells, are not yet under-
stood, the ability of disaccharides to protect against SCI has 
been previously reported (Iturriaga et al. 2009; Martano et al. 
2017). In addition to antioxidant and anti-inflammatory activi-
ties (Nazari-Robati et al. 2019), Tre induces MMP expression 
and the activation of some heat shock proteins and neurotro-
phins (NTs), such as BDNF (Nazari-Robati et  al. 2019; 
Nasouti et al. 2019; Liang et al. 2018). Overall, the sharing of 
many potential protective properties by Car and Tre against 
SCI prompted us to examine the ability of the conjugate tre-
halose–carnosine (Tre–car) to act as an antioxidant, anti-
inflammatory and anti-apoptotic agent in an SCI mouse model. 
Furthermore, the effects of the metal binding ligand and iono-
phore molecule features of Tre–car and of its crosstalk with 
Zn2+ were investigated. Zinc is abundant in the spinal cord, 
where it participates in several physiological and pathophysi-
ological processes, including neurotransmission, SCI, and 
amyotrophic lateral sclerosis. However, the mechanisms 
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underlying zinc homeostasis in the spinal cord remain largely 
unknown (Zong et al. 2017). Zn2+ is able to act as an intracel-
lular regulator of major signalling pathways, and its dysho-
meostasis induces aberrant expression of different factors in 
multiple pathologies (Milardi and Rizzarelli 2011). Zinc ion 
signaling occurs through at least twenty-four membrane trans-
porters (14 Zrt, Irt-like proteins (ZIP) zinc importers and 10 
zinc transporters (ZnT) zinc exporters), metallothioneins 
(MTs), and a zinc-sensing transcription factor, metal-response 
element (MRE)-binding transcription factor-1 (MTF-1) 
(Kambe et al. 2015). Among the ZnT family members, ZnT1 
is the most ubiquitously expressed, being responsible for the 
efflux transporter of zinc, and is the only member found on the 
plasma membrane (Kambe et al. 2015). SCI modifies ZnT-1 
mRNA levels, which are related to BDNF mRNA levels 
(Wang et al. 2011b; Qin et al. 2006). Zn2+ supplementation 
reduces neuronal apoptosis after SCI, and the acute phase 
serum zinc concentration is a reliable biomarker for predicting 
functional outcomes after SCI (Li et al. 2019a; Kijima et al. 
2019). Different reports highlight the protective role of this 
metal ion on SCI (Wen et al. 2021).

Materials and Methods

Anhydrous α,α-trehalose and silica gel 60 F254 plates were 
purchased from Merck Co. l-carnosine, N-bromosuccinim-
ide, triphenylphosphine, acetyl chloride, anhydrous dimeth-
ylformamide and anhydrous methanol were purchased from 
Sigma Aldrich Co.

All compounds used for in vitro and in vivo studies 
were purchased from Sigma–Aldrich Co. (Poole, United 

Kingdom). All solutions used for in vivo infusions were pre-
pared using nonpyrogenic saline (0.9% wt/vol NaCl; Baxter 
Health care Ltd., Thetford, United Kingdom). All antibodies 
used for western blot analysis, immunohistochemistry (IHC) 
and immunofluorescence (IF) were purchased from Santa 
Cruz Biotechnology (Texas, USA), Cell Signalling Technol-
ogy (Massachusetts, USA) and Abcam (Cambridge, UK).

Synthesis and Characterization of Trehalose–
Carnosine Conjugate

The synthesis of trehalose–carnosine (Tre–car, Scheme 1) 
was performed following synthetic routes previously 
reported in the literature and appropriately adapting them 
to better match our preparative needs at scale. Briefly, a mix-
ture of 6-bromo-6-deoxy-α,α-trehalose and 6,6′-dibromo-
6,6′-dideoxy-α,α-trehalose was obtained by treating a 
solution of trehalose and triphenylphosphine in DMF with 
N-bromosuccinimide (Hanessian and Lavallee 1972), from 
which, after removing the excess reagents, 6-bromo-6-
deoxy-α,α-trehalose was isolated by PLC on an RP-8 column 
(Grasso et al. 2013). This bromine derivative, dissolved in 
DMF, was then left to react overnight at 60 °C with l-carno-
sine methyl ester, prepared as previously reported (Rizzarelli 
et al. 2007). Following this, the methyl ester group of the 
l-carnosine moiety was hydrolyzed by treating the reaction 
mixture with sodium hydroxide of 0.1 N final concentration 
for 3.5 h at 5 °C. After neutralization with HCl, the solvents 
were removed under vacuum, and the residue, taken up with 
water, was loaded onto a column of Dowex®-50 resin (H+ 
form). The column was then eluted with a gradient of HCl 
from 0 to 0.25 N, and the progress of the fractionation was 

Scheme 1   Synthesis of treha-
lose–carnosine
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monitored by TLC [SiO2, 2-propanol/ammonia solution 
(32%), 70:30 v/v; Tre–car Rf = 0.2] using Fast red salt B 
as a chromogenic reagent. Fractions containing chromato-
graphically pure Tre–car were pooled, repeatedly reduced to 
a small volume and then lyophilized over potassium hydrox-
ide {14% overall yield; ESI/MS (direct injection of aque-
ous methanol solution), m/z 551.2 [M + H]+}. Before use in 
biological experiments, the conjugate was subjected to 1H-
NMR spectroscopic analysis to ensure its degree of purity.

1H-NMR spectra were recorded using a Varian Unity 
Inova spectrometer at 500 MHz. The experiments were per-
formed in D2O at 27 °C, and the chemical shifts are reported 
as δ (ppm) related to the resonance of residual HOD. VnmrJ 
v2.0 software was used to process the data. ESI–MS spec-
tra were obtained using an Agilent Technologies 6410 Tri-
ple Quad LC/MS equipped with a Multimode (ESI/APCI) 
source.

In Vitro Experiments

Cell Line

Rat pheochromocytoma (PC12) cells were obtained from 
the American Type Culture Collection (ATTC, Manassas, 
VA) and cultured at 12 passages in PRMI1640 medium sup-
plemented with 10% horse serum (HS), 5% foetal bovine 
serum (FBS), 2 mM L-glutamine and 1% (v/v) penicillin 
(100 units/ml)/streptomycin (100 mg/ml). This medium con-
tains zinc at submicromolar concentration, as determined by 
ICP-MS (data not shown). Cells were cultured in a humidi-
fied atmosphere of air/CO2 (95:5) at 37 °C in an incubator 
(Heraeus Hera Cell 150).

Cellular Staining and Fluorescent Microscopy Imaging

The intracellular levels of labile zinc cations were meas-
ured as the fluorescence emission of cells upon loading 
them with the membrane-permeant zinc specific indica-
tor 2-[2-[2-[2-[bis(carboxylatomethyl)amino]-5-methoxy-
phenoxy]ethoxy]-4-(2,7-difluoro-3-oxido-6-oxo-4a,9a-
dihydroxanthen-9-yl)anilino]acetoxymethyl, FluoZin™-3 
(ThermoFisher Scientific), using fluorescence microscopy. 
For fluorescent microscopy imaging studies, PC12 cells 
were seeded on l-poly-lysinated glass bottom dishes with 
22 mm of glass diameter (WillCo Wells B.V., Amsterdam—
NL) at a density of 25 × 104 per dish in RPMI1640 complete 
medium until cellular adhesion was obtained. Thereafter, 
cells were treated with 5 mM Car, Tre, Tre + Car mixture, 
Tre–car, 20 μM or 50 μM Zn(II) or 50 μM dipicolinic acid 
(DPA), a membrane-impermeable zinc chelator, in com-
plete RPMI1640 medium supplemented with 1% HS and 
0.5% FBS. After 20 h of treatment cells were rinsed with 
serumfree medium and stained by 1  h incubation with 

FluoZin™-3, acetoxymethyl (AM) cell permeant zinc indi-
cator (ThermoFisher Scientific) at a final concentration of 
1 μM from 1 mM stock solution in DMSO and the cell-
permeant nuclear counterstain Hoechst33342 (NucBlue® 
Live ReadyProbes® Reagent, Life Technologies), followed 
by buffer rinsing (2 × 1 ml). As a baseline to exclude cell 
auto-fluorescence, PC12 cells were treated only with Hoe-
chst33342 without FluoZin-3. After staining, cells were 
fixed in fresh 4% paraformaldehyde and deeply rinsed 
(3 × 2 ml) with PBS. Images were analysed under a Leica 
DMI 6000B epifluorescence inverted microscope with 
Adaptive Focus Control with 63 × magnification. Images 
were taken at random locations throughout the area of the 
well for all of the samples. Images analysis was carried out 
by using LAS X Life Science Microscope Software and the 
fluorescence emission was normalized to the number of cells 
presented in each field.

Western Blot Analysis

Cells were treated for 24 h with 5 mM carnosine, trehalose, 
trehalose + carnosine mixture or trehalose–carnosine in com-
plete RPMI1640 medium. Therefore, cells were harvested 
with RIPA buffer containing Halt Protease and Phosphatase 
Inhibitor Single-Use Cocktail (ThermoFisher), lysates were 
separated by SDS–PAGE on 4–15% precast gels, transferred 
to nitrocellulose membranes and treated with blocking buffer 
at room temperature for 1 h followed by incubation with 
primary antibodies overnight at 4 °C. Anti-ZnT1 antibody 
(Cat# ARP44019, 1:1000 dilution) was purchased from 
Aviva Systems Biology (CA, USA). Anti-GAPDH (Cat# 
ab8245, 1:2000 dilution) was purchased from Abcam (MA, 
USA). Next, membranes were incubated for 1 h with goat 
anti-rabbit (Cat# 926-68071) or anti-mouse (Cat# 926-
68070) antibodies labeled with IRDye 680 (1:20,000 dilu-
tion, LI-COR Biosciences) and used for IRS1 immunoblots, 
and hybridization signals were detected using the Odyssey 
Infrared Imaging System (LI-COR Biosciences). Western 
blot data were quantified using densitometric analysis of the 
hybridization signals in three different blots per experiment.

In Vivo Experiments

Animals

Male adult CD1 mice, 6 weeks old (25–30 g, Envigo, Udine, 
Italy), were properly housed and provided with stand-
ard rodent chow and water in steel cages at room kept at 
22 ± 1 °C with a 12-h light, 12-h dark cycle. The animals 
were accustomed ad libitum access to tap water and a stand-
ard rodent diet. This study was approved by the University 
of Messina Review Board for the care of animals, in com-
pliance with Italian regulations on the protection of animals 
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(n° 399/2019-PR released on 05/24/2019). Animal care was 
performed in accordance with Italian regulations on the use 
of animals for the experiment (D.M. 116192) as well as with 
EEC regulations (O.J. of E.C. L 358/1 12/18/1986). The 
animal protocol was declared exempt, by an institutional 
review board [University of Messina Review Board for 
the care of animals, in compliance with Italian regulations 
on the protection of animals (n° 399/2019-PR released on 
05/24/2019)] in 2016 and confirmed in 2019.

Surgical Procedure for Spinal Cord Injury

SCI was performed as previously described (Paterniti et al. 
2018; Filippone et al. 2020). Briefly, mice were anesthe-
tized with intraperitoneal (i.p.) xylazine and ketamine (0.16 
and 2.6 mg/kg body weight, respectively). Mice were sub-
sequently stabilized, and the spinal cords were exposed via 
laminectomy. The SCI procedure was reproduced by extra-
dural compression of the spinal cord using an aneurysm 
clip with a closing force of 24 g along the thoracic vertebra 
6–7 (T6–T7) for 1 min. During post-surgery, the mice were 
placed on a warm heating pad and covered with a warm 
towel, and the bladder of the mice was manually emptied at 
intervals (every 2 h) immediately after waking up mice from 
anesthesia (Casili et al. 2020). Animals were euthanized 24 h 
after trauma induction.

Experimental Groups

Mice were allocated into the following groups:

•	 Sham + vehicle: mice were subjected to laminectomy, but 
the aneurysm clip was not applied, and the mice were 
treated with vehicle (saline i.p., 30 min after laminec-
tomy) (n = 10).

•	 SCI + vehicle: mice were subjected to SCI and treated 
with saline (i.p., 30 min after SCI) (n = 10).

•	 SCI + trehalose: mice were subjected to SCI, and treha-
lose was administered (i.p., at a dose of 150 mg/kg) 1 h 
and 6 h after SCI (n = 10).

•	 SCI + carnosine: mice were subjected to SCI, and carno-
sine was administered (i.p., at a dose of 150 mg/kg) 1 h 
and 6 h after SCI (n = 10).

•	 SCI + conjugate: mice were subjected to SCI, and the 
conjugate was administered (i.p., at a dose of 150 mg/
kg) 1 h and 6 h after SCI (n = 10).

The dose of 150 mg/kg has been selected and used on 
the basis of the previous studies that reported administra-
tion of this dose intraperitoneally at 1 and 6 h after SCI 
(Albayrak et al. 2015; Di Paola et al. 2011; Stvolinsky et al. 
2017). Moreover, treatments were administered 1 and 6 h 
post-injury since these time points reflect clinically relevant 

and effective time (therapeutic window) for counteracting 
acute damage.

Mice were divided following simple randomization and 
partial blinding methods as previously described (Bespalov 
et al. 2019). Moreover, the authors were blinded while per-
forming all the experiments. The minimum number of mice 
for every technique was estimated with the statistical test 
“ANOVA: Fixed effect, omnibus one-way” with G-power 
software. This statistical test generated a sample size equal 
to n = 10 mice for each technique.

Histological Examination

Spinal cord tissues were collected 24 h after treatment. After 
fixing the tissues in buffered formaldehyde solution (10% 
in phosphate-buffered saline (PBS), sagittal sections were 
prepared and stained with hematoxylin and eosin (H&E) 
as previously described (Casili et al. 2020) and evaluated 
using a Leica DM6 microscope (Leica Microsystems SpA, 
Milan, Italy) associated with Leica LAS X Navigator soft-
ware using the objective lens at 10 × magnification (Leica 
Microsystems SpA, Milan, Italy). The following morpho-
logical criteria were considered: (1) No pathological abnor-
malities; (2) Small, focal, scattered areas of axonal swelling; 
morphologically unremarkable tissue in > 75% of the per-
ilesional area; (3) Significant diffuse damage with normal 
gross architecture; unremarkable tissue in 50–75% of the 
perilesional area; (4) Significant diffuse damage with normal 
gross architecture; morphologically unremarkable tissue in 
25–50% of perilesional area; (5) Significant diffuse damage 
and loss of gross architecture in large areas; morphologi-
cally unremarkable tissue in 10–25% of perilesional area; 
(6) Complete dissolution of the spinal cord over the entire 
cross-sectional area with loss of gross architecture; mor-
phologically unremarkable tissue in < 10% of perilesional 
area. The results from every section of the spinal cord were 
averaged to obtain a final score (1 to 5) for distinct mice.

Western Blot Analysis for IkB‑α NF‑kB, p‑Akt, PI3K, p‑CREB, 
p‑ERK, Bax, Bcl‑2, p53, Caspase‑3, BDNF, GDNF and Zn 
Transporters

Spinal cord tissue from each mouse was suspended in extrac-
tion buffer A containing 0.2 mM PMSF, 0.15 mM pepstatin 
A, 20 mM leupeptin, 1 mM sodium orthovanadate, homog-
enized at the maximum setting for 2 min, and centrifuged at 
12,000 × rpm for 4 min at 4 °C. Supernatants represented the 
cytosolic fraction. The pellets, containing enriched nuclei, 
were resuspended in buffer B containing 1% Triton X-100, 
150 mM NaCl, 10 mM Tris–HCl pH 7.4, 1 mM EGTA, 
1 mM EDTA, 0.2 mM PMSF, 20 mM leupeptin, 0.2 mM 
sodium orthovanadate. After centrifugation for 10 min at 
12,000 rpm at 4 °C, the supernatants containing the nuclear 
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protein were stored at − 80 °C for further analysis. Proteins 
from cytoplasm and nuclear fraction were added to sample 
buffer (0.125 M Tris–HCl, (pH 6.8), 4% SDS, 20% glyc-
erol, 10% β-mercaptoethanol, 0.004% bromophenol blue), 
and boiled in a water bath for 5 min. Protein samples were 
separated on denatured 12% SDS polyacrylamide gel and 
transferred to a nitrocellulose membrane. Non-specific bind-
ing to the membrane was blocked for 1 h at room tempera-
ture with 5% non-fat dry milk (PM) in PBS. Membranes 
were incubated at 4 °C overnight with primary antibodies 
in milk–PBS–Tween 20, 0.1% (PMT). Levels of nuclear fac-
tor kappa-light-chain-enhancer of activated B cells (NF-kB), 
(1:100, sc8008, Santa Cruz Biotechnology, Dallas, TX USA) 
nuclear factor of kappa light polypeptide gene enhancer in 
B-cells inhibitor, alpha (IkB-α) (1:100, sc1643, Santa Cruz 
Biotechnology, Dallas, TX USA), phospho-RAC-alpha ser-
ine/threonine-protein kinase (p-Akt) (1:1000, Cell Signaling 
Technology, CST 9275), phospho-cAMP response element-
binding protein (p-CREB) (1:500; Santa Cruz Biotechnol-
ogy, sc-81486), phosphoinositide 3-kinase (PI3K), extracel-
lular signal-regulated kinase (p-ERK), Bax (1:500 sc-7480, 
Santa Cruz Biotechnology, Dallas Texas TX USA), Bcl-2 
(1:500 sc-7382 Santa Cruz Biotechnology, Dallas Texas 
TX USA), p53 (1:500 sc-98, Santa Cruz Biotechnology, 
Dallas Texas TX USA), Caspase-3 (1:500 sc-7272, Santa 
Cruz Biotechnology, Dallas Texas TX USA), brain-derived 
nerve factor (BDNF) (1:500 sc 20981; Santa Cruz Biotech-
nology, Dallas Texas TX USA), glial cell-derived nerve 
factor (GDNF) (1:500 sc-328; Santa Cruz Biotechnology, 
dallas Texas TX USA), Zn transporters (ZnT1), (1:1000 
ARP44019), Aviva Systems Biology (CA, USA) and ZnT3 
(1:1000 ARP43848); Aviva Systems Biology (CA, USA) 
were quantified in spinal cord tissue collected after 24 h 
after SCI. Membranes were blocked in 5% (w/v) non-fat 
dried milk in buffered saline (PM) for 45 min at room tem-
perature and subsequently probed with specific antibodies 
listed above, in 1 × PBS, 5% w/v non-fat dried milk, and 
0.1% Tween-20 (PMT) at 4 °C overnight. Membranes were 
incubated with peroxidase-conjugated bovine anti-mouse 
immunoglobulin G (IgG) or peroxidase-conjugated goat 
anti-rabbit IgG secondary antibody (1:2000, #AB2307391 
(rabbit) #AB10015289 (mouse), Jackson ImmunoRe-
search, West Grove, PA) for 1 h at room temperature. To 
determine whether blots were loaded with equal amounts 
of proteins, they were also incubated in the presence of 
antibodies against β-actin protein (cytosolic fraction 1:500; 
sc-8432Santa Cruz Biotechnology, Dallas Texas TX USA), 
or laminin A/C fraction (1:500; sc-74418 Santa Cruz Bio-
technology Dallas Texas TX USA), Akt antibody (1:500, 
Cell Signalling, #9272), CREB (Biotech, Life Sciences, 
ab-32515) or ERK1/2 (1:1000, Cell Signalling Technology, 
CST 5627S). Signals were detected using enhanced chemi-
luminescence (ECL) detection system reagent according to 

the manufacturer’s instructions (Thermo, USA). The rela-
tive expression of the protein bands was quantified by den-
sitometry using BIORAD ChemiDoc TMXRS + software 
and standardized to β-actin levels as an internal control. We 
validated all of the used antibodies choicing and preparing 
cell lines or tissue samples, consisting of true positive and 
negative controls.

Immunolocalization of Nitrotyrosine, 
Poly‑(ADP‑ribosio)‑polymerase (PARP), Bcl‑2 and Bax 
by Immunohistochemistry (IHC)

Sagittal spinal cord sections were deparaffinized and rehy-
drated as previously described (Lanza et al. 2019) Then, the 
sections were incubated overnight (O/N) with primary nitro-
tyrosine (Santa Cruz Biotechnology Dallas Texas TX USA; 
sc32757, 1:100 in PBS), poly-(ADP-ribosio)-polymerasi 
(PARP) (Santa Cruz Biotechnology; Dallas Texas TX USA, 
sc8007, 1:100 in PBS), Bcl-2 Santa Cruz Biotechnology; 
1:100 in PBS), and Bax (Santa Cruz Biotechnology; 1:100 
in PBS). Sections were washed with PBS and incubated with 
peroxidase-conjugated bovine anti-mouse immunoglobulin 
G (IgG) or peroxidase-conjugated goat anti-rabbit IgG sec-
ondary antibody (1:2.000 Jackson Immuno Research, West 
Grove, PA, USA). Specific labelling was detected using a 
biotin-conjugated goat anti-rabbit IgG or biotin-conjugated 
goat anti-mouse IgG and avidin–biotin peroxidase complex 
(Vector Laboratories, Burlingame, CA, USA). Immuno-
histochemical images were obtained and observed using a 
Zeiss microscope with Axio Vision software. The percent-
age area of immunoreactivity (brown staining, determined 
by the number of positive cells) is expressed as % of the total 
tissue area (red staining) of five random fields with objective 
lens at 20 × magnification, and the analysis was performed 
using ImageJ. Densitometry analysis was performed using 
GraphPad version 5.0 (La Jolla, CA, USA).

Immunofluorescence Staining for BDNF and GDNF

Sagittal spinal cord sections were processed for immuno-
fluorescence staining as previously described (Campolo 
et  al. 2020). Sections were incubated with anti-BDNF 
(1:100) or anti-GDNF (1:100) antibody in a humidified 
chamber O/N at 37 °C. Sections were then incubated with 
Texas Red-conjugated anti-rabbit Alexa Fluor-594 second-
ary antibody (#A11037 1:1000 in PBS, vol/vol Molecular 
Probes, Monza, Italy) for 1 h at 37 °C. Nuclei were stained 
by adding 2 μg/ml 4′,6′-diamidino-2-phenylindole (DAPI; 
#5748, Hoechst, Frankfurt, Germany) in PBS. Sections were 
observed with an objective lens at 40 × magnification using 
a Leica DM2000 microscope (Leica, Milan, Italy). Contrast 
and brightness were established by examining the most 
brightly labeled pixels and applying settings that allowed 
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clear visualization of structural details while keeping the 
highest pixel intensities close to 200. The same settings were 
used for all images obtained from the other samples that had 
been processed in parallel.

Detection of 8‑Hydroxy‑2′‑deoxyguanosine (8‑OHdG) 
Content

ELISA method (DNA damage competitive ELISA Kit 
#EIADNAD) was used to detect the content of 8-OhdG in 
the serum of mice at 24 h.

Statistical Evaluation

All values in the figures and text are expressed as ± SD. For 
the in vivo studies, N represents the number of animals stud-
ied. The three experiments performed on different days stand 
for three biological replicates. The Shapiro–Wilk test was 
used for the normality distribution analysis. The results were 
analysed by one-way ANOVA followed by a Bonferroni post 
hoc test for multiple comparisons. A p value of less than 
0.05 was considered significant.

Results

Synthesis of Trehalose Conjugate with Carnosine

Tre–Car is Obtained Through a Revised Synthetic Route

Although the synthesis of Tre–car (1) has been previously 
described in the literature (Grasso et al. 2011; Rizzarelli 
et al. 2007) we chose to follow the synthetic route shown in 
Scheme 1 because this pathway is better suited the needs of 
preparing the conjugate in sufficient amounts for its subse-
quent use in in vivo assays. 6-Bromo-6-deoxy-α,α-trehalose 
was prepared by bromination of trehalose, and then, the 
nucleophilic substitution of the halogen by the amine group 
of carnosine led to the formation of the desired conjugate.

In Vitro Experiments

The homeostasis of intracellular Zn2+ is strongly regulated 
and although the major fraction of the metal ion is tightly 
bound, functioning as a catalytic or structural component of 
proteins, a loosely bound minor fraction, termed labile or 
exchangeable zinc, modulates the activity of numerous sign-
aling and metabolic pathways. Specific fluorophores with 
high affinity for zinc have been employed to detect this metal 
ion pool to monitor cellular Zn2+ dynamics in situ (Gee 
et al. 2002), also unveiling the ionophore ability of different 
zinc ligands (Dabbagh-Bazarbachi et al. 2014). As above 
cited, transmembrane zinc transporters control the cellular 

Zn2+ uptake and efflux; among the zinc export transporters, 
the ZnT1 (Shusterman et al. 2014), located at the plasma 
membrane, is the main regulator of excess zinc cell export. 
In this context, the zinc probe Fluo-Zin-3 (Gee et al. 2002) 
was used to assign the ionophore ability of carnosine and 
its conjugate with trehalose, while the ZnT1 allowed us to 
follow the dynamics of zinc labile pool fluxes.3.1.2 Tre–car 
increases Zn2+ intracellular concentration.

Tre–Car Increases Zn2+ Intracellular Concentration

Fluorescent microscopy imaging studies of PC12 cells 
stained with the zinc sensor FluoZin-3, clearly show an 
increase of the fluorescent signals related to zinc ions 
with respect to the control untreated cells, after treatment 
with 5 mM Tre–car (224.7.0% ± 24.7, ###p ≤ 0.001), Car 
(165.9% ± 17.5, ##p ≤ 0.01) or Tre + Car (175.0% ± 16.8, 
###p ≤ 0.001), 20  µM Zn(II) alone (194.5% ± 45.7, 
###p ≤ 0.001) and 50 μM DPA (49.9% ± 11.6, #p ≤ 0.05) 
(Fig. 1a). As a baseline to exclude cell auto-fluorescence, 
PC12 cells were treated only with Hoechst33342 without 
FluoZin-3. The treatment with Tre do not appear to favour 
the cell uptake of Zn(II) after 20 h incubation whereas 
the presence of zinc chelator DPA significantly reduced 
the FluoZin-3 fluorescence level. This observation is con-
firmed by the quantitative analysis of the FluoZin-3 emis-
sion (Fig. 1b) over the whole cell area. The higher value 
measured for Tre–car treatment in comparison to Car and 
Tre + car mixture treated-cells is statistically significant. 
We may conclude that Car, its Tre derivate and mixture Tre 
with car cause Zn(II) translocation into cytoplasm from cell 
cultural medium; in this context, Tre–car is more effective 
than car alone or its mixture with Tre, in keeping with the 
major ionophore ability of conjugated molecule (Naletova 
et al. 2021).

Tre–Car Alters Zn2+ Homeostasis, Affecting ZnT1, 
the Membrane Efflux Transporter of Metal Ions and ZnT3

Since 1976, the PC12 cell line has been employed for inves-
tigating multiple aspects of neurobiology, including neu-
ronal differentiation, intracellular signalling pathways, and 
cell survival (Greene and Tischler 1976; Hu et al. 2018). 
In the present study, PC12 cells were utilized to determine 
the effect of Tre–car on zinc transporter ZnT1 expres-
sion levels in vitro. This membrane transporter acts as a 
probe of intracellular zinc(II) ion levels and induces metal 
ion efflux to guarantee metallostasis (Wang et al. 2011b). 
Following immunoblot analysis (Fig. 1c, d) Normal Dis-
tribution: SPSS test, CTRL W = 0.8949, p = 0.406; Tre 
W = 0.8779, p = 0.330; Car W = 0.9432, p = 0.674; Tre–Car 
W = 0.9370, p = 0.636; Tre + Car W = 0.901, p = 0.436; 
F(4,15) = 43.3, p = 0.541467, one-way ANOVA method, 
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followed by Bonferroni post hoc test for multiple compari-
sons), treatment with 5 mM carnosine, trehalose–carnos-
ine or trehalose + carnosine mixture induced an increase in 
the expression levels of ZnT1 up to 318% ± 70, 326% ± 54 
and 281% ± 76, respectively. This finding clearly indicates 
an ionophore ability of carnosine (also in the mixture with 
trehalose) and its conjugate due to their chelating features.

In Vivo Experiments

The Tre–Car Conjugate Influences Zn2+ Homeostasis 
in Response to SCI

To determine whether Tre–car affects Zn transporter 1 
expression levels in a mouse model of SCI, rodents were 
treated with the different compounds (i.p., at a dose of 

150 mg/kg), and ZnT1 expression was detected in tissue 
lysates. The results indicated that SCI induces a significant 
decrease in ZnT1 expression; conversely, treatment with 
Car and more so with Tre–car resulted in an increase in the 
expression levels of the membrane transporter (Fig. 2a; Nor-
mal Distribution: SPSS test, Sham W = 0.8869, p = 0.157; 
SCI W = 0.9394, p = 0.546; SCI + Trehalose W = 0.9027 
p = 0.235; SCI + Carnosine W = 0.9136, p = 0.307; 
SCI + Conjugate W = 0.894, p = 0.188; F(4,45) = 2.33, 
p = 0.070292, one-way ANOVA method, followed by Bon-
ferroni post hoc test for multiple comparisons).

This enhancement indicates that both the dipeptide and its 
derivative with trehalose favor the cellular uptake of zinc(II) 
ions, inducing the activation of the efflux process to coun-
teract the excessive intracellular increase in the metal ion 
amount. Among the ZnT family components that decrease 

Fig. 1   A, B Effects of Tre–car on the cytoplasmic pool of labile 
zinc in PC12 cells. Average intensity values for the FluoZin-3 emis-
sion corresponding to the Zn2+ content in the cytoplasm for control 
untreated cells and treated 20 h with Tre, Car, Tre–car or Tre + Car 
mixture in RPMI1640 complete medium with 1% HS and 0.5% FBS; 
20  µM zinc (Magri et  al. 2016) or 50  µM membrane-impermeable 
zinc chelator DPA treatment were used as a positive and negative 
control, respectively. The effect of Tre–car, Car or Tre + Car mixture 
treatment analysed by fluorescence images of cells incubated with 
zinc probe (A) and quantification of fluorescent intensity normal-
ized to the number of cells presented in each field (B) confirms the 
significantly increased zinc concentration in PC12 cells. As a base-
line to exclude cell auto-fluorescence, PC12 cells were treated only 
with Hoechst33342 without FluoZin-3. Scale bars are 42  μm. All 

values are mean ± SD of three independent experiments of 6–8 ran-
domly chosen fields. Significant differences between treatments were 
determined using one-way ANOVA method #p ≤ 0.05, ##p ≤ 0.01, 
###p ≤ 0.001 versus untreated control cells. C Tre, Car, Tre–car or 
Tre + Car mixture affected ZnT1 expression. Starved PC12 cells 
were stimulated for 24  h with 5  mM Tre, Car, Tre–car, Tre + Car, 
20  µM zinc or 50  µM membrane-impermeable zinc chelator DPA 
in RPMI11640 complete medium with 1% HS and 0.5% FBS. The 
expression level of ZnT1 is reported as a ratio to that of GAPDH. 
Treatment with Car, Tre–car or Tre + Car mixture significantly 
increased ZnT1 expression. All values are mean ± SD #p < 0.01, 
##p < 0.001 versus untreated control cells (samples n = 4, three indi-
vidual experiments)
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the cytosolic content of zinc(II) ions, ZnT3 performs this 
task by confining metal ions into synapses (Portbury et al. 
2017). Different studies report both a decrease in Znt3 pro-
tein levels in the spinal cords of ALS patients (Kaneko et al. 
2015) and a significant loss of synaptic vesicular zinc with 
a decline in ZnT3 transcriptional activity in Huntington's 
disease (HD) transgenic mice (Niu et al. 2020). As a conse-
quence of disrupted vesicular zinc synapses, dysfunction and 
cognitive deficits occur in HD. Analogously, SCI induced a 
significant decrease in ZnT3 expression levels, while both 
Car and Tre–car counteracted this effect (Fig.  2b; Nor-
mal Distribution: SPSS test, W = 0.8890, Sham p = 0.165; 
SCI W = 0.9171, p = 0.334; SCI + Trehalose W = 0.9017, 
p = 0.229; SCI + Carnosine W = 0.8944, p = 0.190; 
SCI + Conjugate W = 0.9320, p = 0.468; F(4,45) = 1.3, 
p = 0.002992, one-way ANOVA method, followed by Bon-
ferroni post hoc test for multiple comparisons). Overall, the 
carnosine conjugate showed a protective effect against the 
alteration of certain ZnT transporters induced by SCI.

Tre–Car Attenuates the Severity of Spinal Cord Trauma, 
Decreasing Tissue Damage

The first step of SCI consists of immediate mechanical injury 
that causes loss of tissue architecture and recruitment of pro-
inflammatory mediators at the damaged site. The longitudi-
nal sections of the spinal cord were used to perform H&E 
staining to observe the potential effects of the Tre–car con-
jugate after injury. Significant structural changes occurred in 
the spinal cord of injured mice (Fig. 3b) compared to sham 
mice (Fig. 3a) with respect to the loss of tissue architecture, 
oedema, and accumulation of neutrophils, which are major 

proinflammatory signs that appear after SCI. The severity 
of the injury decreased with Tre (Fig. 3c) and Car treat-
ment alone (Fig. 3d, see histological score F; Normal Dis-
tribution: SPSS test, Sham ND; SCI W = 0.8707, p = 0.102; 
SCI + Trehalose W = 0.8658, p = 0.089; SCI + Carnos-
ine W = 0.8827, p = 0.140; SCI + Conjugate W = 0.8946, 
p = 0.191; F(4,36) = 69.46, p = 0.026392, one-way ANOVA 
method, followed by Bonferroni post hoc test for multiple 
comparisons), showing fewer dead and degenerated neu-
rons compared to injured mice. However, Tre–car showed 
a significant ability to repair damaged tissue (Fig. 3, Panel 
E, see histological score in F), suggesting the successful 
conjugation of Car with Tre in the attenuation of neuronal 
degeneration.

The Tre–Car Conjugate Decreases Activation 
of the Inflammatory Cascade Induced by SCI

To gain insights into the mechanisms underlying the effects 
of Tre–car on acute effect in inflammation, we evaluated 
the expression levels of nuclear factor NF-kB and its inhibi-
tor IκB-α. Nuclear translocation of NF-kB was higher in 
the SCI group than in the sham group, while treatment of 
mice with Tre–car remarkably decreased NF-kB translo-
cation (Fig. 4, panel A, see densitometric analysis Panel 
A1;Normal Distribution: SPSS test, Sham W = 0.8460, 
p = 0.052; SCI W = 0.8759, p = 0.117; SCI + Trehalose 
W = 0.9696, p = 0.887; SCI + Carnosine W = 0.9269, 
p = 0.418; SCI + Conjugate W = 0.8452, p = 0.051; 
F(4,45) = 3.48, p = 0.014710, one-way ANOVA method, 
followed by Bonferroni post hoc test for multiple compari-
sons). Different changes occur after treatment with Car and 

Fig. 2   Tre, Car or Tre–car differentially affected ZnT1 and ZnT3 expression after SCI. The expression level of zinc transporters is reported as a 
ratio to actin. A representative blot of lysates is shown, and densitometry analysis is reported. Data are expressed as SD



1646	 Cellular and Molecular Neurobiology (2023) 43:1637–1659

1 3

Tre; the disaccharide shows a lesser ability to counteract 
the nuclear translocation of NF-kB than the dipeptide, 
highlighting the advantage of the conjugate treatment. SCI 
mice exhibit increased degradation of IκB-α compared to 
the Sham mice; the conjugate successfully decreases the 
degradative process, differently from the treatment with Tre 
and Car that slightly modify the process (Fig. 4b, see den-
sitometric analysis in B1; Normal Distribution: SPSS test, 
Sham W = 0.8531, p = 0.063; SCI W = 0.8497, p = 0.058; 
SCI + Trehalose W = 0.8466, p = 0.053; SCI + Carnos-
ine W = 0.8885, p = 0.163; SCI + Conjugate W = 0.8786, 
p = 0.126; F(4,45) = 1.75, p = 0.155842, one-way ANOVA 
method, followed by Bonferroni post hoc test for multiple 
comparisons).

Tre–Car Attenuates the Oxidative Stress Induced by SCI

Hypoxia–ischaemia and consequent early initiated inflam-
mation in SCI include various events, such as the produc-
tion of excitatory amino acids, altered ion homeostasis, 

induction of oxidative stress and ROS and RNS produc-
tion, contributing to neuronal cell death (Jia et al. 2012) 
by forming the free radical superoxide and peroxyni-
trite, which damage fatty acids, lipids, proteins and DNA 
(Chen et al. 2018a; Stewart et al. 2021). Thus, we exam-
ined whether Tre–car could alleviate the oxidative stress 
induced by SCI. Using nitrotyrosine (Nt) as a marker of 
oxidative stress, we found that nitrotyrosine immuno-
reactivity was markedly increased after SCI compared 
to the sham group (Fig.  5). In contrast, the conjugate 
affected Nt immunoreactivity, which resulted in signifi-
cantly decreased levels (Fig. 5e) compared to the minor 
effect of Tre (Fig. 5c) or Car (Fig. 5d) alone (% of Nt 
area panel F; Normal Distribution: SPSS test, Sham ND; 
SCI W = 0.8709, p = 0.102; SCI + Trehalose W = 0.8551, 
p = 0.067; SCI + Carnosine W = 0.8721, p = 0.106; 
SCI + Conjugate W = 0.8709, p = 0.102; F(4,36) = 78.94, 
p = 0.927336), one-way ANOVA method, followed by 
Bonferroni post hoc test for multiple comparisons). The 
ability of Tre–car to alleviate SCI-induced oxidative stress 

Fig. 3   The severity of tissue 
damage following SCI is 
decreased in Tre–car-treated 
mice. Extensive damage to 
the spinal cord was observed 
in the SCI mouse group (B) 
compared to the sham mouse 
group (A). C, D Tre and Car 
treatments after SCI. E Tre–car 
treatment significantly reduces 
the SCI lesion score. F Relative 
histological score. ***p < 0.001 
versus sham group; #p < 0.05 
versus SCI group; ##P < 0.01 
versus SCI group. ###p < 0.001 
versus SCI group. (samples 
n = 10, three individual experi-
ment). Data are expressed as SD
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in spinal cord tissues was further supported by PARP 
immunoreactivity results that clearly indicated the conju-
gate prevents DNA damage induced by SCI. No immuno-
positive neurons were found in the spinal cord tissues of 
the sham mice (Fig. 5g), whereas increased immunoreac-
tivity of PARP was evident in SCI mice (Fig. 5h). In Tre- 
(Fig. 5i) and Car-treated (Fig. 5j) mice, PARP immunore-
activity was attenuated, while the conjugate consistently 
reduced immunoreactivity within 24 h after SCI (Fig. 5k) 
(% of PARP area panel L; Normal Distribution: SPSS 
test, Sham ND; SCI W = 0.8553, p = 0.067; SCI + Treha-
lose W = 0.8764, p = 0.119; SCI + Carnosine W = 0.8917, 
p = 0.177; SCI + Conjugate W = 0.8774, p = 0.122; 
F(4,45) = 4.752, p = 0.002769, one-way ANOVA method, 
followed by Bonferroni post hoc test for multiple compari-
sons). Moreover, we examined a presence of 8-hydroxy-
2-deoxyguanosine (8-OHdG), one of the best markers of 
the oxidative DNA damage, in the spinal cord of mice. 
Results showed that the levels of protein 8-OHdG in con-
trol mice (Sham group) expressed a little. This oxidative 
stress indicator showed obvious increase in SCI-injured 
mice (SCI group) when compared to the control mice. Tre-
halose and Carnosine treatments (SCI + Trehalose group) 
(SCI + Carnosine group) attenuated SCI-induced DNA 
damage in a significant manner. Particularly, Conjugate 
treatment showed greater ability to significantly attenuate 
DNA damage after SCI (Fig. 5m; Normal Distribution: 
SPSS test, Sham W = 0.9034, p = 0.238; SCI W = 0.9629, 
p = 0.818; SCI + Trehalose W = 0.9347, p = 0.495; 
SCI + Carnosine W = 0.8968, p = 0.202; SCI + Conjugate 
W = 0.9571, p = 0.752; F(4,45) = 4.60;p.003; one-way 
ANOVA method, followed by Bonferroni post hoc test for 
multiple comparisons).

Tre–Car Displays Anti‑apoptotic Ability

Spinal cord trauma leads to the development of patho-
physiological processes, including neuronal cell apop-
tosis and acute inflammation that affect the injured tis-
sue, seriously compromising the conductive function of 
the nerves (Li et al. 2019c). Thus, we next determined 
whether Tre–car, Tre and Car mediate protective effects 
by inhibiting apoptosis by evaluating Bax and Bcl-2 
expression, both proteins essential for apoptosis. First, 
the elevation of apoptosis induced by SCI was signifi-
cantly attenuated by treatment with Tre–car, as estimated 
by protein expression level quantitation of the pro-apop-
totic Bax (Kotipatruni et al. 2011) (Fig. 6a, see densito-
metric analysis in A1; Normal Distribution: SPSS test, 
Sham W = 0.8557, p = 0.068; SCI W = 0.8490, p = 0.057; 
SCI + Trehalose W = 0.8757, p = 0.116; SCI + Carnos-
ine W = 0.8922, p = 0.180; SCI + Conjugate W = 0.8482, 
p = 0.055; F(4,45) = 20.2, p = 0.000001, one-way ANOVA 
method, followed by Bonferroni post hoc test for multiple 
comparisons). The mechanism by which the conjugate 
affects neuronal cell death was next analyzed by examining 
levels of antiapoptotic Bcl-2 after SCI. The Bcl-2 overex-
pression found in sham mice was significantly restored by 
administration of Tre–car, which protected neuronal cells 
from apoptosis induced by spinal cord trauma (Fig. 6b, 
see densitometric analysis in B1; Normal Distribution: 
SPSS test, Sham W = 0.8536, p = 0.064; SCI W = 0.9120, 
p = 0.295; SCI + Trehalose W = 0.8469, p = 0.053; 
SCI + Carnosine W = 0.8773, p = 0.122; SCI + Conju-
gate W = 0.8793, p = 0.128; F(4,45) = 4.87, p = 0.002380, 
one-way ANOVA method, followed by Bonferroni post 
hoc test for multiple comparisons). However, individual 

Fig. 4   Western blot analysis of spinal cord samples. A NF-kB expres-
sion level evaluation and relative densitometric analysis shown in 
A1. B IκB-α expression level evaluation and relative densitometric 

analysis shown in B1. ***p < 0.001 versus sham group; #p < 0.05 ver-
sus SCI group; ##p < 0.01 versus SCI group. ###p < 0.001 versus SCI 
group (samples n = 10, three individual experiments)
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treatment with Tre or Car showed minimal antiapoptotic 
effects. Immunohistochemical analysis of spinal cord 
sections for both Bax and Bcl-2 was also performed to 
further confirm the protective effect of Tre–car in vivo. 
Bax immunoreactivity was primarily high in neurons of 
SCI mice (Fig. 6d) compared to sham mice (Fig. 6c). 
Although some neurons were positive in Tre- (Fig. 6e) or 
Car-treated (Fig. 6f) mice, there were significantly fewer 
Bax-positive cells in Tre–car-treated mice than in injured 
mice (Fig. 6g) (% of Bax area panel H; Normal Distri-
bution: SPSS test, Sham ND; SCI W = 0.8737, p = 0.111; 
SCI + Trehalose W = 0.8729, p = 0.108; SCI + Carnos-
ine W = 0.8917, p = 0.177; SCI + Conjugate W = 0.8456, 
p = 0.051; F(4,45) = 3.150, p = 0.022921, one-way 
ANOVA method, followed by Bonferroni post hoc test for 
multiple comparisons). The opposite results were found 
in Bcl-2 immunodetection due to the antiapoptotic role 
played by Tre–car administration after SCI (panels I to M) 
(% of Bcl-2 area panel N; Normal Distribution: SPSS test, 
Sham W = 0.8737, p = 0.111; SCI W = 0.8482, p = 0.055; 
SCI + Trehalose W = 0.8737, p = 0.111; SCI + Carnos-
ine W = 0.8996, p = 0.217; SCI + Conjugate W = 0.8704, 
p = 0.101; F(4,45) = 1.595, p = 0.192104, one-way 
ANOVA method, followed by Bonferroni post hoc test for 
multiple comparisons). Moreover, the positive feedback 
in p53 accumulation to induce Caspase-3 activation was 
evaluated, and results showed that the expression levels 
of p53 and Caspase-3 significantly increased 24 h after 
SCI compared to the sham group, while Tre–Car conju-
gate treatment significantly reduced p53 and Caspase-3 
expression levels despite moderate attenuation showed by 
Tre and Car treatments alone (Fig. 6o, p, see densitomet-
ric analysis O1 and P1; Normal Distribution: SPSS test, 
Sham W = 0.8999, p = 0.288; SCI W = 0.8883, p = 0.225; 
SCI + Trehalose W = 0.8767, p = 0.175; SCI + Carnos-
ine W = 0.9704, p = 0.901; SCI + Conjugate W = 0.9135 
p = 0.379. p53: F(4,35) = 2.13, p = 0.06, one-way ANOVA 
method, followed by Bonferroni post hoc test for multiple 
comparisons; Caspase 3: Normal Distribution: SPSS test, 
Sham W = 0.8697, p = 0.099; SCI W = 0.8861, p = 0.153; 
SCI + Trehalose W = 0.9688, p = 0.879; SCI + Carnosine 

Fig. 5   Effects of Tre–car on Nt and PARP. A substantial increase 
in Nt-positive staining was observed in spinal cord tissues collected 
from mice 24 h after SCI compared to sham mice (B, A). Treatment 
with Tre and Car reduced the positive staining of Nt (C, D). Tre–car 
treatment protects tissue after SCI (E). A substantial increase in PAR-
positive staining was observed in spinal cord tissues of SCI mice 
compared to sham mice (H, G). Treatment with Tre and Car reduced 
the positive staining of PARP (I, J). Tre–car treatment protects tis-
sue after SCI (K). Quantitative panels of Nt and PARP, respectively 
(F, L). 8-hydroxy-2-deoxyguanosine (8-OHdG) content in serum 
(M). ***p < 0.001 versus sham; #p < 0.05 versus SCI; ##p < 0.01 ver-
sus SCI; ###p < 0.001 versus SCI; ND not detectable. (samples n = 10, 
three individual experiments). Data are expressed as SD

▸
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Fig. 6   Effects of Tre–car on 
apoptosis levels. Western blot 
analysis showing the expression 
of Bax (A) and Bcl-2 (B) 24 h 
after SCI with densitometric 
analysis shown A1 and B1. A 
substantial increase in Bax-
positive staining was observed 
in spinal cord tissues collected 
from mice 24 h after SCI 
compared to sham mice (D, C) 
(samples n = 10, three individual 
experiments). Treatment with 
Tre and Car reduced the positive 
staining of Bax (E, F). Tre–car 
treatment protects tissues after 
SCI (G). A substantial increase 
in Bcl-2-positive staining 
was observed in sham mouse 
spinal cord tissues compared 
to SCI mice (I, J). Treatment 
with Tre and Car increased the 
positive staining of Bcl-2 (K, 
L). Tre–car treatment protects 
after SCI (M). Quantitative 
panels of Bax and Bcl-2 (H, 
N). p53 and Caspase-3 protein 
expression increased 24 h post 
SCI, compared with sham 
group, while Tre, Car and 
Conjugate treatments signifi-
cantly both p53 and Caspase-3 
expression levels (O, P, see 
densitometric analysis O1 and 
P1). ***p < 0.001 versus sham, 
#p < 0.05 versus SCI; ##p < 0.01 
and ###p < 0.001 versus SCI. ND 
not detectable. (samples n = 10, 
three individual experiments). 
Data are expressed as SD
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W = 0.8947, p = 0.191; SCI + Conjugate W = 0.8530, 
p = 0.063; F(4,45) = 3,38;p.004; one-way ANOVA 
method, followed by Bonferroni post hoc test for multiple 
comparisons).

Modulation of the PI3K/Akt Pathway, p‑ERK 1/2 and p‑CREB 
is Mediated by Tre–Car Treatment

SCI is characterized by PI3K/Akt pathway downregulation 
(Chen et al. 2018b). To determine whether Tre–car regulates 
this pathway, PI3K and p-Akt/Akt protein expression levels 
were assayed. There was significant suppression of PI3K and 
p-Akt/Akt protein expression in the SCI group compared to 
the sham group. Although minor (in some cases not signifi-
cant) changes were observed after either Tre or Car treat-
ment alone, Tre–car significantly promoted the PI3K and 
p-Akt/Akt protein expression levels after SCI. These results 
suggest that the PI3K/Akt pathway is involved in the effects 
mediated by Tre and Car in SCI (Fig. 7a, b, see densitometric 
analyses in A1 and B1) (A1: Normal Distribution: SPSS test, 
Sham W = 0.9636, p = 0.826; SCI W = 0.9140, p = 0.310; 
SCI + Trehalose W = 0.8530, p = 0.063; SCI + Carnosine 

W = 0.8970, p = 0.203; SCI + Conjugate W = 0.9053, 
p = 0.250; F(4,45) = 2.59, p = 0.049270, one-way ANOVA 
method, followed by Bonferroni post hoc test for multi-
ple comparisons) (B1: Normal Distribution: SPSS test, 
Sham W = 0.8895, p = 0.167; SCI W = 0.8993, p = 0.215; 
SCI + Trehalose W = 0.9573, p = 0.754; SCI + Carnos-
ine W = 0.9134, p = 0.305; SCI + Conjugate W = 0.8577, 
p = 0.072; F(4,45) = 2.45, p = 0.054461, one-way ANOVA 
method, followed by Bonferroni post hoc test for multiple 
comparisons). Moreover, the level of p-ERK was also inves-
tigated, showing an increase 24 h after injury compared to 
control mice (sham group). Treatment with Tre, Car and 
the conjugate significantly decreased the levels of p-ERK 
compared to spinal cord-injured mice (Fig. 7c, see densi-
tometric analysis in C1; Normal Distribution: SPSS test, 
Sham W = 0.8632, p = 0.083; SCI W = 0.9176, p = 0.338; 
SCI + Trehalose W = 0.8910, p = 0.174; SCI + Carnos-
ine W = 0.9039, p = 0.242; SCI + Conjugate W = 0.9349, 
p = 0.497; F(4,45) = 2.49, p = 0.056585, one-way ANOVA 
method, followed by Bonferroni post hoc test for mul-
tiple comparisons). In addition, since the CREB factor 
is recognized as a positive regulator of Bcl-2 induction 

Fig. 7   Western blot analysis. Expression level evaluation of PI3K 
(A), p-Akt (B), p-ERK (C) and p-CREB (D) 24 h after SCI. Densito-
metric analysis Panels A1, B1, C1 and D1. ***p < 0.001 versus sham; 

#p < 0.05 versus SCI; ##p < 0.01 versus SCI. ###p < 0.001 versus SCI. 
(samples n = 10, three individual experiments). Data are expressed as 
SD
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by negatively influencing the apoptosis (Freeland et  al. 
2001), we investigated its expression level after SCI and in 
response to our treatments. Quantitative analysis of west-
ern blots revealed that treatment with Tre–car significantly 
increased p-CREB expression levels compared to SCI-
injured mice, whereas Tre or Car individual treatment did 
not affect p-CREB expression after SCI (Fig. 7d, see den-
sitometric analysis in D1; Normal Distribution: SPSS test, 
Sham W = 0.8655, p = 0.089; SCI W = 0.9295, p = 0.443; 
SCI + Trehalose W = 0.9673, p = 0.864; SCI + Carnos-
ine W = 0.9365, p = 0.515; SCI + Conjugate W = 0.9089, 
p = 0.274; F(4,45) = 1.27, p = 0.294297, one-way ANOVA 
method, followed by Bonferroni post hoc test for multiple 
comparisons).

Overexpression of BDNF and GDNF is Induced by Tre–Car 
After SCI

In the context of SCI, targeting neurotrophins may pro-
vide support for understanding and resolving trauma due 
to the neuroprotective and growth-promoting effects of 
these compounds (Keefe et al. 2017). Thus, expression of 
BDNF and GDNF proteins in the spinal cord was assayed 
by western blot analysis 24 h after SCI. In contrast to the 
Tre and Car treatment results, Tre–car induced BDNF 
expression levels that were significantly higher than those 
in the SCI group (Fig. 8a, see densitometric analysis in 
A1; Normal Distribution: SPSS test, Sham W = 0.9023, 
p = 0.232; SCI W = 0.8833, p = 0.142; SCI + Trehalose 
W = 0.9395, p = 0.548; SCI + Carnosine W = 0.8722, 
p = 0.106; SCI + Conjugate W = 0.8809, p = 0.133; 
F(4,45) = 2.78, p = 0.038122, one-way ANOVA method, 
followed by Bonferroni post hoc test for multiple compari-
sons). GDNF results exhibited the same trend (Fig. 8b, see 
densitometric analysis B1; Normal Distribution: SPSS test, 
Sham W = 0.8831, p = 0.142; SCI W = 0.8603, p = 0.077; 
SCI + Trehalose W = 0.9339, p = 0.487; SCI + Carnos-
ine W = 0.8694, p = 0.200; SCI + Conjugate W = 0.9053, 
p = 0.250; F(4,45) = 2.43, p = 0.061328, one-way ANOVA 
method, followed by Bonferroni post hoc test for multiple 
comparisons). In the SCI group, BDNF expression was sig-
nificantly lower than that in the sham group, and its expres-
sion was restored in the Tre–car treatment group (Fig. 8b, 
see densitometric analysis B1). Moreover, we assayed BDNF 
and GDNF immunoreactivity in spinal cord sections after 
SCI according to previous studies (Liang et al. 2018; Li 
et al. 2019b), BDNF release in the injured area of the spinal 
cord was absent in the SCI mouse group (Fig. 8d) com-
pared to the sham group (Fig. 8c). An increase in the num-
ber of BDNF-positive cells was found at the site of trauma 
when SCI-injured mice were treated with Tre–car (Fig. 8g), 
highlighting the protective effects of the conjugate in com-
parison to its components (Fig. 8e, f) (mean of intensity 

fluorescence panel G; Normal Distribution: SPSS test, 
Sham W = 0.8623, p = 0.081; SCI W = 0.9065, p = 0.258; 
SCI + Trehalose W = 0.8946, p = 0.191; SCI + Carnos-
ine W = 0.8946, p = 0.191; SCI + Conjugate W = 0.9197, 
p = 0.355; F(4,45) = 3.05, p = 0.026202, one-way ANOVA 
method, followed by Bonferroni post hoc test for multiple 
comparisons). Further support for the role of Tre–car in 
the survival of neurons was provided by GDNF immuno-
fluorescence analysis. GDNF immunoreactivity was not 
found in SCI-injured mouse cells (Fig. 8j), which was dif-
ferent from the results in sham mice (Fig. 8i). The GDNF 
immunoreactivity level reached the highest value 24 h after 
SCI in the Tre–car-treated group (Fig. 8m) compared to 
the results found in both the Tre (Fig. 8k) and Car groups 
alone (Fig. 8l) (mean of intensity fluorescence panel N; Nor-
mal Distribution: SPSS test, Sham W = 0.9238, p = 0.390; 
SCI W = 0.9108, p = 0.287; SCI + Trehalose W = 0.8905, 
p = 0.172; SCI + Carnosine W = 0.9203, p = 0.359; 
SCI + Conjugate W = 0.8588, p = 0.074; F(4,45) = 2.45, 
p = 0.059469, one-way ANOVA method, followed by Bon-
ferroni post hoc test for multiple comparisons). Overall, 
Tre–car treatment significantly affects SCI, influencing the 
survival of neuronal cells and contributing to their enhanced 
regeneration by properly modulating growth factors.

Discussion

The findings of this study indicate that Tre–car is a mul-
titarget molecule that protects against SCI by exerting 
antioxidant, anti-inflammatory, antiapoptotic and trophic 
activating effects in a mouse model of spinal cord injury. 
Conjugate protection amplifies the analogous effect of the 
parent moieties, including the ionophore ability due to the 
presence of Car, which affects zinc homeostasis by chelating 
the metal ion present at the micromolar level in the medium 
and at pathological amounts in SCI. The metal binding of 
Car favors the intracellular uptake of zinc, increasing the 
expression of ZnT1 and ZnT3, two relevant zinc transporter 
proteins, which belong to the SLC30A family of Zn2+ efflux 
transporters. In this “menage à trois” comprising the pep-
tide, the disaccharide and the metal ion, it is possible to 
distinguish the different contributions responsible for the 
synergistic protective actions of the new molecular entity 
in counteracting pathological consequences of spinal cord 
trauma in terms of inflammatory cascade reduction at the 
early stage, antioxidant and antiapoptotic role and neuronal 
growth factor restoration. Excessive accumulation of toxic 
molecules produced and released by inflammatory cells may 
delay the recovery process. In particular, NF-kB activation 
is initiated by proinflammatory signals in the early phase of 
acute inflammation such as the interaction of TNF-α with its 
receptor on the cell surface (Liu et al. 2017). TNF-α-initiated 
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signals trigger the phosphorylation of IkB-α, which leads 
to its detachment from NF-kB, permitting its translocation 
into the nucleus and driving the transcription of cytokines 
and proinflammatory mediators. Tre–car treatment inhibits 
inflammatory stress, blocking the inflammatory signaling 
pathways activated by NF-kB and exerting protective effects 
on SCI.

Redox homeostasis in the spinal cord must be maintained. 
The biochemical and molecular processes of secondary SCI 
are primarily due to oxidative and nitrosative stress that 
alters the abovementioned balance (Bains and Hall 2012). 

The primary player in oxidative stress is the superoxide radi-
cal (O2 ⋅−), which can react with other molecules, such as 
NO radicals; the reaction product of O2

⋅− with NO is perox-
ynitrite (ONOO−), which induces protein nitration by trans-
forming tyrosine into 3-nitrotyrosine (3-Nt) (Ahsan 2013). 
The antioxidant activity of the dipeptide can be related to its 
components (L-histidine and β-alanine) that contributes to 
the formation of molecular adducts with different ROS in 
cell-free and biological assays (Pavlov et al. 1993; Bellia 
et al. 2011; Tamba and Torreggiani 1998; Kohen et al. 1988; 
Hartman et al. 1990; Prokopieva et al. 2016; Klebanov et al. 

Fig. 8   Effects of Tre–car on 
BDNF and GDNF. Western blot 
analysis showing the expression 
of BDNF (A) and GDNF (B) 
24 h after SCI. Densitometric 
analysis is shown in A1 and 
B1. A substantial decrease in 
BDNF-positive staining was 
observed in spinal cord tissues 
collected from mice 24 h after 
SCI compared to sham mice 
(C, D). Treatment with Tre 
and Car increased the positive 
staining of BDNF (E, F). (sam-
ples n = 10, three individual 
experiments). Tre–car treatment 
further increased the positive 
staining of BDNF after SCI (G). 
Basal GDNF-positive staining 
was observed in sham mouse 
spinal cord tissues compared 
to the decreased value found 
in SCI mice (I, J). Treatment 
with Tre and Car slightly 
increased the positive stain-
ing of GDNF (K, L). Tre–car 
treatment induces a significant 
increase in positive staining of 
GDNF after SCI (M). Quan-
titative panels of BDNF and 
GDNF (H, N). ***p < 0.001 
versus sham; ##p < 0.01 versus 
SCI. ###p < 0.001 versus SCI. 
(samples n = 10, three indi-
vidual experiments). Data are 
expressed as SD
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1997). l-carnosine also displays a specific and higher ability 
to reduce NO. concentration in comparison with the con-
stituent amino acids or their mixture in a cell-free assay; 
spectrophotometric and mass spectra results indicate that the 
direct scavenging ability against this RNS is due to carnos-
ine/NO and carnosine/NO2 adduct formation (Nicoletti et al. 
2007). Furthermore, Car protects astrocytes against NO-
induced impairment of mitochondrial function (Nicoletti 
et al. 2007) and downregulates the expression of PARP-1 
and PARP-2 (Spina-Purrello et al. 2010). The ability of car-
nosine to scavenge RNS results in its protective effects 
against PAR, an indicator of in vivo PARP activation, in 
keeping with the well-known reciprocal regulation of PARP 
and iNOS (Naura et al. 2009). Conversely, there are no 
reports on direct interactions between ROS and RNS and the 
nonreducing sugar trehalose. Disaccharides significantly 
decrease levels of iNOS in hemolysate-treated macrophage-
like cells (Echigo et al. 2012), and NO that (Nazari-Robati 
et al. 2019) is generated immediately after SCI (Nakahara 
et al. 2002). In addition, trehalose counteracts the NO insult 
after LPS and INFγ-induced oxidative stress (Spina-Purrello 
et al. 2010) and downregulates PARP-1 expression in CAS-
1, A-172, and SNB-19 cells (Scalia et al. 2013). The two 
moieties of combined Tre–car, therefore, indicate the direct 
(Car) and indirect (Tre) methods of protecting cells, giving 
rise to a synergistic effect against secondary SCI. PARP-1 is 
a coactivator of NF-κB and other transcription factors 
involved in the production of cytokines and chemokines in 
acute inflammation (Rothwarf and Karin 1999; Jeon et al. 
2010), which represents one of the primary causes that ham-
pers the recovery of SCI (Pineau et al. 2010). Tre inhibits 
inflammatory stress by suppressing NF-kB and protecting 
against IkB-α reduction (He et al. 2014), decreases the pro-
duction of IL-1, IL-6, TNF-α, and inflammatory mediators 
of the acute phase of inflammation, such as NO (Taya et al. 
2009). In addition to the direct interactions of Car with oxi-
dative and nitrosative agents, different reports suggest indi-
rect biochemical pathways used by the dipeptide to counter-
act both the interdependent dysregulation of redox 
homeostasis and inflammation and the apoptotic processes 
in cellular and in vivo models (Miceli et al. 2018; Cao et al. 
2021; Zhang et al. 2015; Ahshin-Majd et al. 2016; Yan et al. 
2019). Pretreatment with carnosine reduces the overexpres-
sion of inducible isoform nitric oxide synthase caused by 
nitrosative stress and modulates nitric oxide in stimulated 
murine RAW 264.7 macrophages (Calabrese et al. 2005; 
Caruso et al. 2017). In correcting the redox imbalance that 
characterizes early inflammation, l-carnosine enhances the 
nuclear transcription factor Nrf-2, which drives the antioxi-
dant system and translocates into the nucleus. Nrf-2 acti-
vates specific genes that encode antioxidant agents that pre-
serve redox homeostasis (Gupte et al. 2013). In stress states, 
NF-κB abrogates the beneficial antioxidant effect of Nrf-2 

(Liu et al. 2008), through crosstalk between the two tran-
scription factors. The ability of l-carnosine to protect against 
oxaliplatin-induced peripheral neuropathy has been partly 
attributed to the increased Nrf2 with its antioxidant machin-
ery and the inhibition of both NF-κB and TNF-α (Yehia 
et al. 2019). Traumatic SCI causes the activation of NF‐κB, 
and the above scenario, therefore, supports the suggestion 
of an extension of the same biochemical pathways to the 
protective activity on SCI of Car and Tre–car that induces a 
decrease of NF-kB and an increase of IkB-α. Different stud-
ies report that l-carnosine favors cell survival by inducing 
the antiapoptotic marker Bcl-2 and suppressing the apoptotic 
marker Bax, which is associated with a decreased ratio of 
Bcl-2/Bax (Cheng et al. 2011; Abdel Baky et al. 2016; Wang 
et al. 2013). Apoptosis plays an important role in cell death 
in spinal cord tissue after SCI (Ding et al. 2020; Sun et al. 
2020), and dipeptide findings indicate that it significantly 
contributes to the positive balance between the antiapoptotic 
marker Bcl2 and the apoptotic marker Bax shown by Tre–car 
in survival signaling pathway activation against SCI. The 
increased Nrf2 and the inhibited NF-κB (Yehia et al. 2019) 
may partly be related to an antiapoptotic effect, further sup-
porting our suggestion regarding the complex signaling 
pathway of protection activated by l-carnosine. All assay 
results indicated a primary role played by Car compared to 
Tre in the protective effects of Tre–car on SCI; this deserves 
some comments primarily with respect to the effect on zinc. 
Large differences between Tre and Car are evident when 
comparing the changes in the levels of Zn transporters; SCI 
induces a decrease of Zn2+ cytosolic levels as indicated by 
the low value of ZnT1 and ZnT3 expression, but Car 
increases both ZnTs to values higher than those of the sham. 
Conversely, Tre did not restore control values in the case of 
ZnT1 and slightly increased ZnT3 expression. Zn2+ cannot 
travel across biological membranes by passive diffusion 
(Zhang et al. 2008); thus, the formation of the metal complex 
of extracellular zinc present in the SCI state with the iono-
phore Car induces Zn2+ cellular uptake, which further 
increases by the chelation with Tre–car, suggesting a major 
ionophore ability of the conjugate compared to the dipep-
tide. Zn2+ dyshomeostasis features different neuronal insults, 
including traumatic brain injury, stroke and seizure (Gower-
Winter and Levenson 2012; Prakash et al. 2015), and a 
decrease in zinc serum levels is reported to be associated 
with trauma-induced inflammation (McClain et al. 1986), 
while zinc status and its time-dependent change after SCI 
are inadequate (Lynch et  al. 2002; Farkas et  al. 2019). 
Recently, the serum zinc levels during the acute phase of 
SCI were suggested to represent a predictive biomarker; 
namely, the metal concentration decrease was directly 
related to SCI severity and inversely related to the functional 
outcome in a mouse model (Kijima et al. 2019). Further-
more, an extension of the same approach to SCI patients 
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shows not only that the Zn2+ concentration decreases in 
short time intervals during the initial phase after traumatic 
SCI but also that the metal level is correlated with the out-
come and neurological impairment of injured patients, sup-
porting zinc concentration dynamics as a predictive bio-
marker (Heller et  al. 2020). Furthermore, a report on 
decreased serum Zn2+ levels in an SCI model with slightly 
increased metal concentrations within the spinal cord (Wang 
et al. 2011b) suggests that zinc supplementation can be an 
effective treatment for spinal cord ischemia/reperfusion 
injury in rats, highlighting (Wang et al. 2011a, 2014) the 
neuroprotective effect of metal ions in experimental spinal 
cord injury models, including functional recovery by activa-
tion of antioxidant, anti-inflammatory and anti-apoptotic 
processes (Li et al. 2019a, 2020; Ge et al. 2021; Lin et al. 
2020). Car or Tre–car chelates extracellular Zn2+, and the 
two ionophores induce metal ion uptake, increasing the cyto-
solic labile metal ion pool that is involved in signaling path-
ways, as shown by the ZnT1 and ZnT3 expression increase. 
The redistribution of metal ions inside the cell activates the 
protein kinase cascade; phosphorylation of PI3K/Akt and 
CREB induces the expression of BDNF and GDNF, which 
contribute to secondary SCI. When we considered the PI3K/
Akt/CREB/pathway, which plays a pivotal role in SCI by 
modulating and involving several downstream targets, we 
observed that treatment with the Tre–car conjugate increased 
the activation of PI3K and p-Akt after injury, suggesting that 
both pathways are involved in controlling cell survival and 
decreasing apoptotic cell death after trauma. Conversely, 
p-ERK expression, which is activated during different patho-
logical events, including ischaemia and traumatic SCI, was 
decreased by Tre–car, indicating its protective effects in 
reducing apoptosis. Moreover, we report here that the pro-
tective abilities of l-carnosine and trehalose are mediated by 
PI3K/Akt-dependent CREB activation. The current findings 
indicate that the promotion or attenuation of these intracel-
lular signaling cascades by Tre–car has consistent benefits 
for the recovery of nervous insults following spinal cord 
trauma. Many reports have shown that neurotrophic factors 
play an important role in SCI stimulating sprouting, synaptic 
reorganization and spinal cord regeneration (McAllister 
et al. 1999; Novikov et al. 1997; Ikeda et al. 2002; Namiki 
et al. 2000; Koda et al. 2004), while endogenous neuro-
trophic factor levels peak across a different range of days 
after spinal cord lesion during the course of the physiologi-
cal response to nerve injury (Qin et al. 2006; Li et al. 2007; 
Yang et al. 2009). Neurotrophins exhibit a short half-life and 
low blood–brain barrier permeability; thus, bioengineered 
scaffold loaded with neurotrophins or transplantation of 
mesenchymal stem cell treatment has been employed to 
guarantee the presence of NT abundance and provide neu-
roprotection and some regenerative activity (Tom et al. 
2018; Chung et al. 2016). In particular, BDNF, a member of 

the endogenous neurotrophic factor family, exerts its neuro-
protective ability by binding to its specific receptor TrkB 
(Gupta et al. 2013). Increased production of BDNF from 
activated pro-inflammatory cells, including macrophages, in 
the injured spinal cord, has been reported to accelerate func-
tional recovery of damaged tissue. Thus, the Tre–car conju-
gate prevents motor degeneration and cell death after trauma 
and promotes neuronal growth. Moreover, l-carnosine and 
Tre–Car treatment increased the expression of GDNF, a 
transforming growth factor-β family member that possesses 
tropic factors in supporting motor neurons (Allen et al. 
2013). Following our treatments, an increase in GDNF 
expression and GDNF+ cells support the neuroprotective 
ability of Tre–car to attenuate motoneuron degeneration and 
promote axonal repair after spinal cord trauma.

Conclusion Remarks

In this scenario, our findings show that l-carnosine and its 
conjugate with a non-innocent delivery system such as tre-
halose represent an alternative system of protection against 
oxidative stress, early inflammatory processes and apoptotic 
pathways induced by SCI. The dipeptide and Tre–car inter-
action with zinc not only induces the recovery of intracel-
lular metal homeostasis but also activates the zinc-driven 
tyrosine kinase signalling pathways that produce BDNF and 
GDNF, employing endogenous zinc ions.
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