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Abstract
Introduction: Genetic correlations between brain and behav-
ioral phenotypes in analyses from major genetic consortia 
have been weak and mostly nonsignificant. fMRI models of 
systems-level brain patterns may help improve our ability to 
link genes, brains, and behavior by identifying reliable and re-
producible endophenotypes. Work using connectivity-based 
predictive modeling has generated brain-based proxies of be-
havioral and neuropsychological variables. If such models cap-
ture activity in inherited brain systems, they may offer a more 
powerful link between genes and behavior. Method: As a 
proof of concept, we develop models predicting intelligence 
(IQ) based on fMRI connectivity and test their effectiveness as 
endophenotypes. We link brain and IQ in a model develop-
ment dataset of N = 3,000 individuals and test the genetic cor-
relations between brain models and measured IQ in a genetic 
validation sample of N = 13,092 individuals from the UK Bio-
bank. We compare an additive connectivity-based model to 
multivariate LASSO and ridge models phenotypically and ge-
netically. We also compare these approaches to single “candi-

date” brain areas. Results: We found that predictive brain 
models were significantly phenotypically correlated with IQ 
and showed much stronger correlations than individual edg-
es. Further, brain models were more heritable (h2 = 0.155–
0.181) than single brain regions (h2 = 0.038–0.118) and cap-
tured about half of the genetic variance in IQ (rG = 0.422–
0.576), while rGs with single brain measures were smaller and 
nonsignificant. For the different approaches, LASSO and ridge 
were similarly predictive, with slightly weaker performance of 
the additive model. LASSO model weights were highly theo-
retically interpretable and replicated known brain IQ associa-
tions. Finally, functional connectivity models trained in midlife 
showed genetic correlations with early life correlates of IQ, 
suggesting some stability in the prediction of fMRI models. 
Conclusion: Multisystem predictive models hold promise as 
imaging endophenotypes that offer complex and theoretical-
ly relevant conclusions for future imaging genetics research.

© 2022 S. Karger AG, Basel

Introduction

The vulnerability and advantages conveyed by genet-
ics via behavior are likely due to individuals inheriting 
particular brain systems that support behavior. Perhaps 
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this is why genetics and neuroimaging are the two most 
utilized biostatistical approaches for studying psycholog-
ical phenomena. Luckily, these two fields are developing 
in parallel as both whole-genome analyses [1, 2] and mul-
tivariate brain analyses (i.e., including multiple brain ar-
eas or connections simultaneously) [3] are expanding the 
inferences and predictions we can make about psycho-
logical traits. As both fields expand, our ability to trans-
late across biological psychology will depend on our abil-
ity to integrate the explosion of techniques in both fields 
[4].

In genetics, the standard discovery procedure is a ge-
nome-wide association study (GWAS), which requires 
large (10s–100s of thousands) samples and is agnostic to 
a priori hypothesized SNP associations. Further, these 
whole-genome techniques can be used to give us a mea-
sure of the genetic correlation between phenotypes or the 
degree to which two traits share genes and are likely in-
herited together.

However, the effects of individual genetic variants in 
GWAS are incredibly small. Given these small effect sizes 
and the high threshold necessary for multiple testing cor-
rections across the genome (alpha = 5 × 10−8), GWAS 
studies have necessarily adopted a coarse phenotype ap-
proach to enable larger sample sizes. We are now begin-
ning to understand the consequences of this necessary 
evil as coarse phenotypes can make results difficult to in-
terpret and can lead to less specificity in understanding 

behavioral traits, as some have demonstrated with de-
pression [5].

Further, poor phenotypes limit the types of conclu-
sions we can make from genetic correlations and whole-
genome patterns. One early suggested approach to im-
prove genome-wide discovery and theoretical interpreta-
tion is to use intermediary traits or endophenotypes: 
traits that are more closely related to the genetic expres-
sion of a distal behavioral outcome [6]. That is, they 
should both predict behavioral traits and related genetic 
variations of interest in independent samples. For exam-
ple, hippocampal volume is decreased in individuals with 
schizophrenia and non-affected related family members 
[7] and is likely closer to genetic inheritance than schizo-
phrenia. Thus, it was thought that a GWAS of hippocam-
pal volume should capture (some of) the genes influenc-
ing schizophrenia.

For years, the endophenotype approach presented an 
attractive alternative to the coarse approach. The most 
ubiquitous endophenotypes for psychological and neuro-
logical phenomena are brain and imaging genetics stud-
ies. Figure 1 shows a chart of the terms “endophenotype” 
and “imaging genetics” that have appeared since 2010, 
showing thousands of articles published on the topic each 
year. Further, imaging is a useful foray into the endophe-
notype literature as large GWAS cohorts are being as-
sembled for MRI imaging phenotypes and offer some in-
sight into the relative success of endophenotypes to date, 

Fig. 1. Rate of words “Imaging Genetics” and “Endophenotype” appearing together by Google Scholar search 
across 8 years. Pubs., publications from Google Scholar search.
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including research from the ENIGMA consortium [8, 9] 
and the Adolescent Brain and Cognitive Development 
(ABCD) Study [10].

The two goals of endophenotypes were to help discov-
er new variants and explain the mechanisms of genetic 
inheritance. Unfortunately, these two goals have not yet 
been realized in imaging genetics. No new genetic vari-
ants influencing behavior have been discovered due to 
imaging endophenotypes (yet) [11]. Further, genetic as-
sociations between well-known brain endophenotypes 
and traits are low and nonsignificant in the largest and 
most powerful studies to date [12], weakening the claim 
that current endophenotypes are explanatory tools for 
scientific theory.

We argue that the imaging endophenotype approach 
can be improved by considering a more integrative and 
predictive multisystem brain approach to endopheno-
types. We hypothesize that including areas from across 
the whole brain will capture more of the genetic variance 
underlying behavioral phenotypes than a single brain 
measure. For example, although the hippocampus has 
been consistently associated with schizophrenia, there 
was little success in finding genetic associations between 
hippocampal volume and schizophrenia [12]. If genes 
leading to the development of schizophrenia represent 
the inheritance of brain systems, then integrating infor-
mation across the brain could increase our ability to find 
these genetic associations. That is, the hippocampus like-
ly works in a system with other brain areas that more reli-
ably predicts schizophrenia, and it is that multisystem 
level prediction that should be utilized in imaging genet-
ics studies.

Multisystem Brain Predictive Models versus 
Candidate Approaches
While there are numerous neuroimaging brain-to-

outcome associations in the literature, many of these 
have failed to make an impact on clinical practice. 
Woo, Chang, Lindquist, & Wager (2017) [13] offered 
a possible solution through the use of multisystem 
brain predictive modeling. These approaches are pre-
ferred to those focused on single candidate brain re-
gions because they are more powerful omnibus sum-
maries for the whole brain, allow for flexible tests of 
reproducibility, incorporate more information, and 
are more predictive than standard approaches [14]. 
Further, recent demonstrations of the need for larger 
sample sizes in imaging research have also demon-
strated that whole brain approaches can reach signifi-
cant and meaningful predictions in smaller samples 

(of 100s of participants compared to 1,000s needed for 
univariate approaches [15]).

Thus, with the current approach in the literature, spe-
cific associations are found and then established as endo-
phenotypes based on univariate tests of their association 
with the outcome and in related family members, akin to 
a “candidate endophenotype” method. It is this approach 
that has failed to live up to the expectations of the endo-
phenotype claims and is not fully utilizing new trends in 
the imaging literature. We argue that the prediction made 
by these multisystem brain models can be utilized as a 
GWAS phenotype. In other words, we propose “multisys-
tem brain endophenotypes” as a new path forward in the 
gene discovery literature. Specifically, we call the predic-
tion made by multivariate approaches that consider many 
brain regions simultaneously “multisystem brain endo-
phenotypes.”

While complete literature reviews of these multisys-
tem brain models are available elsewhere [3, 16], models 
of outcomes such as pain responsivity [17], sustained at-
tention [18], Alzheimer’s [19], and autism [20] have been 
developed and replicated across large cohorts. Vilor-
Tejedor et al. [21] demonstrated a variety of multivariate 
models that can be used to develop brain phenotypes for 
genetic studies, including linear combinations like inde-
pendent component analysis, principal component anal-
ysis, multivariate regression approaches, and Bayesian 
approaches. Interestingly, the authors also noted the 
wealth of consortium-level imaging data available to de-
velop models. Their work has demonstrated that imaging 
is primed to develop and evaluate brain-wide endophe-
notypes as imaging methodologies advance [21].

Any of these models and numerous others could offer 
a theoretically relevant endophenotype useful for GWAS 
studies. Finally, while these phenotypes have statistical 
and theoretical advantages to standard approaches, they 
give the added advantage of offering many new pheno-
types for GWAS discovery; for example, a GWAS of neu-
ral sustained attention patterns may inform understand-
ing of attention-deficit/hyperactivity disorder.

Connectivity-Based Predictive Modeling
Brain imaging has many measurement approaches, or 

“modalities,” that can be used to generate measures of the 
brain, for example, aspects of morphology, connectivity, 
or activation. Thus, a first step in developing a multisys-
tem brain model is the choice of brain data. For our dem-
onstration, we used functional connectivity as measured 
by resting-state fMRI, a method that quantifies variation 
in the degree to which brain regions intrinsically correlate 
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in the time course of the blood-oxygen level-dependent 
signal while individuals are not overtly directed toward a 
particular task set (i.e., are at rest) [22]. A key element of 
how connectivity-based predictive modeling (CBPM) is 
implemented using functional connectivity is the scale at 
which connectivity is considered – typically, all pairwise 
connections between 10s and 100s of regions are consid-
ered.

This Study
To demonstrate the effectiveness of multisystem brain 

predictive models as phenotypes for genetic research, we 
generate CBPMs of intelligence (IQ) and estimate the ge-
netic correlation between brain-based predicted IQ and 
measured IQ. Specifically, for predictive models to be 
useful endophenotypes, they must be associated with the 
trait of interest [6] and be theoretically relevant, interpre-

table, and generalizable [11] at the genetic level. Figure 2 
shows our workflow through several analyses that help 
achieve this aim, along with the research question an-
swered by each analysis.

First, (a) in a sample of 3,000 individuals from the UK 
Biobank, we develop three predictive models of IQ with 
three different predictive techniques. We extract the 
weights from the models to see how they align with past 
connectivity-based studies of IQ. Next, (b–c) to test the 
effectiveness of the prediction of these three models as 
endophenotypes in a genetic validation sample of 13,092 
unrelated individuals, we estimate the phenotypic and ge-
netic correlation between predicted and measured IQ and 
conduct a GWAS of each model’s prediction and inter-
pretability. In this case, we use the larger sample as valida-
tion to have more power to estimate genetic correlations 
and more power for comparison of multisystem brain 
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Fig. 2. Workflow for main analyses in this 
study. First, (a) we generated connectivity-
based predictive models (CBPMs) of IQ in 
a sample of 3,000 individuals with brain 
data from the UK Biobank. Next, (b) we 
confirmed the out-of-sample predictive ac-
curacy of these models phenotypically by 
relating brain-based predicted IQ from 
brain data with measured IQ in a genetic 
validation set of ∼13,000 individuals of Eu-
ropean descent. Because the sample of 
13,000 individuals also had genetic data, (c) 
we tested the genetic correlation between 
predicted IQ and measured IQ in this sam-
ple. Next, (d) we ran the genetic correlation 
between the strongest single edges and IQ 
and compared them (using the 95% confi-
dence intervals) to genetic correlations 
from multisystem brain brain-based pre-
dicted IQ. Finally, (e) to confirm that these 
genetic correlations were capturing rele-
vant theoretical aspects of IQ, we estimated 
the genetic correlation between brain-
based predicted IQ and known genetic cor-
relates of IQ.
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measures and single brain measures. After estimating 
phenotypic and genetic correlations between brain-based 
predicted IQ and measured IQ, we (d) compare the mul-
tisystem brain model’s predictions to the phenotypic and 
genetic associations between IQ and single associated 
edges. Finally, (e) we relate our predicted model of IQ to 
behaviors known to be genetically correlated with IQ.

We should note that the purpose of this work is not to 
test all possible machine learning methods and relevant 
applications (we only look at three here) but rather to cre-
ate a very simple procedure for others to follow. We also 
report two post hoc analyses that should help develop this 
area of research for future genetic studies. Specifically, we 
use learning curves to demonstrate the improved accu-
racy of multisystem predictive brain models and demon-
strate what sample sizes will likely be needed for this ap-
proach in the future. We then use lesion analysis to ex-
pand the theoretically relevant neurological implications 
of edges discovered by our machine learning approaches.

Method

Participants
The UK Biobank is a large population cohort of over 500,000 

individuals [23], aged 36–72 years. We restricted our analysis to 
16,092 individuals who had MRI data, IQ scores, and were of Eu-
ropean descent. We split the sample (randomly) into a sample of 
3,000 (S3K) individuals (mean age = 55.07, standard deviation age 
= 7.42) and 13,092 (S13K) individuals (mean age = 55.12, standard 
deviation age = 7.45) for different aspects of the project. Though 
nonintuitive, we chose to use the S13K individuals as a genetic 
validation set as this sample size had appropriate power to detect 
genetic correlations [24]. Further, the sample of 3,000 is orders of 
magnitude larger than most samples previously used in MRI re-
search to develop predictive models [16, 18]. Because inference 
about the performance of these techniques would benefit from 
larger sample sizes, to estimate learning curves at increasing sam-
ple sizes (phenotypically), we use S13K to estimate the model and 
S3K to test the three learning techniques phenotypically in a post 
hoc analysis to help others establish appropriate sample sizes for 
training and test sets in future phenotypic work. Informed consent 
was obtained by the UK Biobank separately for use of cognitive 
ability data, MRI imaging, and genetic data (see Bycroft et al. [23] 
and Alfaro-Almagro et al. [25] for more).

IQ in the UK Biobank was measured at four time points: three 
in-person assessments and an online assessment. All assessments 
of IQ were 2-min tests of fluid IQ: participants had 2 min to answer 
as many questions as possible in a sequence of 13 questions. We 
estimated a latent factor model across all four time points in the 
full sample of ∼500,000 individuals and extracted the factor score 
as a measure of IQ to increase reliability due to the short assess-
ments. Data from individuals who “abandoned” the later time 
points were treated as missing in factor analysis. Factor scores 
from the imaging sample are used in this analysis.

Brain Data: Parcellation and Measurement
The UK Biobank provides highly summarized rs-fMRI data in 

the form of 2 full connectivity matrices per participant: pairwise 
correlations between 25 and 100 regions, as derived from large in-
dependent component analyses conducted with FSL’s MIGP-Me-
lodic tool. These correlations within each individual represent the 
training features/variables of analysis, typically called “edges.” Be-
cause these 25- and 100-dimension parcellations include noise 
components, the actual number of signal components is lower 
than 25 and 100. We chose the 100-dimension parcellation, which 
was reduced to 55 signal components based on an analysis by the 
UK Biobank imaging group [25]. Thus, we had a 55 × 55 correla-
tion matrix for each participant, leaving us with 1,485 unique func-
tional connections/edges after excluding the diagonal. Each edge 
was residualized on age and sex before training.

SNP Data Processing and Associations
We used UK Biobank participants of European descent whose 

data were imputed to the Haplotype Reference Consortium [26], 
1000 Genomes, and UK10K reference panels by the UK Biobank 
[23]. Subjects were genotyped on a UK BiLEVE array or the UK 
Biobank axiom array. After removing individuals with mis-
matched self-reported and genetic sex, we filtered imputed SNPs 
using a Hardy-Weinberg equilibrium p value threshold of <1 × 
10−6, variant missingness >0.05, imputation quality score >0.95, 
and minor allele frequency above 0.01, retaining 7,391,068 SNPs. 
More information is available in a prior publication [23].

Training Procedures
We generated three scores for multisystem brain predictive 

models. All models were trained (with tuning for complex regres-
sion done via 10-fold cross-validation) in the training set and then 
applied to the nonoverlapping out-of-sample test set without ad-
ditional tuning in the out-of-sample test set. First, we adapted the 
Shen et al. [22] CBPM procedure, which considers each edge of the 
connectome as an individual additive predictor. The procedure 
sums positively and negatively associated edges (below an associ-
ated p value threshold) and uses the negative and linear sum scores 
as separate beta weights in a linear model to predict the outcome 
of interest. We test the Shen et al. [22] model at p value cutoffs of 
0.05 in an initial analysis as this is the typical value chosen in the 
literature [18]. In the post hoc analysis, we use learning curves to 
demonstrate how adjusting the p value threshold changes the pre-
diction, if at all.

The second and third models were based on the procedure 
from Tobyne et al. [27] and Michel et al. [28], in which cross-val-
idated regularized regression was used to train CBPM models. We 
trained ridge regression (a.k.a. L2 regularization) and Least Abso-
lute Shrinkage and Selection Operator (LASSO) regression (a.k.a. 
L1 regularization) with 10-fold validation (used to choose the pa-
rameter values and regularization parameters), implemented in 
the R package glmnet [29]. We conducted a grid search of values 
from 0 to 10,000 (default of our package) for optimal regulariza-
tion parameters (called “Rho” or “Lambda”) for each model. To 
interpret the predictive models, we extracted the weights for each 
edge from each model. We then plotted the weights in matrix form 
with a set of superordinate resting-state network assignments from 
Yeo et al. [30] annotated along the axes to increase interpretability 
of the results, given high familiarity with this very popular network 
parcellation.
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To evaluate whether certain functional connections were nec-
essary for successful prediction, we additionally compared the 
LASSO and ridge regression models. This comparison evaluated 
whether IQ is better predicted by differences in the connectivity of 
a few brain regions, as characterized by LASSO regression, or is 
better reflected by smaller changes in the connectivity between 
multiple brain regions, as modeled by ridge regression. Specifi-
cally, to evaluate whether the regions identified by the LASSO 
model were driving the multisystem brain signal in the ridge mod-
el, the key connections identified by fitting the LASSO model were 
“lesioned” from the full connectivity matrix, and the remaining 
connections were used to fit the ridge regression model. We con-
ducted a corrected repeated k-fold cross-validation test (10 itera-
tions of 10-fold cross-validation; see [31]) to estimate whether 
LASSO or ridge regression performed better.

To see how effective these models are at predicting IQ in the 
training 3SK sample, we trained a ridge regression, LASSO regres-
sion, and Shen CBPM and then used the weights extracted from 
the 3SK sample to predict IQ in the 13SK genetic validation sam-
ple. After estimating the scores, we used a Pearson’s correlation 
(instead of mean-squared error) to determine phenotypic associa-
tion between brain-based predicted IQ (from the models’ sum-
mary score) and measured IQ as we thought Pearson’s r would be 
most comparable to the genetic correlation (rG).

Univariate Heritabilities
In the 13SK sample, we used a mixed-effects model procedure 

through BOLT-LMM [32] to estimate the univariate heritabilities 
of brain-based predicted IQ scores for the ridge regression, LASSO 
regression, and Shen et al. [22] procedure in the out-of-sample 
predictions. We also compared them to the heritability of mea-
sured IQ in the 13SK sample.

Bivariate Heritabilities
To determine if the GWAS proxies were capturing the same 

genes as measured IQ, we estimated the genetic correlation be-
tween measured IQ and out-of-sample brain-based predicted IQ 
in the 13SK genetic validation dataset. To do so, we used BOLT-
LMM to estimate the genetic correlations between all three brain-
based predicted IQ scores and measured IQ, separately.

To compare the genetic correlations between multisystem 
brain models and individual brain connections, we ran a test of as-
sociation (controlling for sex and age) in the 3SK sample of each 
edge and IQ. After Bonferroni correction, 6 individual edges were 
significantly associated with IQ (Table 2) in the 3SK. We then es-
timated the genetic correlation between each of these 6 edges and 
IQ in the 13SK. We compare these to the multisystem brain cor-
relations and correct for multiple testing in the genetic correlations 
(9 tests) using a Bonferroni correction.

GWAS
To see if these scores yield useful GWAS discoveries, we then 

used BOLT-LMM to conduct a mixed-effects GWAS (with 
leave-one-chromosome-out to keep from overfitting our GRM 
per SNP) for IQ and each predictive model in the 13SK sample. 
We chose BOLT-LMM to increase power and account for the 
polygenic background of our trait [32]. For each GWAS, we ex-
amined a Manhattan plot of individual SNP p values and also 
explored the observed p value deviation from expected p values 
using QQ plots.

Genetic Correlations with IQ Covariates
Finally, to see if brain-based predicted IQ from functional con-

nectivity showed similar patterns of genetic correlation as IQ, we 
tested genetic correlations between summary statistics of the GWAS 
for each IQ prediction (ridge, LASSO, and Shen CBPM) and related 
traits through the LDhub [24, 33]. We chose 8 traits that have been 
previously shown to be genetically correlated with IQ in a major me-
ta-analysis [34] and were theoretically relevant to IQ. We considered 
IQ proxies (educational attainment [35] and childhood IQ [36]) or 
psychiatric covariates of IQ (autism [37] and depressive symptoms 
[38]), anthropometric traits (infant head circumference [39], height 
[40]), and evolutionary linked traits (age of first birth [41]) as these 
are the typical types of hypotheses tested using genetic correlations 
between IQ and a covariate of IQ. We did not consider the schizo-
phrenia and IQ genetic correlation because the schizophrenia sample 
that was publicly available at the time of analysis includes mixed eth-
nicity. We also did not run exhaustive LD score correlations between 
brain-based predicted IQ and all trait summary statistics available 
online to reduce the number of tests.

Testing Generalizability of Brain Predictive Models for IQ
To test effective sample sizes for out-of-sample prediction of 

IQ, we estimated learning curves for each algorithm as a function 
of sample size. To preview results, we chose to do this because 
more predictive models were also more genetically associated with 
measured IQ. We plotted the canonical correlation between brain-
based predicted IQ and measured IQ in both the training set and 
test set, increasing sample sizes of 50–13,092 individuals in incre-
ments of 50. We used the S13K as the training and S3K as the val-
idation set for this analysis to increase the spectrum of sample siz-
es tested. We estimate curves for the (1) ridge, (2) LASSO, (3) Shen 
et al. [22] at a p value threshold of 0.005, (4) p value threshold of 
0.01, (5) p value threshold of 0.05, (6) p value threshold of 0.10, and 
(7) no p value threshold (summing up all edges). Importantly, this 
is the first work to compare the Shen et al. [22] predictive models 
at varying p value thresholds.

Results

Phenotypic Prediction
We began by training our models in the S3K sample 

and testing their predictive accuracy in the S3K and out-
of-sample S13K. Table 1 shows the results from the phe-
notypic prediction in both samples, with effectiveness 
represented by the correlation between measured and 
brain-based predicted IQ. All three models showed sig-
nificant phenotypic prediction in the training and test set. 
Phenotypic prediction in the training set ranged from r = 
0.322–0.476. In the test set, the prediction ranged from  
r = 0.187–212. The test set may be lower because cross-
validation is not a panacea for overfitting as cross-valida-
tion still capitalizes on stochastic error [42], although we 
employed regularization to protect against this problem. 
It is also likely that having a smaller training sample led 
to less precise cross-validated estimates of performance, 
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Table 1. Phenotypic prediction of IQ from each algorithm in the training and test samples

Algorithm r with IQ SE lower SE upper p value

LASSO train 0.380 0.349 0.410 <2.2e−16
Ridge train 0.476 0.447 0.503 <2.2e−16
Shen train 0.322 0.290 0.353 <2.2e−16

LASSO test 0.188 0.172 0.205 <2.2e−16
Ridge test 0.212 0.195 0.228 <2.2e−16
Shen test 0.187 0.171 0.204 <2.2e−16

Phenotypic prediction of IQ by each algorithm, measured as the Pearson’s r between brain-based predicted IQ and measured IQ. 
Training was done in the 3SK sample and testing in the 13SK sample. The top three columns represent the algorithm predicting in the 
sample it was trained in (with LASSO and ridge using 10-fold cross-validation to guard against overfitting); the bottom three represent the 
out-of-sample prediction going from the 3SK to the 13SK sample.

a b

c

Fig. 3. Weights implicated by each predictive modeling technique organized by the Yeo 7 resting-state network 
to increase their interpretability. a Weights from the LASSO regression model. b Weights by the ridge regression 
model. c Weights that went into the positive (red) and negative (navy blue) sum scores for the Shen et al. proce-
dure.
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which is a known issue for multivariate brain modeling. 
Ridge regression was the most predictive model in both 
the training and test sets (post hoc analysis shows how 
model predictions were affected by our sample size).

Predictive Features
For the sake of interpretability and to demonstrate the 

utility of this approach for theory building, we plotted 
edges included in the Shen et al. [22] model and weights 
for the ridge and LASSO regression against the Yeo 7 rest-
ing-state network parcellation in Figure 3. Due to the 
large sample size and number of edges, the weights from 
both the Shen et al. [22] procedure and the ridge regres-
sion lack a simple interpretation. In contrast, the LASSO 
regression was highly interpretable as only a handful of 
edges were needed to account for similar proportions of 
variance as explained by the Shen et al. [22] and the ridge 
models. The LASSO weights were largely negative weights 
on edges connecting the default mode network to other 
networks; that is, less connectivity between the default 
mode network and attention and frontal networks is pre-
dictive of higher IQ (by the LASSO output).

Because the modeling techniques produced different 
solutions, we hypothesized that a model using the LAS-

SO-selected edges is likely the most predictive, but other 
edges could potentially have predictive utility. Compari-
sons between LASSO and ridge regression models re-
vealed that the specific connections identified by the LAS-
SO model (depicted in Fig. 4a) are driving part of the sig-
nal to predict IQ, but other edges could be used to 
effectively (but more weakly) predict IQ, reconciling the 
ridge and LASSO results. Further, a repeated k-fold cross-
validation test revealed that the optimal LASSO and ridge 
regression models performed better when weights were 
estimated on LASSO-selected edges only (LASSO: mean 
difference = 0.1131, SD of difference = 0.0146, t99 = 4.114, 
p < 0.0001; ridge: mean difference = 0.0814, SD of differ-
ence = 0.0111, t99 = 4.738, p < 0.0001). These results in-
dicate that the LASSO-selected edges informed predic-
tion in both models, but that other connected edges are 
influencing the ridge and Shen et al. [22] procedures and 
are useful in predicting IQ.

Genetic Analyses
Univariate Heritability
First, to examine the heritability of these scores in the 

text set, we used BOLT-REML to run a univariate herita-
bility analysis of each model’s prediction. All three mod-

a
b

Fig. 4. Functional connections necessary for the prediction of IQ. a Beta estimates from the LASSO regression 
are depicted as a graph, where darker edges have more negative weights that indicate greater connectivity is as-
sociated with lower IQ. Surface renders depict the spatial distribution of nodes from the UK Biobank connectome, 
with positive loadings depicted in yellow. b Violin plots show the performance of models restricted to the most 
predictive edges identified by LASSO regression (i.e., the 12 edges shown in panel a) and models in which the 
same edges were “lesioned” or removed from the full graph. Each point in the plot corresponds to the average 
correlation between predicted and observed IQ for each of 10 iterations of 10-fold cross-validation. Solid lines 
indicate the mean across iterations.
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el predictions were significantly heritable (Table 2) and 
had similar heritability of approximately 0.15. We also 
tested the heritability of measured IQ in this sample, 
which was 0.28, higher than any predicted model.

Genetic Correlations between Predicted and 
Measured IQ
Next, we estimated the genetic correlation between 

measured IQ and the prediction of IQ by each method. 
All models were significantly genetically correlated with 
measured IQ, with moderate genetic correlations ranging 
from 0.422 to 0.576 (Table 2). The genetic correlations 
followed the same pattern as the phenotypic associations: 
the ridge model was most genetically correlated with 
measured IQ. Importantly, more than half of the genetic 
variance influencing IQ can be captured by ridge regres-
sion and LASSO regression brain-based predicted IQ 
scores. Considering that various measured IQ cohorts 
from the meta-analysis by Savage et al. [34] found an av-
erage rG of 0.67, our brain-based predicted IQ variable is 
approaching similar predictive to one of these GWAS 
meta-analysis cohorts.

Next, we compared genetic correlations of measured 
IQ with the six single edges associated with IQ in Figure 
3a to genetic correlations from whole brain models. Ta-
ble 2 shows the results and the 6 edges significantly phe-
notypically associated with IQ with Bonferroni correc-
tion. All single edges were theoretically relevant. The 
top associated edge was a connection involving the an-
gular gyrus, which smaller samples have shown to be 
associated with IQ in the literature [43]. Several edges 
contained the posterior cingulate cortex, a part of the 
default network which is known to decrease in activa-
tion during demanding, externally directed cognitive 
tasks [44]; and thus, individuals with greater connectiv-
ity in the posterior cingulate may be showing less en-
gaged task-positive network activity and lower IQ. No-
tably, the three brain models were nominally more her-
itable than the single brain edges. After correction for 
multiple tests, no individual edge was significantly ge-
netically associated with measured IQ, in line with past 
studies reporting null effects for brain-behavior genetic 
correlations (9 tests). Nominally, all genetic correla-
tions between single edges and measured IQ were low-
er than genetic correlations between predicted and 
measured IQ. This pattern is in line with our hypothesis 
that multisystem predictive approaches will be more 
useful for linking genes, brain, and behavior as they are 
more heritable and show higher genetic correlations 
than single measures of the brain. Ta
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GWAS of Brain-Based Predicted IQ
To test if brain-based predicted IQ is a useful GWAS 

proxy, we ran a GWAS with the prediction from each ma-
chine learning algorithm as the phenotype and compared 
it to a GWAS of measured IQ in the same individuals. No 
GWAS found significant SNPs above genome-wide p val-
ue significance (see Fig. 5 for Manhattan plots of each of 
the 4 traits). This result suggests very large GWAS sam-
ples will be needed to detect significant variants of predic-
tive models, which is in line with sample size calculations 
needed for GWAS studies [45]. We used the QQ plots of 
estimated versus expected p values to probe the power of 
each of these models’ predictions and measured IQ 
(Fig. 6). Both the LASSO and the ridge regression models 
had similar polygenic signals as measured IQ. However, 
the Shen et al. [22] procedure led to the greatest deviation 
from expected p values. Arguably, the Shen method may 
offer more power to detect variants than standard GWAS 
phenotypes, but this is an empirical question and did not 
lead to increased GWAS discovery here.

Genetic Correlations between Brain-Based Predicted 
IQ and Correlates of IQ
To see if brain-based predicted IQ endophenotypes 

were also genetically correlated with phenotypes geneti-

cally correlated with measured IQ, we conducted LD 
score regression genetic correlations of each model pre-
dictions with 8 key traits of interest: years of education, 
college completion, childhood IQ, depressive symptoms, 
autism spectrum disorder, height, infant head circumfer-
ence, and age at first birth. We compared these genetic 
correlations between brain-based predicted IQ and traits 
of interest to genetic correlations of measured IQ (in the 
same individuals as the predictive IQ scores were drawn 
from) and these same 8 key traits of interest. All three 
predictive models of IQ were highly genetically correlated 
with one another, so the genetic correlations do not 
change appreciably based on the method of deriving the 
model (ridge-LASSO rG = 0.946, CI = ±0.033; ridge-Shen 
rG = 0.902, CI = ±0.031; LASSO-Shen rG = 0.843, CI = 
±0.044). Table 3 shows the results. IQ proxies were sig-
nificantly genetically correlated with all IQ correlates ex-
cept autism spectrum disorder. Interestingly, the brain-
based predicted models were genetically associated with 
early life developmental outcomes. Notably, genetic pre-
disposition to high IQ-predictive brain model responses 
was associated with a genetic predisposition to higher ed-
ucational attainment (rG = 0.353 and 0.420 for years of 
schooling/college), larger infant head circumference (rG 
= 0.600), and higher childhood IQ (rG = 0.453). Thus, the 

a

c d

b

Fig. 5. Manhattan plots for genome-wide association discovery across the three predictive models (a is LASSO, 
b is ridge, and c is the Shen et al. procedure) and measured IQ (d) in the same individuals from the 13SK sample. 
p values of each SNP are organized by chromosome on the x-axis and by the −log10 of the p value on the y-axis. 
No p values were significant below genome-wide discovery correction (p < 5e−8).
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brain models captured genetically linked variation shared 
with other IQ-related early life traits. The genes that con-
fer a genetic advantage in early life also confer stronger 
IQ-related brain responses, giving some credence to the 
stability of the genes captured by functional connectivity 
in midlife.

Compared to brain-based predicted IQ, measured IQ 
was more strongly and significantly genetically correlated 
with educational attainment and was nominally more 
correlated with height and age at first birth to be expected 
from a direct (vs. proxy) measure. However, depressive 
symptoms and infant head circumference were nominal-

a
b

c d
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Fig. 6. QQ plots for the p values from the genome-wide association discovery across the 3 predictive models (a 
is LASSO, b is ridge, and c is the Shen et al. procedure) and measured IQ (d) in the same individuals from the 
13SK sample. p values are the dotted lines plotted based on their expected −log 10 p value on the x-axis and by 
their observed –log 10 p value on the right axis. The dashed line is the expected p value distribution under the 
null model. Deviation above the line represents signal more significant associations than expected.
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ly more correlated with brain-based predicted IQ than 
measured IQ.

Utility of Predictive Models across Samples
Finally, we conducted a post hoc analysis to see what 

sample sizes would be needed to use in development of 
CBPM in the UK Biobank parcellation. Here, we also al-
lowed the p value threshold of the Shen et al. [22] proce-
dure to vary. Figure 7 shows the results of learning curves 
training the S13K and predicting in the S3K sample. More 

than 1,000 individuals are needed to reduce overfitting of 
the machine learning procedures (at least within this 
sample and parcellation). In line with results from genet-
ic predictive models [46], the Shen et al. [22] count mod-
el seems to perform the best in smaller sample sizes (less 
overfitting) but becomes less useful as the sample sizes 
increase. The LASSO regression outperformed the ridge 
regression with small samples and performed worse than 
the ridge regression but with similar performance with 
larger sample sizes. Thus, in this study, LASSO regression 

Table 3. Genetic correlations between brain-based predicted IQ and known genetic correlates of IQ

IQ model with IQ-correlated trait RG SE Z p value

Ridge with
Years of schooling 0.353 0.082 4.311 <0.001
College completion 0.420 0.120 3.493 0.001
Depressive symptoms −0.456 0.139 −3.285 0.001
Age of first birth 0.289 0.090 3.206 0.001
Childhood IQ 0.453 0.154 2.941 0.003
Infant head circumference 0.638 0.222 2.878 0.004
Height 0.023 0.062 0.370 0.711
Autism spectrum disorder 0.246 0.131 1.877 0.061

LASSO with
Years of schooling 2016 0.381 0.113 3.359 0.001
College completion 0.397 0.148 2.687 0.007
Depressive symptoms −0.440 0.176 −2.495 0.013
Age of first birth 0.238 0.111 2.146 0.032
Childhood IQ 0.573 0.232 2.470 0.014
Infant head circumference 0.747 0.286 2.614 0.009
Height 0.011 0.074 0.144 0.886
Autism spectrum disorder 0.263 0.170 1.550 0.121

Shen with
Years of schooling 0.344 0.079 4.356 <0.001
College completion 0.391 0.121 3.230 0.001
Depressive symptoms −0.428 0.148 −2.891 0.004
Age of first birth 0.248 0.095 2.613 0.009
Childhood IQ 0.298 0.159 1.871 0.061
Infant head circumference 0.676 0.242 2.793 0.005
Height 0.086 0.072 1.192 0.233
Autism spectrum disorder 0.195 0.127 1.529 0.126

Measured IQ with
Years of schooling 2016 0.618 0.062 9.936 <0.001
College completion 0.653 0.087 7.481 <0.001
Depressive symptoms −0.239 0.087 −2.740 0.006
Age of first birth 0.446 0.072 6.172 <0.001
Childhood IQ 0.780 0.151 5.184 <0.001
Infant head circumference 0.438 0.151 2.895 0.004
Height 0.182 0.051 3.567 <0.001
Autism spectrum disorder 0.136 0.095 1.436 0.151

Genetic correlations (rG) between brain-based predicted IQ and genetic correlates of IQ compared to genetic 
correlations with measured IQ. Genetic correlations were estimated using LD Score regression from summary 
statistics that were obtained in GWAS. Data on IQ genetic correlates are from summary statistics of major GWAS 
consortia.
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offered interpretability and was a useful predictor across 
a range of sample sizes, meaning that LASSO is a well-
balanced procedure for future work. Finally, as sample 
sizes became large, the ridge prediction slightly outper-
formed the LASSO prediction.

Discussion

We found that predictive modeling was an effective 
way to generate endophenotypes. We demonstrated the 
application of multisystem brain predictive models as 
GWAS proxies for discovery and theory building. We 
also presented novel innovations for estimation of the 
scores phenotypically with CBPM procedures and com-
pared different approaches for developing these models 
using UK Biobank resting-state connectivity data. LASSO 
regression developed endophenotypes that were inter-
pretable and predicted more than half of the genetic vari-
ance underlying IQ in out-of-sample predictions. The 

Shen et al. [22] procedure seemed to offer the most pow-
er to detect polygenic signal based on deviation from ex-
pected p values. Conclusions for this approach are pre-
sented below.

Multisystem Brain Endophenotypes and Unmeasured 
Variance
We established that multisystem brain predictive 

models are useful endophenotypes and should be applied 
to work in the future. One application of this approach 
could be to expand the range of possible behavioral phe-
notypes to conduct GWAS of traits in these larger sam-
ples. For example, in the imaging literature, there are 
demonstrations where brain models of dichotomous 
traits with small samples are combined with brain models 
from continuously measured mechanisms to increase 
power, which has led to increased predictive accuracy for 
fibromyalgia (dichotomous) using a pain sensitivity 
model (continuous) [47]. This combination of brain 
models could expand the number of GWAS phenotypes 

a b c d

e f g

Fig. 7. Learning curves for increasing sample sizes of predictive models of IQ. The top line is the curve in the 
training set as sample sizes increase in the training set. The bottom line is prediction in the test set of 3,000 indi-
viduals as training sample size increasing. a Shen et al. p value threshold = 0.005. b Shen et al. p value threshold 
= 0.01. c Shen et al. p value threshold = 0.05, value that is often chosen. d Shen et al. p value threshold = 0.1.  
e Shen et al. p value threshold = 1. f LASSO regression. g Ridge regression.
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and direct efforts to even predict particular mechanisms 
underlying these traits.

When endophenotypes were first purposed as useful 
biomarkers, it was believed they would play a key role in 
gene discovery [48]. While they were largely unsuccessful 
at this goal, they have transitioned into useful measures 
for understanding underlying psychological variability 
[49]. As many CBPM models reflect behavioral pheno-
types close to the brain and mechanisms in behavior (i.e., 
sustained attention in attention-deficit/hyperactivity dis-
order), GWAS of these models may offer a path forward 
in understanding the interplay of behavioral and genetic 
mechanisms in downstream health and wellness out-
comes.

While it is often argued that predictive modeling ap-
proaches are difficult to interpret, plotting the weights can 
lead to insights into the brain systems underlying cogni-
tive and behavioral phenotypes. In line with modern en-
dophenotype approaches, we also demonstrate how pre-
diction across the connectome is useful for theory build-
ing and align our approach with the common Yeo 7 
parcellation to establish functional implications of these 
associations. Specifically, using LASSO regression, we 
found that default mode to other network connections 
had high utility in predicting IQ, in line with the current 
literature [50], and also implicated 6 edges that were as-
sociated via the standard approach of univariate tests with 
multiple comparison correction. We also went beyond 
these simple associations by discovering signal for 12 edg-
es (with LASSO) and demonstrating that connectivity pat-
terns beyond these 12 are associated with IQ. Thus, mul-
tisystem approaches give complementary evidence to uni-
variate approaches and extend to more complex patterns.

Further, by comparing methods for predictions, we 
were able to see how the signal for predicting IQ from the 
connectome was (1) driven by a handful of interpretable 
edges and (2) related to larger multisystem brain patterns. 
These results are in line with imaging literature that ar-
gues IQ relies on the brain’s ability to rapidly switch be-
tween different network states rather than being driven 
by the strength of key nodes in the network [51]. Thus, 
multisystem brain predictive approaches align with mod-
ern endophenotype research and brain discovery. Impor-
tantly, our approach does not limit discovery to single 
brain regions; more edges were weighted in the LASSO 
model than were associated via correction after the uni-
variate tests of association, and the full weighted model 
showed much stronger genetic associations than any sin-
gle edge, giving us a better picture of the multivariate pat-
tern underlying IQ.

Further, CBPMs can be used to find genetic correla-
tions with traits genetically related to the trait of interest. 
In this study, traits genetically correlated with IQ were 
genetically correlated with the brain-based predictions of 
IQ. Interestingly, infant head circumference and depres-
sive symptoms were more genetically correlated with 
brain-based predicted IQ than measured IQ. This pattern 
may mean that the association between IQ and connec-
tivity is strongly mediated by these phenotypes or vice 
versa. For example, it appears that the main edges driving 
the prediction of IQ (according to the LASSO output) 
were in the default mode network, which is thought to 
play a key role in depressive symptoms [52]. Therefore, it 
is likely that default mode connectivity genetics is influ-
encing the overlap between IQ and depressive symptoms.

Predictive Modeling Insights from This Study
Based on patterns of results, we recommend that CB-

PMs utilize large samples. When comparing the different 
methods, the standard CBPM (Shen et al. [22]) seemed to 
find solutions that worked effectively in smaller samples, 
with adjustments to the p values only providing marginal 
change to the model performance. LASSO regression was 
useful across a range of sample sizes after samples exceed-
ed ∼1,000 individuals. Ridge regression seems to require 
very large sample sizes to avoid overfitting. The Shen sum 
score approach outperformed other approaches in small-
er samples, but regularization in larger samples mirrored 
results from the statistical genetics literature on polygen-
ic risk scores [46]. A key difference is that much smaller 
sample sizes are needed for the same level of prediction 
in multisystem brain models than in polygenic risk scores 
(only a couple thousand compared to 10s–100s of thou-
sands).

There are many neuroimaging modalities across the 
functional and anatomical literature and many possible 
levels of analysis via different parcellations that can be 
used for multisystem brain predictive modeling. This 
study establishes the utility of multisystem brain model-
ing with the UKB functional connectivity parcellation 
and CBPM procedures. The procedures here predicted 
some, but not all, of the genetic variability underlying IQ. 
Though it would be outside the scope of any one manu-
script to test all possible ways of predicting an outcome 
and its genetic associations, in the future, many other 
sources of data and brain parcellations may be used to 
expand on this method. Woo et al. [53] offer a procedure 
for selecting the best model that involves first testing dif-
ferent models in the discovery sample, selecting the one 
that is predictive (and makes theoretical sense), and then 
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testing just that model in a held-out validation dataset. 
Using procedures like these that have been established in 
imaging may improve the use of endophenotypes in the 
future.

Alternative Explanations for the Benefits of CBPM to 
Develop Endophenotypes
In our example case, endophenotypes developed from 

CBPMs certainly have higher genetic correlations and 
heritability (compared to single edges). We have broadly 
interpreted the genetic correlation increase in the context 
of a phenotypic literature showing that distributed brain 
systems explain individual differences in behavior. How-
ever, there are several alternative explanations for the in-
crease in genetic correlation and heritability (compared 
to individual brain regions). The first is the increase in 
reliability. It is well known that the reliability of a pheno-
type is directly related to the heritability of the phenotype. 
When adequately powered, reweighting and including 
information across multiple brain edges will increase reli-
ability and therefore heritability. However, it is worth 
noting that the genetic correlation is robust to the herita-
bility inflation or deflation as the heritability is in the nu-
merator and denominator of the equation for calculating 
genetic correlations (for more, see Bulik-Sullivan et al. 
[24]). Thus, the increases in the brain’s genetic correla-
tions cannot be explained by reliability alone.

Further, an increased genetic correlation may be due to 
the increase in the phenotypic overlap that is gained by 
“predicting” behavior. However, we should also not assume 
that phenotypic and genetic correlations will show the same 
patterns. For example, amount of tea consumed and amount 
of coffee consumed are phenotypically negatively correlat-
ed but show a positive genetic correlation [54].

Second, although our brain-wide endophenotypes are 
more heritable than the individual edges, they remain less 
heritable than IQ in the UK Biobank data. Indeed, most 
heritabilities for individual structural brain regions are 
also lower than our estimate for measured IQ (see Grasby 
et al. [47] for more). In line with lower heritability, we 
found few novel IQ SNPs using the brain models. Con-
sidering these results, it is worth noting that we focused 
only on a signal brain modality, connectivity, and our 
model represents a limited set of potential neurological 
mechanisms as such. It is likely that multimodal models 
(including connectivity and structure) will be needed to 
capture all the heritability of IQ. Indeed, it has been shown 
in twin studies that brain function and structure have low 
genetic correlations and therefore will capture different 
genetic variance that underlies behavior [48]. Moreover, 

measures of brain function appear to be less heritable 
than measures of brain structure [55], so multimodal 
models will likely be more heritable than our model based 
only on functional connectivity.

We have shown genuine and large gains in the genetic 
association using multivariate modeling approaches and 
different performance across the CBPM approaches used 
herein. It is worth noting that, though earlier endopheno-
typic literature claimed that closer proxies to the genetic 
expression would be needed, no endophenotypes to date 
have produced novel genetic associations (see Liu et al. [56], 
for a similar discussion concerning EEG measures and 
schizophrenia). Right now, the field of endophenotypes is 
limited in terms of genetic discovery. Nevertheless, we have 
shown that brain and behavior can have strong genetic as-
sociations with SNP data, and we are the first to find such 
large genetic associations. Such associations are necessary 
for studying the brain and behavior (e.g., [57–59]). Further 
development of whole brain models may reveal novel in-
sights into the genetic architecture of behavior.

Limitations
There are a number of limitations to the study. First, 

our training and validation sets were closely aligned as 
they are both part of the UK Biobank. It is possible that 
these results may generalize poorly to other parcellations 
or subgroups (like younger cohorts) that were not used in 
generation of the UK Biobank parcellation. Consider-
ation of brain parcellation and feature engineering is an 
important step in choosing predictive models, and this 
work does not argue against the importance of those con-
siderations. Further, in using the UK Biobank parcella-
tion, the parcellation was generated in an earlier version 
of the UK Biobank. We do not have the identifying infor-
mation to show which individuals were used in genera-
tion of the parcellation. The use of the parcellation and 
the inability to identify individuals across subjects does 
protect individual identities but limits potential follow-
up of our analysis.

In our GWAS, we focused on common variants (minor 
allele frequency >0.01) and highly probable variants (impu-
tation quality score >0.95). We did so because we were run-
ning several GWAS and we wanted to conduct reasonable 
genome-wide screening but also reduce the computational 
burden. This choice means, however, that we cannot specu-
late about how rare variants likely influence multisystem 
brain models. Finally, our analyses are limited to individu-
als of European descent. There are not large enough sam-
ples of other ancestry groups to conduct this analysis to 
date, and more diverse GWAS samples are needed.
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Conclusions

Multisystem brain models will be useful endopheno-
types for neuropsychological outcomes in the future. 
Connectivity-based models performed well for predict-
ing IQ in this study, predicting about half the genetic vari-
ance underlying IQ. Future expansions should consider 
other neuroimaging modalities as ways to further im-
prove these scores.
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