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Abstract

Background: General anaesthesia in the neonatal period has detrimental effects on the developing mammalian brain.

The impact of underlying inflammation on anaesthesia-induced developmental neurotoxicity remains largely unknown.

Methods: Postnatal day 7 (PND7) rats were randomly assigned to receive sevoflurane (3 vol% for 3 h) or carrier gas 12 h

after bacterial lipopolysaccharide (LPS; 1 mg g�1) or vehicle injection. Pharmacological inhibition of caspase-1 by Vx-765

(two doses of 50 mg g�1 body weight) was used to investigate mechanistic pathways of neuronal injury. Histomorpho-

logical injury and molecular changes were quantified 2 h after the end of anaesthesia. Long-term functional deficits were

tested at 5e8 weeks of age using a battery of behavioural tests in the memory and anxiety domains.

Results: Sevoflurane or LPS treatment increased activated caspase-3 and caspase-9 expression in the hippocampal

subiculum and CA1, which was greater when sevoflurane was administered in the setting of LPS-induced inflammation.

Neuronal injury induced by LPSþsevoflurane treatment resulted in sex-specific behavioural outcomes when rats were

tested at 5e8 weeks of age, including learning and memory deficits in males and heightened anxiety-related behaviour in

females. Hippocampal caspase-1 and NLRP1 (NLR family pyrin domain containing 1), but not NLRP3, were upregulated by

LPS or LPSþsevoflurane treatment, along with related proinflammatory cytokines, interleukin (IL)-1b, and IL-18. Pre-

treatment with Vx-765, a selective caspase-1 inhibitor, led to reduced IL-1b in LPS and LPSþsevoflurane groups. Caspase-

1 inhibition by Vx-765 significantly decreased activated caspase-3 and caspase-9 immunoreactivity in the subiculum.

Conclusions: Systemic inflammation promotes developmental neurotoxicity by worsening anaesthesia-induced

neuronal damage with sex-specific behavioural outcomes. This highlights the importance of studying anaesthesia-

induced neurotoxicity in more clinically relevant settings.

Keywords: apoptosis; caspase-1; hippocampus; inflammasome; inflammation; lipopolysaccharide; neonatal anaesthesia
Rece

© 20

For P
Editor’s key points

� General anaesthetics alone can enhance apoptotic

neuronal and glial death and produce long-term

behavioural deficits in animal models, but whether

this is modified by underlying inflammation is

unclear.

� Systemic inflammation induce with bacterial lipo-

polysaccharide (LPS) worsened neuroapoptosis and
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sex-specific behavioural deficits produced by sevo-

flurane anaesthesia exposure in neonatal rats.

� These findings demonstrate effects of both sex and

systemic inflammation on developmental anaes-

thetic neurotoxicity in rats.

� These findings highlight the potential impact of un-

derlying pathological conditions on developmental

anaesthetic neurotoxicity, which will require clinical

validation.
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General anaesthesia is required in more than 4 million pro-

cedures performed annually in children in the USA. Compel-

ling preclinical evidence suggests that anaesthesia is

neurotoxic to developing mammalian brains. By triggering

neuroapoptosis through activation of caspase-3, it kills many

neurones in the developing brain of rodents1e5 and non-

human primates.6e8 Especially vulnerable to anaesthetics is

the subiculum, a hippocampal region that plays a key role in

learning and memory. Hence, damage to this region could

underly observed long-lasting cognitive impairments.1,9

Particularly concerning is the growing clinical evidence sug-

gesting an association between early anaesthesia exposure

and learning disability, and/or socio-affective disorders later

in life.10e12

Anaesthesia-induced developmental neurotoxicity has

largely been studied in isolation from the disease processes

that necessitate anaesthesia such as malrotation with

volvulus13 or appendicitis.14 Additional pathological states

may require extended hospitalisation with prolonged sedation

and repeated exposures to anaesthesia for procedures and

imaging. Therefore, systemic inflammation preceding anaes-

thesia is likely common in many clinical scenarios.

Although activation of inflammatory pathways is intended

to restore homeostasis, it frequently causes collateral cell death

that exacerbates damage caused by the original insult. Rampant

inflammation can cause activation of caspase-1-dependent

programmed cell death (apoptosis), resulting in release of in-

terleukins (e.g. IL-1b and IL-18) while also activating pro-

apoptotic caspase-9 and caspase-3.15,16 As neuroinflammation

plays a significant role in brain pathologies,17e19 we asked
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whether systemic inflammation preceding general anaesthesia

worsens developmental anaesthetic neurotoxicity.

To address this question, we induced systemic inflamma-

tion with lipopolysaccharide (LPS) before exposure to the

commonly used inhaled anaesthetic sevoflurane. We treated

rat pups at the peak of synaptogenesis (postnatal day 7 [PND7])

and assessed acute histomorphological endpoints as well as

neurobehaviour later in life, with special focus on neuro-

apoptotic pathways and their role in systemic inflammation-

propagated developmental anaesthetic neurotoxicity.
Methods

Animals

We used PND7 Sprague Dawley (Envigo, Indianapolis, IN, USA)

rat pups for all experiments. Rats were housed under a 14/10-h

lightedark cycle with ad libitum access to food and water.

Animals were acclimated for at least 36 h before experimental

procedures.

The experimental design summary is shown in Fig 1. De-

tails of the specific procedures are outlined in the Supple-

mentary materials.
Results

Assessment of neuroapoptosis in the subiculum and
CA1 regions of hippocampus

We examined whether LPS-induced systemic inflammation

exacerbates sevoflurane-induced neuroapoptosis by focusing
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on two vulnerable brain regions: the subiculum and the CA1

hippocampal area. We used activated caspase-3 (AC-3)

immunohistochemistry as an established marker of develop-

mental neuroapoptosis (Fig. 2aed). LPS caused a three-fold

increase in AC-3-positive cells in the subiculum compared
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positive neurones compared with control (P<0.001, Cohen’s
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setting of LPS-induced systemic inflammation resulted in a

two-fold increase in AC-3-positive cells in the subiculumwhen

compared with LPS (P<0.001, Cohen’s F¼0.973) or sevoflurane

(P<0.001, Cohen’s F¼0.872). Apoptosis was almost seven-fold

higher in the LPSþsevoflurane group compared with control

(P<0.001, Cohen’s F¼2.608).

To assess whether increased apoptosis in the setting of

LPS-induced systemic inflammation is unique to the sub-

iculum, we examined the CA1 region of hippocampus. Both

LPS and sevoflurane increased neuroapoptosis compared with

control (P¼0.044, Cohen’s F¼0.740 and P<0.001, Cohen’s

F¼0.977, respectively) (Fig 2f). As in the subiculum,

sevoflurane-induced neuroapoptosis was similar to that

observed with LPS (P¼0.517). LPSþsevoflurane treatment

resulted in higher AC-3 positive cells when compared with

control (P<0.001, Cohen’s F¼1.883), LPS (P¼0.001, Cohen’s

F¼0.791), or sevoflurane (P¼0.045, Cohen’s F¼0.484).

Taken together, these data suggest that sevoflurane-

induced neuroapoptosis is similar to that observed with LPS,

and that there is an overall worsening of neuroapoptosis in the

subiculum and CA1 in the setting of LPS-induced systemic

inflammation.
Long-term behavioural deficits after sevoflurane in the
setting of systemic inflammation

We tested whether hippocampal injury stemming from the

neonatal exposure to LPS, sevoflurane, or both alters long-

term functional outcomes. We performed two hippocampal-

dependent behavioural tasks: Y-maze (spatial working mem-

ory) and contextual fear conditioning (CFC; associative mem-

ory) at 5 and 6e8 weeks of age, respectively, and one anxiety-

related paradigm (elevated zero maze), at 5 weeks of age.

Y-maze. In male mice (Fig 3a), neither LPS nor sevoflurane

treatment changed spontaneous alternations compared with

control (P¼0.998 and P¼0.893, respectively). In contrast,

LPSþsevoflurane treatment resulted in fewer spontaneous

alternations compared with control (P¼0.034, Cohen’s

F¼0.837), LPS (P¼0.025, Cohen’s F¼0.781), or sevoflurane

(P¼0.010, Cohen’s F¼1.108). Interestingly, females exhibited no

difference in spontaneous alternations (P¼0.265) (Fig 3b),

suggesting sex-specific deficits in hippocampus-dependent

spatial working memory.

Contextual fear conditioning (CFC). In males, neither LPS

nor sevoflurane altered freezing time compared with control

(P¼0.891 and P>0.999, respectively) (Fig 3c). However,

LPSþsevoflurane treatment resulted in less freezing compared

with control (P¼0.010, Cohen’s F¼1.135), LPS (P¼0.049, Cohen’s

F¼0.678), or sevoflurane (P¼0.014, Cohen’s F¼1.004) (Fig 3c).

These findings indicate that LPSþsevoflurane treatment in
Fig 3. Long-term deficits in behavioural task performance after neona

performance in Y-maze behavioural task in 5-week-old male and fema

both. There were persistent spatial working memory deficits in LPSþs

showing performance of contextual fear conditioning behavioural ta

neonatal treatment with LPS, sevoflurane, or both. These data indica

treatment in male, but not in female, rats. (e, f) In the elevated zero m

noted in duration of open arm exploration in males (e), whereas LPS

sections of the arena (f), indicative of heightened anxiety-related be

sevoflurane treated animals. Data shown as mean (SEM). One-way ANOV

LPS, lipopolysaccharide; SEM, standard error of the mean; Sevo, sevoflu
males, unlike either individual treatment, resulted in long-

term deficits in learning and memory in the CFC paradigm.

In females we observed less freezing in all experimental

groups compared with males. We found no differences in

freezing time between control, LPS, sevoflurane, and LPSþse-

voflurane groups (P¼0.752) (Fig 3d).

Elevated zero maze. In males (Fig 3e), we observed no dif-

ferences between treatment groups in the time spent

exploring open sections (P¼0.079). In contrast, females treated

with LPSþsevoflurane spent less time exploring open sections

of the maze compared with control (P¼0.002, Cohen’s

F¼1.108), LPS (P<0.001, Cohen’s F¼1.540), or sevoflurane

(P<0.001, Cohen’s F¼2.197) group (Fig 3f). No differences were

found when LPS or sevoflurane were compared with control

(P¼0.510 and P¼0.662, respectively) or to each other (P¼0.995).

Taken together, although neither LPS- nor sevoflurane-

induced histological injury translated into measurable neu-

robehavioural deficits, there was sex-specific vulnerability to

LPSþsevoflurane treatment that manifested as learning and

memory deficits in males, and heightened anxiety-related

behaviour in females.
Quantification of inflammasome signalling after LPS
and sevoflurane exposure

We measured the relative expression of caspase-1 in the hip-

pocampus (Fig 4a) using quantitative polymerase chain reac-

tion (qPCR). We found no difference in caspase-1 mRNA

relative expression with sevoflurane treatment vs control

(P¼0.321). However, there was an 86% increase in caspase-1

expression after LPS injection compared with control

(P<0.001) and almost three-fold increase compared with sev-

oflurane (P<0.001). LPSþsevoflurane treatment resulted in an

increase in caspase-1 mRNA levels compared with control

(P¼0.038) and a 2.4-fold increase compared with sevoflurane

(P<0.001). There was no difference in caspase-1 mRNA

expression between LPS and LPSþsevoflurane treatment

(P¼0.327), suggesting that caspase-1 upregulation was pri-

marily driven by LPS-induced systemic inflammation.

As proteolytic activity of caspase-1 occurs on cytoplasmic

molecular platforms known as inflammasomes, we further

characterised this interaction by measuring the mRNA levels

of NLRP1 (NLR family pyrin domain containing 1) and NLRP3

using qPCR (Fig 4b and c). Sevoflurane caused no change in

NLRP1 mRNA levels (P¼0.982) compared with control.

Consistent with caspase-1 activation, LPS upregulated NLRP1

compared with control and sevoflurane (P<0.001 for both).

LPSþsevoflurane induced NLRP1 to a similar level compared

with LPS (P¼0.096) and higher compared with sevoflurane

(P¼0.025), but the difference was insignificant when
tal exposure to LPS, sevoflurane, or both. (a, b) Bar graphs show

le rats, respectively, treated as neonates with LPS, sevoflurane, or

evoflurane treated male, but not in female, rats. (c, d) Bar graphs

sk in 6- to 8-week-old male and female rats, respectively, after

te impaired associative memory after neonatal LPSþsevoflurane

aze, an anxiety-related paradigm, no significant differences were

þsevoflurane treated females spent much less time in the open

haviour in females only. No differences were observed in LPS or

A þ Tukey’s post hoc, *P<0.05, **P<0.01. ANOVA, analysis of variance;

rane.
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Fig 4. Quantification of inflammasome signalling after treatment with LPS, sevoflurane, or both. (a) LPS alone or in combination with

sevoflurane induced higher levels of caspase-1 mRNA compared with control or sevoflurane. Caspase-1 mRNA did not differ between LPS

alone or LPSþsevoflurane, indicating that caspase-1 induction is primarily LPS-driven. (b) Hippocampal NLRP1 mRNA followed a similar

pattern of induction, although LPSþsevoflurane was marginally insignificant compared with control (P¼0.063). (c) Conversely, we observed

no differences in NLRP3 mRNA across treatments. Analysis of IL-1b and IL-18 mRNA (d, e) and protein (f, g) levels in hippocampus revealed

that upregulation of these cytokines was primarily LPS-driven, whereas sevoflurane did not differ from the control. Whereas mRNA was

upregulated after LPS treatment, IL-18 protein levels were not different at this time point. (h, i) Pretreatment with Vx-765 (þVx), a selective

caspase-1 inhibitor, reduced IL-1b mRNA (h) and protein (i) levels. Vx-765 had no effect on baseline IL-1b levels, nor in the sevoflurane

group. In each pair, 10% DMSO was administered as vehicle control (eVx). (aeg) One-way ANOVAþTukey’s post hoc; (h, i) two-way ANOV-

AþSidak’s post hoc. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. ANOVA, analysis of variance; DMSO, dimethyl sulfoxide; IL, interleukin; LPS,

lipopolysaccharide; NLRP1, NLR family pyrin domain containing 1; Sevo, sevoflurane.
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compared with control (P¼0.063). These data suggest that

NLRP1 upregulation was driven primarily by LPS, and that the

NLRP1 inflammasome might be involved in enabling proteo-

lytic activity of caspase-1. We found no difference in NLRP3

levels between any of the experimental groups (P¼0.650; Fig

4c).

We analysed IL-1b (Fig 4d) and IL-18 (Fig 4e) because they

are proteolytically cleaved by caspase-1 before secretion.

Sevoflurane did not change expression of IL-1b (Fig 4d) or IL-18

(Fig 4e) comparedwith control (P>0.999 for both). However, LPS

increased IL-1bmRNA levels vs control and sevoflurane groups

(by 17-fold and 21-fold, respectively; P<0.001 for both). Simi-

larly, LPSþsevoflurane induced a 13-fold increase in mRNA

levels of IL-1b compared with control (P¼0.014) and 16-fold

increase compared with sevoflurane (P¼0.012), but no differ-

ence compared with LPS (P¼0.692) (Fig 4b).

Similar findings were observed with IL-18 (Fig 4c). Specif-

ically, we found that LPS treatment induced a 45% increase in

IL-18 mRNA levels compared with control (P¼0.002) and a 47%

increase compared with sevoflurane (P<0.001). LPSþsevo-

flurane induced a 48% increase in IL-18mRNA levels compared

with control (P¼0.012) and 50% increase compared with sev-

oflurane (P¼0.003), but no difference compared with LPS

(P¼0.930). These findings suggest that the observed upregula-

tion of the proinflammatory cytokines IL-1b and IL-18 was

driven mainly by LPS, and that there was no significant

worsening in the presence of sevoflurane.

To validate our qPCR findings, we measured hippocampal

levels of IL-1b and IL-18. Sevoflurane did not alter IL-1b levels

(Fig 4e) compared with control (P>0.999 for both). LPS

increased IL-1b levels compared with control and sevoflurane

(P¼0.001, Cohen’s F¼1.251 and P¼0.001, Cohen’s F¼1.258,

respectively). Similarly, LPSþsevoflurane increased levels of

IL-1b compared with control (P¼0.001, Cohen’s F¼0.966) and

sevoflurane (P<0.001, Cohen’s F¼0.975), with no difference

compared with LPS (P¼0.998) (Fig 4e). Although IL-18 was

detectable in all groups (Fig 4f), no change in levels was

observed 17 h after LPS treatment (P¼0.257).

To evaluate the role of caspase-1 activation in LPS-induced

interleukin release, we examined hippocampal mRNA and

protein levels of IL-1b in animals treated with Vx-765, a se-

lective caspase-1 inhibitor. We found a significant effect of Vx-

765 pretreatment on hippocampal IL-1b mRNA and protein

levels (P<0.001 for both) (Fig 4g and h). There was no effect of

Vx-765 in control or sevoflurane group (P>0.999 both for

mRNA; P¼0.998 and P¼0.999 for protein, respectively). How-

ever, there was a reduction in hippocampal IL-1bmRNA in the

LPS group (62% reduction, P<0.001, Cohen’s F¼0.706) and in the

LPSþsevoflurane group (54% reduction, P¼0.043, Cohen’s

F¼0.374). Although the protein concentrations of hippocampal

IL-1b measured in this cohort were higher (presumably driven

by the DMSO vehicle that was given to all experimental

groups),20 there was a reduction with Vx-765 in hippocampal

IL-1b levels in the LPS group (P¼0.030, Cohen’s F¼0.613) and in

the LPSþsevoflurane group (P¼0.005, Cohen’s F¼0.457). These

data show that AC-1 plays an important role in LPS-induced

release of IL-1b.
Role of caspase-1, -9, and -3 axis in sevoflurane-
induced systemic inflammation and developmental
neuroapoptosis

Because inflammation-induced caspase-3-dependent apoptosis

relies on activation of the caspase-1/-9 axis,15 we examined
whether increased caspase-3 activation caused by sevoflurane

in the settingof LPS-inducedsystemic inflammation isdrivenby

caspase-1 activation. We administered Vx-765, and quantified

AC-9 and AC-3 immunoreactivity in the subiculum (Fig. 5aef).

Both LPS (P¼0.014, Cohen’s F¼1.299) and sevoflurane (P¼0.001,

Cohen’s F¼1.573) treatments upregulated AC-9 compared with

control (Fig 5i). In the LPSþsevofluranegroup, thenumberofAC-

9 positive cellswashigher than in sevoflurane (P¼0.008, Cohen’s

F¼0.705), LPS (P¼0.005, Cohen’s F¼0.823), or control (P<0.001,
Cohen’s F¼1.812) group. The LPS vs sevoflurane groups showed

no difference in caspase-9 activation (P¼0.941) (Fig 5i), con-

firming that the sevoflurane effect was comparable with the

LPS-induced effect. Vx-765 pretreatment significantly

decreased the number of AC-9 positive cells in the LPSþsevo-

flurane group (P¼0.011, Cohen’s F¼0.571) (Fig 5i) but had no ef-

fect in vehicle control (P¼0.998), sevoflurane (P¼0.718), or LPS

(P¼0.995) group.

Finally, we examined the effect of Vx-765 pretreatment on

caspase-3 activation (Fig 5g and h). Vx-765 pretreatment

resulted in reduced AC-3 with LPSþsevoflurane group in the

subiculum (P¼0.014, Cohen’s F¼0.784) (Fig 5j) but not in control

(P¼0.999), sevoflurane (P>0.999), or LPS group (P¼0.908).

We conclude that, unlike sevoflurane alone, sevoflurane-

induced neuroapoptosis in the setting of LPS-induced sys-

temic inflammation is, at least in part, caspase-1 mediated.
Discussion

We show that sevoflurane-induced developmental neurotox-

icity is worsened by systemic inflammation. This was evident

in the activation of the caspase-1/-9/-3 axis in the subiculum

and CA1 hippocampal region and upregulation of the caspase-

1 modulated inflammatory interleukins, IL-1b and IL-18. There

were lasting sex-specific behavioural impairment with spatial

working and associative memory deficits in males and greater

anxiety in females. These findings suggest that anaesthesia in

the setting of systemic inflammation during early brain

development may be more detrimental to the neonatal brain

than previously considered. Our experiments with Vx-765, a

selective and potent inhibitor of caspase-1 with virtually no

direct effects on caspases-3 and -9,21 implicate caspase-1 in

the activation of the caspase-9/-3 axis and upregulation of

hippocampal IL-1b and IL-18, which together exacerbate

sevoflurane-induced developmental neurotoxicity in the

setting of systemic inflammation.

Although a single exposure of 6 h of sevoflurane in rodents

caused profound neuroapoptosis and long-lasting behav-

ioural deficits,22 our results suggest that neuroapoptosis after

3 h of sevoflurane might not translate into functional deficits

later in life. Conversely, an equivalent duration of sevo-

flurane exposure compounded by underlying systemic

inflammation led to (1) more neuroapoptosis, (2) significant

long-term deficits, with (3) sex-specific vulnerabilities, in

which males exhibited learning and memory deficits

whereas females were affected in the anxiety domain. This

dichotomy in behavioural outcomes is consistent with a

previous report,23 and highlights the importance of studying

sex as a biological variable in anaesthesia-induced develop-

mental neurotoxicity.

There are limited and conflicting studies of the importance

of inflammation in anaesthesia-induced developmental neu-

rotoxicity.24e26 Using the models of skin incision and paw

formalin injection, isofluraneþnitrous oxide exposure in

young rats worsened both neurotoxicity and long-lasting
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impairment of cognitive development compared with iso-

fluraneþnitrous oxide alone.27 In contrast, intraplantar injec-

tion of complete Freund’s adjuvant at the time of anaesthesia

ameliorated the neurotoxic effect of ketamine in young rats.26

We used LPS 12 h before anaesthesia, not as a model of sepsis

(with its inherent limitations including interspecies differ-

ences in endotoxin sensitivity and dynamics of cytokine
induction upon challenge28,29), but rather as an established

model of systemic inflammation.30 This provided insight into

the role of acute illness, often complicated by systemic

inflammation, which frequently precedes anaesthesia in

clinical settings.

Caspase-1 is widely regarded as an inflammatory cas-

pase. Our data suggest that upregulation of caspase-1 is
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Fig 5. (continued)
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driven primarily by LPS-induced systemic inflammation,

and that caspase-1 activation plays a significant role in

activation of proapoptotic caspase-9 and -3, which in turn

worsens sevoflurane-induced neuronal damage. Consistent

with this finding, caspase-1 knock-down reduced caspase-3

activation in bone marrow-derived macrophages, impli-

cating caspase-1 as an initiator caspase in the apoptotic

cascade.16 Moreover, caspase-1-deficient cortical neurones

were resistant to ischaemia-induced apoptosis, evidenced

by downregulation of both caspase-9 and -3 activation.31

This is in accordance with a study that showed that deple-

tion of caspase-9 (but not caspases-2, -6, -7, or -8) in the

setting of caspase-1 driven apoptosis led to a reduction in

caspase-3 activation in CL26-iCasp1 cells.15 Caspase-1 is also

implicated in other forms of cell death, such as pyroptosis

and necroptosis.32 Although our study focuses on caspase-3-

mediated apoptosis, our findings warrant future investiga-

tion of other cell death mechanisms that may play a role in

anaesthesia-induced neuroapoptosis in the setting of sys-

temic inflammation.

Upregulation of NLRP1 in the hippocampus after LPS

treatment provides further insight into inflammasome
assembly. Inflammasomes are multiprotein cytosolic com-

plexes that serve as molecular platforms for caspase-1 pro-

teolytic activity. This could be the molecular basis for

processing and secretion of IL-1b and IL-18, which are down-

stream of the caspase-1/inflammasome complex. Dysregula-

tion of these proinflammatory cytokines correlates with

neurodegenerative diseases and cognitive impairment.33,34

Although the best-studied NLRP3-inflammasome is

commonly associated with microglia,35,36 caspase-1/

inflammasome complex activity, particularly the NLRP1

inflammasome, are similarly detected in neurones.21,37,38

Although hippocampal NLRP3 levels were unchanged in our

study, NLRP1 upregulation in response to LPS suggests that

neurones might be, at least in part, involved in inflammasome

signalling in the CNS.

Our results support antiapoptotic effects of Vx-765 in the

LPSþsevoflurane but not in the LPS group. Although similarly

efficient in suppressing hippocampal IL-1b levels in either

treatment, Vx-765 did not reduce the number of immunore-

active cells with LPS treatment in contrast with the marked

reduction in AC-9 and AC-3 cell counts with LPSþsevoflurane

treatment. Notwithstanding this observation, Vx-765 has good
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oral bioavailability and bloodebrain barrier penetration,39

which e together with its established safety profile in phase

IIb clinical trials for drug-resistant epilepsy40 e makes it a

promising neuroprotective strategy for children undergoing

anaesthesia for surgical procedures.

Based on our findings, we propose a model of anaesthesia-

induced developmental neuroapoptosis in the setting of sys-

temic inflammation as shown in Fig 6. Once LPS crosses the

bloodebrain barrier and binds to TLR-4, intracellular signal

transduction, possibly via the MyD88eNf-kB pathway, is acti-

vated. This increases transcription of proinflammatory cyto-

kines, switches the brain microenvironment towards an

inflammatory state, and primes the caspase-1/NLRP1 inflam-

masome complex (Step one: Priming). Anaesthesia causes

neuronal injury and triggers activation of primed
inflammasomes (Step two: Activation). Proteolytic activity of

AC-1 leads to cleavage of IL-1b and IL-18, contributing to the

inflammatory milieu, while increasing caspase-3 activation,

either through direct proteolysis or via cleavage of caspase-9.

For more than three decades, we have investigated

anaesthesia-induced developmental apoptosis largely in

isolation from pathological processes. Here we show that

systemic inflammation can worsen anaesthesia-induced

neuronal damage in the young brain and potentiate

cognitive-affective impairments. These findings reveal

potentially detrimental effects of inflammation in worsening

anaesthesia-induced neurotoxicity, suggesting that future

research should include more in-depth mechanistic studies of

neuronal responses to anaesthesia in disease-relevant

models.
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