Table 3.
Performance summary of machine learning models in Non-CMP-IV group.
| Model | Accuracy (95% CI) | Precision (95% CI) | Recall (95% CI) | F1 (95% CI) | AUC (95% CI) |
|---|---|---|---|---|---|
| LGBM | 0.847 (0.830, 0.871) | 0.857 (0.848, 0.877) | 0.894 (0.889, 0.899) | 0.895 (0.885, 0.908) | 0.738 (0.699, 0.777) |
| XGBoost | 0.832 (0.800, 0.861) | 0.857 (0.843, 0.872) | 0.888 (0.878, 0.898) | 0.886 (0.867, 0.902) | 0.732 (0.694, 0.770) |
| CatBoost | 0.851 (0.840, 0.871) | 0.856 (0.849, 0.870) | 0.894 (0.888, 0.901) | 0.897 (0.891, 0.908) | 0.724 (0.668, 0.789) |
| RF | 0.852 (0.843, 0.861) | 0.853 (0.850, 0.861) | 0.882 (0.866, 0.898) | 0.898 (0.892, 0.903) | 0.716 (0.656, 0.774) |
| GBDT | 0.851 (0.843, 0.861) | 0.853 (0.851, 0.858) | 0.871 (0.846, 0.891) | 0.898 (0.893, 0.903) | 0.696 (0.647, 0.746) |
| Bagging | 0.817 (0.779, 0.818) | 0.859 (0.840, 0.865) | 0.844 (0.815, 0.873) | 0.876 (0.844, 0.883) | 0.688 (0.622, 0.754) |
| SVM | 0.843 (0.812, 0.861) | 0.852 (0.845, 0.861) | 0.868 (0.854, 0.882) | 0.863 (0.844, 0.873) | 0.672 (0.649, 0.740) |
| AdaBoost | 0.807 (0.761, 0.830) | 0.862 (0.838, 0.846) | 0.855 (0.848, 0.862) | 0.868 (0.842, 0.883) | 0.682 (0.624, 0.742) |
| MLP | 0.817 (0.796, 0.836) | 0.849 (0.840, 0.858) | 0.825 (0.766, 0.884) | 0.874 (0.836, 0.893) | 0.668 (0.634, 0.702) |
| LR | 0.820 (0.800, 0.830) | 0.851 (0.843, 0.864) | 0.855 (0.839, 0.863) | 0.878 (0.867, 0.884) | 0.646 (0.608, 0.684) |
LGBM, light gradient boosting machine; XGBoost, extreme gradient boosting; CatBoost, category boosting; RF, random forest; GBDT, Gradient boosting decision tree; Bagging, bootstrap aggregation; LR, logistic regression; SVM, support vector machine; AdaBoost, adaptive boosting; MLP, multi-layer perceptron; AUC, the area under the receiver operating characteristic curve.