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Abstract 

Recently, clustered regularly interspaced palindromic repeats (CRISPR)-Cas9 derived editing tools had significantly 
improved our ability to make desired changes in the genome. Wild-type Cas9 protein recognizes the target genomic 
loci and induced local double strand breaks (DSBs) in the guidance of small RNA molecule. In mammalian cells, the 
DSBs are mainly repaired by endogenous non-homologous end joining (NHEJ) pathway, which is error prone and 
results in the formation of indels. The indels can be harnessed to interrupt gene coding sequences or regulation ele-
ments. The DSBs can also be fixed by homology directed repair (HDR) pathway to introduce desired changes, such as 
base substitution and fragment insertion, when proper donor templates are provided, albeit in a less efficient manner. 
Besides making DSBs, Cas9 protein can be mutated to serve as a DNA binding platform to recruit functional modula-
tors to the target loci, performing local transcriptional regulation, epigenetic remolding, base editing or prime editing. 
These Cas9 derived editing tools, especially base editors and prime editors, can introduce precise changes into the 
target loci at a single-base resolution and in an efficient and irreversible manner. Such features make these editing 
tools very promising for therapeutic applications. This review focuses on the evolution and mechanisms of CRISPR-
Cas9 derived editing tools and their applications in the field of gene therapy. 
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Introduction
Genome editing has become a powerful tool for both 
basic biomedical research and translational medicine. 
The development of reprogrammable nucleases, espe-
cially clustered regularly interspaced short palindromic 
repeats (CRISPR)-Cas9 system, has revolutionized the 
field of genome editing [1, 2]. Since the discovery dem-
onstrated that the wild-type (WT) Cas9 system pro-
duced double strand breaks at target region in  vitro in 
the guidance of a pair of small RNA molecules, crRNA 
and tracrRNA, which were later engineered to a single 
guide RNA (sgRNA) [1, 2], the system soon found its 

applications in multiple organisms and in a wide range 
of scenarios [3–9]. In eukaryotic cells, Cas9 can be used 
to induce double strands breaks (DSBs) in the genome, 
which are frequently repaired by non-homologous end 
joining (NHEJ) pathway since NHEJ is more active than 
other DNA repair systems in repairing DSBs, leading to 
the formation of insertion or/and deletion (indel) muta-
tions [5, 10].

Besides producing DSB, Cas9 could also be engineered 
to renounce the ability of DNA cleavage but reserve the 
ability of DNA binding, thereby serving as a platform for 
recruiting other DNA regulators or modifiers to induce 
localized transcriptional, epigenetic or genetic manipu-
lations. To the best of our knowledge, up to date the 
platform has been utilized to develop transcriptional 
regulators [11–17], histone methylation [18–20] or acety-
lation modifiers [17, 21], DNA methylation modifiers 
[19], cytosine or adenine base editors [22–26] and primer 
editors [25, 27–29]. Among these tools, base editors and 
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primer editors have the potential for clinical transla-
tion because both of them can produce permanent and 
desired changes in genomic sequences [22, 26, 27, 30, 31]. 
By recruiting deaminases, base editors produce targeted 
deamination on cytosines (Cs) or adenines (As) depen-
dending on the types of deaminases, which in turn are 
converted into thymines (Ts) or guanines (Gs) respec-
tively by endogenous DNA repair or replication mecha-
nisms [22, 23, 32–35]. Prime editors consist of a Cas9 
nickase and reverse transcriptase (RT) fusion protein 
and a prime editing guide RNA (pegRNA). When bind-
ing to target DNAs, the Cas9 nickase introduced a nick in 
the non-target strand (NTS), which is then bound by the 
primer binding sequences (PBS) of pegRNA [27]. RT rec-
ognized the DNA/RNA duplex and extended the ssDNA 
under the guidance of RT template of the pegRNA [27]. 
Finally, the information of the extended ssDNA is written 
into the genome through endogenous DNA repair mech-
anisms to accomplish the editing [27, 36–38].

These editing tools, together with Cas9 nuclease, ena-
ble virtually any desired changes in the genome, therefore 
have significant potential for clinical applications for dis-
ease treatment. Cas9 derived tools have achieved signifi-
cant success in animal models of human genetic disease 
as well as cancer, either via inactivating the expression 
or function of specific genes [39–43], correcting disease 
relevant mutations to restore gene function [44–48], or 
reactivating the expression of functional redundant genes 
to compensate for mutant genes [49–52]. With the devel-
opment of in  vivo delivery system, it is now practicable 
to efficiently deliver Cas9 derived tools into multiple tar-
get organs, including liver, eye, ear and muscles etc. Up 
to date, more than 34 clinical trials using Cas9 tools have 
been recruited, among which several trials have reported 
therapeutic benefit for patients, highlighting the potential 
of Cas9 tools in clinical translation. Here, we will intro-
duce recent advances in the evolution and mechanisms of 
CRISPR-Cas9 derived editing tools, focusing on the step-
wise actions of these tools and the responses of endog-
enous DNA repair pathways. In addition, we will also 
introduce their applications in the field of gene therapy, 
with special emphases on the design of editing strategy 
and the in vivo delivery of these tools.

Cas9 and its derivates
CRISPR system
Reprogrammable nucleases that target DNA molecules 
are the fundamental players in genome editing, which 
introduce targeted cleavage of specific DNA sequences. 
To date, four classes of DNA nucleases that possess 
genome editing potential have been discovered, which 
were meganucleases, zinc finger nucleases (ZFNs) [53, 
54], transcription activator–like effector nucleases 

(TALENs) [55–57] and CRISPR-associated nucleases 
[58]. Distinct from the former three nucleases that recog-
nize DNA through sequence-specific protein-DNA inter-
action, Cas9s utilized a bi-interaction modes to recognize 
their target DNA, i.e., protein-DNA and RNA–DNA 
interactions [1, 2].

CRISPR system was first discovered in bacteria 
genome, where regular sequences consisting of repeat 
sequences and spacer sequences were found [59]. Later, 
it was demonstrated to function as a bacterial defense 
system against invaded foreign DNAs [60]. Upon the 
invasion of foreign DNAs, such as plasmids and phages, 
the CRISPR system is activated to cut a small piece of 
invaded DNA and insert it into the CRISPR locus of bac-
terial genome [60] The inserted foreign DNAs are then 
transcribed, together with the sequences from the host 
genomes, to form fusion RNAs that was named CRISPR 
repeat RNA (crRNA), which guides CRISPR proteins to 
cleave the invaded DNAs [2, 61–65].

Cas9 nuclease
In 2012, Jenniffer Doundna and Emmanuelle Charpen-
tier labs provided the first in  vitro data demonstrating 
that Cas9 system derived from Streptococcus pyogenes 
can be re-engineered to recognize new target DNA [1]. 
They showed that changing the protospacer sequences 
of crRNA can guide the Streptococcus pyogenes Cas9 
(SpCas9) to recognize target DNA that contains the 
spacer sequences in front of a motif called proto-
spacer adjacent motif (PAM). By recognizing the target 
DNA, SpCas9 cleaved both DNA strands 3 nucleotides 
upstream the PAM, leading to double strand break (DSB). 
Several months later, Virginijus Siksnys lab reported 
another Cas9 system, from Streptococcus thermophilus, 
also capable of introducing in vitro DSB in a reprogram-
mable manner (Cas9-crRNA ribonucleoprotein complex 
mediates specific DNA cleavage for adaptive immunity 
in bacteria) [2]. Soon after these pioneer works, Feng 
Zhang and George Church labs independently demon-
strated that this system can be functionally introduced 
into mammalian cells to target a large variety of genomic 
loci [4, 5]. In mammalian cells, DSBs produced by Cas9, 
or other nucleases are mainly repaired by an error-prone 
DNA repair mechanism, named non-homologous end 
joining (NHEJ) pathway, resulting in the formation of 
insertion and deletion (indel) mutations [4, 5, 66].

Following these works, Cas9s from different micro-
organisms were investigated. These efforts generated a 
growing list of Cas9 systems that were capable of edit-
ing eukaryotic genomes, including SaCas9 [39, 67–69], 
CjCas9 [70–73], NmCas9 [74–77], FnCas9 [78–81] and 
SauriCas9 [82, 83] etc. Importantly, these Cas9s rec-
ognize different PAMs, which increases the targeting 
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scope of Cas9 based editing strategies (Table 1). Struc-
turally, all Cas9 proteins studied so far exhibit bilobed 
architecture that consist of one recognition (REC) and 
one nuclease (NUC) lobes [84]. Three major func-
tional domains were identified, including two nuclease 
domains, RuvC and HNH, and one PAM-interacting 
domain (PI domain) (Fig.  1). The PI domain, usually 
locating in the C-terminus of Cas9 proteins, recog-
nizes the PAM sequences. Upon recognizing PAM, 
Cas9 sharply bends and undertwists DNA to flip DNA 
nucleotides out of the duplex and toward the sgRNA. 
Once the spacer region of the target DNA matched 
the sgRNA guide sequences, the sgRNA invades into 
the  DNA duplex to partially detached the nontarget 
strand (NTS), thereby forming an “R-loop” structure 
[85–89]. The binding of Cas9 protein to the target DNA 
induced conformational changes in Cas9 structure, 
which triggers its cleavage activity [84, 87]. The HNH 
and RuvC nuclease domains of Cas9 protein are respon-
sible for cleavage of the complementary and noncom-
plementary strands of the target DNA, respectively [84]. 
Noteworthy, the cleavage of DNA strand is independ-
ent to each other [84]. Therefore, Cas9 proteins can be 

mutated into nickases that nicked either TS or NTS or 
dead proteins without any cleavage activity [90].

Cas12 nuclease
In addition to Cas9, other CRISPR systems were also 
found to be capable of editing eukaryotic genomes. Up 
to date, three major types of CRISPR systems were iden-
tified, type I-III. They were classified according to their 
components and action mechanisms [106]. Among these 
systems, Cas12a (also named Cpf1, hereafter referred 
as to Cpf1) proteins from type II CRISPR were also fre-
quently used in genome editing because of its simplicity 
of action and easiness to be reprogrammed, since this 
system consists of a single nuclease protein and a single 
RNA component [107–110]. Like Cas9, Cpf1 recognizes 
its target DNA also through the two types of interac-
tions, i.e., RNA/DNA and protein/DNA [111]. However, 
compared with Cas9, Cpf1 protein can only be mutated 
to form NTS nickase or dead Cpf1 but not TS nickase, 
because the activation of TS cleavage is triggered by the 
cleavage of NTS [111]. Therefore, Cpf1 protein is less ver-
satile than Cas9.

Table 1  Cas9 and their respective PAM sequences

Cas9 variants Organisms PAM Reference

SpCas9 Streptococcus pyogenes NGG  [1, 4, 5]

SpCas9-EQR Streptococcus pyogenes NGAG​  [91]

SpCas9-VQR Streptococcus pyogenes NGA  [91]

SpCas9-VRER Streptococcus pyogenes NGCG​  [91]

xCas9 Streptococcus pyogenes NG; NNG  [92]

Cas9-NG Streptococcus pyogenes NG  [93]

SpG Streptococcus pyogenes NG  [94]

SpRY Streptococcus pyogenes NR; NY  [94]

ScCas9 Streptococcus canis NNG  [95]

FnCas9 Francisella novicida NGG  [78, 79]

S. thermophilus CRISPR1 Streptococcus thermophilus NNRRRA​  [39, 96]

S. thermophilus CRISPR3 Streptococcus thermophilus NGGNG  [2]

FrCas9 Faecalibaculum rodentium NNTA  [97]

SaCas9 Staphylococcus aureus NNGRRT​  [39]

SaCas9-KKH Staphylococcus aureus NNNRRT​  [98]

SauriCas9 Staphylococcus Auricularis NNGG  [82]

SlugCas9 Staphylococcus lugdunensis NNGG  [83]

SchCas9 Staphylococcus chromogenes NNGR  [99]

CjCas9 Campylobacter jejuni NNNNRYAC​  [70, 100]

Nm1Cas9 Neisseria meningitidis NNNNGATT​  [74, 101]

Nm2Cas9 Neisseria meningitidis NNNNCC  [102]

GeoCas9 Geobacillus stearothermophilus NNNNCRAA​  [103]

Glc300Cas9 Geobacillus LC300 NNNNGMAA  [103]

CcCas9 Clostridium cellulolyticum NNNNGNA  [104]

CdCas9 Corynebacterium diphtheriae NNRHHHY  [105]
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Engineered Cas9 variants with expanded targeting scope
As PAM recognition is a key limitation for the target-
ing scope of Cas9 proteins, many efforts have been made 
to engineer them to relax the limitation. As mentioned 
above, structural investigations have revealed that PI 
domain is responsible for sequence-specific binding 
of PAM [84, 112] (Fig.  1a, b, c). Under the guidance of 
structural information, several Cas9 variants had been 
designed harboring mutations within PI domain to 
change the PAM preference. Most efforts have been put 
on SpCas9, leading to the discovery of a panel of SpCas9 
PI variant, including Cas9-VQR [91], Cas9-EQR [91], and 
Cas9-VRER [91], Cas9-NG [93], Non-G SpCas9s [113], 
SpG and SpRY [94]. Among these variants, Cas9-VQR, 
Cas9-EQR, and Cas9-VRER changed the PAM specificity 
from NGG to NGA, NGAG, or NGCG, respectively [91]. 
And Non-G SpCas9s recognize NRNH PAMs (where R is 
A or G and H is A, C or T) [113]. Other variants, includ-
ing Cas9-NG, SpG and SpRY, relaxed the PAM restric-
tion from NGG to NGN (Cas9-NG and SpG) and NRN 
or NYN (SpRY, NRN > NYN) respectively [93, 94]. Inter-
estingly, another variant, xCas9, also significantly relaxed 
the PAM restriction by recognizing NGN, NNG, GAA, 
GAT, and CAA PAMs. However, the majority of mutated 
amino acids of xCas9 did not locate in the PI domain (six 

out of seven), suggesting that other structures beyond 
PI domain also contribute to PAM recognition. Inter-
estingly, coupling non-PI domain mutations of xCas9 
to PI domains of Cas9-NG or Non-G Cas9 variants also 
relaxed the PAM restriction of the latter. Collectively, 
these variants significantly expanded the targeting scope 
of Cas9 systems [92].

Genome editing produced by wild‑type Cas9
As mentioned above, in eukaryotic cells, DSBs tend to 
be repaired by error-prone NHEJ pathway, leading to 
the formation of uncontrolled indels [10] (Fig.  2). Such 
feature can be utilized to disrupt functional elements of 
the genome to manipulate gene functions. For example, 
introducing indels into gene coding regions can change 
the codon or even shift the reading frame, thereby dis-
rupting gene function [39, 43, 114, 115]. Indels can also 
be introduced to the boundary regions between exons 
and introns to interrupt RNA splicing or to the enhanc-
ers or suppressors to change the expression pattern of 
specific genes [6, 116, 117]. In addition, when supplied 
with donor DNAs harboring sequences homologous to 
each end of DSBs, they can also be repaired by homol-
ogy dependent mechanisms, such as homology directed 
repair (HDR) pathway [44, 118–121] or MMEJ [122–126] 

Fig. 1  Structure of spCas9/sgRNA/DNA complex. a Overall structure of spCas9/sgRNA/DNA complex, with PI, HNH and RuvC domains shown in 
yellow, green and blue respectively. b and c Detailed structure showing the interaction between PI domain and PAM (b), with key amino acids 
highlighted in pink (c). d Detailed structure showing the HNH domain, RuvC domain and target DNA, with key amino acids (D10 and H840) shown 
in sphere. Mutation of Asparticacid 10 (D10) or Histidine 10 (H840) to Alanine (A) silences the RuvC or the HNH domain respectively, resulting in 
TS nickase or NTS nickase respectively. Mutation of both amino acids silences both domains, resulting in catalytic dead Cas9. e Detailed structure 
showing the key amino acids interaction with target strand in HNH domain. f Detailed structure showing the key amino acids interaction with 
target strand in RuvC domain
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(Fig. 2). However, the efficiency of HDR pathway is much 
lower than that of NHEJ [10]. Because NHEJ is very active 
in the whole cell cycle and can be observed in various cell 
types, including cells in division and cells after mitosis. In 
contrast, HDR mainly plays a role in the S/G2 stage, so 
it is mainly limited to actively dividing cells, limiting the 
treatment that requires precise genomic modification of 
mitotic cells [127, 128].

Base editor
Besides functioning as nuclease, Cas9 proteins can also 
be rewired to function as DNA binding platforms to 
recruit other functional modulators. By linking with 
modulators such as transcription regulators and histone 
or DNA modifiers, Cas9s can be engineered to regulate 
transcription, histone and DNA modifications [11, 12, 
21]. Among these derivates, base editors, in which dead 
or nickase Cas9 proteins were fused to cytosine (C) 
or adenine (A) deaminase (CBE or ABE), are the most 
interesting ones in that they can efficiently and precisely 
convert one target DNA base pair into another [22, 30] 
(Fig. 2).

As above mentioned, Cas9 proteins bind to their target 
DNAs to form an “R-Loop” structure, in which the NTS 
was partially detached and exposed outside the Cas9 
complex [88]. The exposed NTS is a favorite target for 
C or A deaminase that prefers single-strand DNA [129]. 

Usually, the deaminases are fused to the N-terminus of 
Cas9 protein, thereby deaminating Cs or As that locate in 
a small window of NTS, called editing window [22, 30]. 
Typically, SpCas9 derived N-terminal base editors func-
tion in a window ranging from ~ 4 to ~ 8 bases, count-
ing NGG PAM as 21–23. These Cs or As in the window 
were deaminated into urines (Us) or inosines (Is), which 
in turn are transformed into thymines (Ts) or guanines 
(Gs) by endogenous DNA repair or replication mecha-
nisms [22, 30]. Reserving the cleavage activity of Cas9 
for TS significantly increased the transformation effi-
ciency, which is possibly due to the nick within TS induce 
endogenous mechanisms to fix the lesion according to 
the unbroken NTS [130].

Editing window of base editor
The width and position of the editing window varied 
with the types and locations of deaminases. For exam-
ple, deaminases with decreased enzyme activity tend to 
narrow the editing window [131]. And inlaying or teth-
ering deaminases to different locations of the Cas9 com-
plex shift the position of the editing window [132–136]. 
By contrast, tethering multiple copies of deaminases 
to base editor enlarges the editing window [137]. By 
adjusting these parameters, now we have a large variety 
of editors with different editing windows [138–141]. In 
addition, reducing the length of sgRNA spacer has also 

Fig. 2  Editing processes outcomes of Cas9 nuclease, base editor and prime editor
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been shown to narrow the editing windows in some cases 
[142–144]. It is also noteworthy that when equipped with 
both deaminases, base editors can achieve simultaneous 
conversion of both cytosine and adenine, which is par-
ticularly useful for saturated mutation screening [132, 
145–147].

Off‑target editing of base editor
Although base editors are efficient in on-target edit-
ing, they also produce undesired off-target editing on 
both DNA and RNA molecules [148–152]. Basically, the 
off-target effects of base editors can be classified into 
sequence (or Cas9) dependent [153–157] and independ-
ent [150, 152] effects. Sequence dependent off-target 
editing mainly occurred at the genomic DNAs, including 
Cas9 off-target genomic loci or the on-target locus but 
outside the editing window [148, 158]. Sequence inde-
pendent off-target editing took place in both DNA and 
RNA molecules [149, 150, 152]. Since the deaminases 
prefer single strand nucleic acids, RNAs and occasion-
ally occurred single strand DNAs can be their substrates 
[149]. These off-target effects are suspected to lead to 
pathologic conditions, raising the concern of safety 
issue. To resolve this issue, many efforts have been put 
to reduce the off-target base editing. Firstly, deaminases 
with reduced enzyme activity have been shown to sig-
nificantly decrease the off-target efficiency while has 
little effects on the on-target efficiency [134, 148, 159, 
160]. Secondly, inlaying deaminases into Cas9 protein 
specifically reduced the sequence independent RNA and 
DNA off-target editing [136, 161]. Moreover, splitting 
the deaminases to timely control their activity also helps 
reduce off-target editing, which is particularly useful in 
long-term delivery of base editors, such as AAV delivery 
[162, 163].

C to G base editing
It is noteworthy that base editors, especially CBEs, fre-
quently produce impure editing outcomes, including 
indels and C to R conversions [30] (R = A or G). This is 
possibly because U within DNA molecules tend to be 
removed by endogenous uracil-N-glycosylase (UNG), 
since impure products were nearly absent in UNG null 
cells [23]. UNG cleaves the N-glycosidic bond of uracil 
and leaves an abasic site (also known as apurinic/apy-
rimidinic site, AP site) [164–170]. The resulting abasic 
site can be recognized by a base excision repair enzyme, 
AP lyase, which converts abasic site to ssDNA break [167, 
171–177]. Together with the nick within the target strand 
that is cleaved by Cas9 nickase, they were likely recog-
nized as DSB by DNA repair machines, leading to the 
formation of indels. Alternatively, the abasic site is not 
transformed into nick, enabling NTS to serve as template 

to guide the repair of the TS. The repair of the TS might 
involve a trans-lesion synthesis pathway that uses a spe-
cialized DNA polymerase to bypass the lesion by adding 
a special nucleotide opposite to the abasic site [164, 177–
179]. It is likely that the repaired TS may in turn serve 
as a template to guide the repair of NTS to fix the abasic 
site. Thereby, the trans-lesion synthesis pathway intro-
duces an R base to substitute the deaminated C. The level 
and the type of C to R conversion are likely dependent 
on the species and sequence context where the deami-
nated C locates [180]. In mammalian cells, U s tends to 
be converted to Gs while in bacteria they tends to be con-
verted to As [181–185]. Supplementing additional copies 
to CBE may further inhibit the endogenous UNG activ-
ity, thereby increasing the purity of the editing products 
by reducing the frequencies of C to R conversion or indel 
formation [23, 186, 187]. Unlike CBEs, ABEs rarely create 
impure editing outcomes, which is possibly due to that 
the activity of endogenous pathways dealing with inosine 
lesions is rather low [188]. Although ABEs also produce 
ssDNA breaks in the TS and ssDNA breaks themselves 
induce the formation of indel, the level of indels in 
ABE products are generally low (in most cases, < 1%) 
[189–191].

Prime editor
Base editing can efficiently install base transition muta-
tions, i.e. the substitutions in-between purines or pyrimi-
dines (from A to G, G to A, C to T or T to C), making it 
possible to correct human pathogenic diseases caused by 
such mutations [22, 30]. However, there were a large por-
tion of genetic lesions caused by other types of mutation, 
such as base transversion, small fragment insertion and 
deletion etc., all of which were beyond the scope of base 
editing tools [192].

To fill above gaps and achieve more efficient, precise 
and flexible DNA changes, David Liu and co-workers pro-
posed a new “search-and-replace” genome editing tech-
nology, called prime editing system [27]. In this system, 
Cas9 harboring H840A mutation was coupled with an 
engineered reverse transcriptase, M-MLV, to form prime 
editor (PE) that can achieve all 12 types point mutations, 
small fragment insertion and deletion (Fig. 2). Upon the 
guidance of prime editing guide RNA (pegRNA), PE 
fusion protein bind to the targeted DNA, nicked the NTS 
and then extend the 3’ end of NTS according to the infor-
mation encoded by pegRNA [27]. Through these step-
wise actions, PE incorporated new DNA sequences into 
the nicked NTS, which were then passed to its comple-
mentary strand, possibly through DNA repair or replica-
tion mechanisms. Thereby, PE accomplished the rewrite 
of the genetic information within the target site. The 
most beautiful part of PE system is the design of pegRNA 
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that was composed of a sgRNA and a 3’end extended tail 
[27]. The 3’ tail of pegRNA contained two parts. One part 
was designed to complement to the 3’end of nick NTS, 
called primer binding site (PBS) and the other one encod-
ing the desired edit served as reverse transcriptional tem-
plate (RT-template). Once the NTS was nicked by nCas9 
H840A, the 5’ portion of NTS was recognized by PBS to 
form a DNA-RNA duplex, which served as a good sub-
strate for reverse transcriptase. The 5’ portion of NTS 
acting as a primer was extended by reverse transcriptase 
according the guidance of RT-template (Fig. 2).

Editing efficiency improvement of prime editor
Although PE system can install almost all types of DNA 
changes, it is overall less efficient than BE or Cas9 nucle-
ase, which may in part due to that PE system required 
stepwise and concerted actions of multiple modulators 
[27]. Optimizing the parameters of nearly all steps is nec-
essary to maximize the efficiency of PE. As mentioned 
above, the starting process of PE is to nick the NTS of the 
target site and bind its end with PBS. Hence, parameters 
enhancing this process may include the activity of Cas9 
nickase and the thermodynamics of the PBS. As a mat-
ter of fact, David Liu’s lab has observed that mutations 
enhancing the activity of Cas9 nuclease also enhance 
the efficiency of PE. Caixia Gao’s lab observed that 
the length and sequence of PBS has a significant effect 
on the efficiency of PE, which is possibly related to the 
annealing temperature of PBS [193]. Moreover, the 3’ 
end of pegRNA, mainly the PBS, was thought to tend to 
be degraded in cells, resulting in the failure of pegRNA 
to prime the editing [194]. Interestingly, another line of 
evidence showed that the presence of PBS disrupted the 
structure of pegRNA by binding to its spacer sequence, 
resulting in the loss-of-function of pegRNA [195]. To 
sum up, both studies found that coupling an RNA motif 
harboring stem-loop structure improved the efficiency 
of PE. This finding was soon confirmed by other stud-
ies showing that coupling complicated structure to the 
3’ end of pegRNA helped increasing the efficiency of PE 
[196, 197]. Enhancing the activity of RT provide another 
way to improve PE [198, 199]. Wen Xue’s lab showed that 
the removal of RNase H domain from RT improved PE 
[199]. Besides strengthening the elements of PE system, 
optimizing the design of PE with paired pegRNAs also 
improve the efficiency of PE, especially in cases of mul-
tiplex base conversion, large fragment deletion and inser-
tion [28, 200–203]. Interestingly, paired pegRNA strategy 
also significantly decreased the frequency of undesired 
indels [28, 203]. In addition, modulating the endog-
enous mechanisms that are involved in each process of 
PE may affect its efficiency. The first evidence of such 
mechanism came from David Liu’s and Joanna Loizou’s 

labs [37, 38]. They independently demonstrated that the 
inhibition of mismatch repair pathway enhanced the effi-
ciency and accuracy of PE. Importantly, David Liu’s lab 
discovered a set of enhanced prime editors by coupling 
dominant negative MLH1 to PE, which is a key player in 
the recognition of small insertion/deletion loops during 
the process of MMR [37]. In the evolved version of prime 
editors, called PE4 or PE5, dominant negative MLH1 was 
co-expressed with but not physically attached to PE2, 
resulting in the global inhibition of MLH1 activity and 
improved PE efficiency and decreased indel frequency 
[37]. Hopefully, in the near future we will see further 
improvements in the efficiency and precise of PE system.

CRISPR‑related transposon and recombination systems
CRISPR‑related transposon system
Targeted insertion of large DNA fragments into desired 
genomic loci holds great potential for the treatment of 
genetic diseases. Although such kind of insertions can 
be achieved by wild-type Cas9 mediated HDR or micro 
homologous recombination (MMEJ), the efficiencies 
are generally low and are limited by the cell type to be 
edited [204, 205]. Prime editor is also capable of inserting 
large DNA fragments into desired loci, but its efficiency 
is even lower [28, 206, 207]. Therefore, efficient targeted 
insertion of large DNA fragments into genome remains 
challenging.

Transposition is a special type of genetic recombina-
tion, which transfers specific genetic factors from one 
location to another by using the interaction of transpo-
son elements and transposase enzymes [208]. In 2017, 
Peters et  al. found a novel kind of CRISPR Cas system 
encoded by a Tn7 like transposon, which consists of sev-
eral key proteins homologous to the core elements of Tn7 
transposons, including two isomerase (TnsA and TnsB) 
and one regulatory protein (TnsC), and a set of CRSIPR 
system [209]. This system can process and bind crRNA 
but cannot cut target DNA. Instead, it can achieve gene 
transposition at specific sites [209]. In 2019, Klompe et al. 
used a three-plasmid system to express CRISPR trans-
posase derived from Vibrio cholerae in Escherichia coli 
for the directional integration of large pieces of DNA 
[210]. In 2020, to simplify the process and improve the 
integration efficiency, the same researchers effectively 
combined key elements to construct INTEGRATE sin-
gle particle system pSPIN, which uses a single promoter 
to simultaneously drive guide RNA and multi cis–trans 
mRNA to express key proteins and guide RNA [211]. It 
is worth noting that pSpin-mediated DNA transposition 
has no directionality, and the rotator can be inserted in 
both positive and negative directions. At the same time 
in 2019, Strecker, et al. have developed a similar CRISPR 
transposase system. Researchers have developed and 
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used the CRISPR-related transposase (CAST) of the 
cyanobacteria Scytonema hofmanni, which is com-
posed of Tn7-like transposase subunit and V-K CRISPR 
(Cas12k). CAST includes two variants: Scytonema hof-
manni (ShCAST) and Anabaena cylindrica (AcCAST). 
The insertion of ShCAST mainly occurs between 60 and 
66 bp 3 ’ of PAM, while the insertion of AcCAST cargo 
into 49–56  bp 3 ′ of PAM. The gene insertion medi-
ated by ShCAST is directional [212]. In the study, after 
the author replaced Cas12k with Cas9, no displacement 
was observed, indicating that Cas12k may have a spe-
cific role with other CAST components to facilitate the 
occurrence of transposition [212]. Since then, Chen et al. 
have developed a new synthesis system, Cas Transposon 
(CasTn), which combines the DNA integration capability 
of Himar1 transposase and the programmable genome 
targeting capability of dCas9 to achieve targeted gene 
transposition. The author has proved this in cell-free 
in  vitro reactions and E.  coli plasmid detection. With 
the further improvement of the system, CasTn may play 
a role in various organisms, because the Himar1-dCas9 
protein does not need host factors to play a role [213]. 
Noteworthy, although all the above transposon systems 
have good gene integration ability in E. coli, there is lack-
ing evidence demonstrating that these systems can also 
function efficiently in eukaryotic cells (Fig. 3a).

CRISPR‑related recombination systems
Site-specific recombinase directly catalyzes the cleav-
age, chain exchange, and coordination of two double-
stranded DNA sequences, to cause gene recombination 
phenomena such as insertion, deletion, or inversion of 
the target sequence [214–217]. Unlike DNA nuclease, the 
direct catalysis of recombinase usually does not trigger 
the error-prone DNA repair process, leading to the for-
mation of indel. It does not rely on the endogenous cell 
DNA repair mechanism, and the recombinant product 
is relatively simple [214, 215]. Therefore, recombinant 
enzyme-mediated genome modification can produce 
more accurate and predictable genome changes than 
ribozyme-based genome editing and may be more effi-
cient in non-dividing cells [216, 217]. Tyrosine and serine 
recombinases such as Cre, Flp, and Φ C31 integrase has 
been widely used to catalyze the recombination of exog-
enous DNA into model organisms [217, 218]. However, 
the use of these enzymes is limited by their inherent, 
nonprogrammable DNA sequence specificity. Chaikind 
et al. fused dCas9 into the catalytic domain of Gin recom-
binase β and the resulting recCas9 system. This “recCas9” 
system shows moderate efficiency on the plasmid matrix 
and can mediate a large number of genome deletions in 
mammalian cells with low efficiency [219] (Fig. 3b).

Therapeutic applications of Cas9 and its derivates
The versatility of Cas9 nuclease and its derivates has 
found its applications ranging from basic science to the 
clinic (Table  2). As discussed above, the versatility of 
Cas9 system now enabled virtually all types of genome 
editing, including targeted undesired indels formations, 
base substitutions, designed fragment deletion or inser-
tions. Such editing strategies can be harnessed to disrupt 
or restore gene function, regulate gene expression and 
insert therapeutic DNA fragment, which can be used to 
treat a diverse set of disorders, including genetic diseases, 
metabolic diseases, cancer and infectious diseases etc. 
(Fig. 4).

Cas9 nucleases mediated gene editing
Cas9 nucleases mediated gene disruption
Since DSBs induced by Cas9s or other nucleases are 
mainly repaired by the mammalian cells to undesired 
indels, it is straightforward to harness the nuclease activ-
ity of Cas9s for the purpose of gene disruption (Table 3). 
Targeting gene coding regions, especially those con-
taining conserve functional protein domains, to intro-
duce frame-shifting indels or mis-sense mutation is a 
frequently used strategy in designing Cas9 based ther-
apy. For example, 1. vascular endothelial growth fac-
tor receptor 2 (VEGFR2) is an important therapeutic 
target for angiogenesis-related disorders such as prolif-
erative diabetic retinopathy and neovascular age-related 
macular degeneration [220]. Disruption of this recep-
tor by AAV mediated retina expression of Cas9 system 
efficient abrogates angiogenesis in the mouse models of 
oxygen-induced retinopathy and laser-induced choroid 
neovascularization [221]. Another example came from 
transthyretin amyloidosis, a life-threatening disease 
stemmed from progressive accumulation of misfolded 
transthyretin (TTR) protein that mainly produced by the 
liver. LNP mediated expression of Cas9 system against 
liver TTR gene efficiently reduced the concentration of 
TTR protein in serum in both animal model and human 
patient [222]. In addition, targeting liver pcsk9 by AAV or 
LLN mediated expression of Cas9 systems significantly 
reduced plasma cholesterol levels in mice, preventing the 
genesis or the development of cardiovascular disease [39, 
223].

Indel formation can also be harnessed to disrupt the 
regulator elements of genes, such as splicing donors or 
acceptors, transcription enhancers or suppressors and 
so on. BCL11a is an attractive target since its loss-of-
function releases the repression of fetal γ-globin, which 
in turn can rescue the phenotype of beta-globin mutation 
related anemia [252]. Targeting the enhancer element 
of BCL11a or its binding sites within γ-globin locus are 
frequently used strategy to reactivate the expression of 
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Fig. 3  CRISPR-associated transposon and recombination systems. a Cas transposases include both Cas proteins and transposase-associated 
components. Cargo DNA is identified by its left end (LE) and right end (RE) sequences and bound by transposase proteins (Tns). Guide RNA binding 
to Cas nuclease brings transposase to the specific site, and transposase integrates the DNA cargo into the target site. The target site is duplicated 
and flanks the integrated LE–cargo–RE sequence. Each Cas-transposase complex has a specific requirement for the spacer length of guide RNA and 
a unique position preference of integration site. b reassembly of guide RNA-programmed recCas9 at the target sites



Page 10 of 25Zhou and Yao ﻿Molecular Biomedicine            (2023) 4:10 

Ta
bl

e 
2 

C
lin

ic
al

 C
RI

SP
R/

Ca
s9

 th
er

ap
y 

in
 m

al
ig

na
nt

, m
et

ab
ol

ic
 a

nd
 in

he
rit

ed
 d

is
ea

se
s

Ed
ito

r
D

is
ea

se
Ta

rg
et

 g
en

e
Ed

iti
ng

 o
ut

co
m

e
In

te
rv

en
tio

ns
Th

er
ap

eu
tic

 p
ri

nc
ip

le
Re

fe
re

nc
es

/id
en

tifi
er

Ph
as

e/
st

at
us

C
RI

SP
R/

Ca
s9

Ly
m

ph
om

a
PD

-1
 /

 T
C

R​
Ta

rg
et

ed
 g

en
e 

di
sr

up
tio

n 
an

d 
in

se
rt

io
n

En
gi

ne
er

ed
 a

ut
ol

og
ou

s 
an

ti-
m

es
ot

he
lin

 C
A

R-
T

G
en

e 
di

sr
up

tio
n 

an
d 

in
se

r-
tio

n
N

C
T0

35
45

81
5

Ph
as

e 
1

N
C

T0
46

37
76

3
Ph

as
e 

1

TR
A

C
, β

2M
, a

nd
 C

D
70

Ta
rg

et
ed

 g
en

e 
di

sr
up

tio
n 

an
d 

in
se

rt
io

n
En

gi
ne

er
ed

 a
llo

ge
ne

ic
 a

nt
i-

cd
70

 C
A

R-
T

G
en

e 
di

sr
up

tio
n 

an
d 

in
se

r-
tio

n
N

C
T0

45
02

44
6

Ph
as

e 
1

H
PK

1
Ta

rg
et

ed
 g

en
e 

di
sr

up
tio

n 
an

d 
in

se
rt

io
n

En
gi

ne
er

ed
 a

ut
ol

og
ou

s 
an

ti-
C

D
19

 C
A

R-
T

G
en

e 
di

sr
up

tio
n 

an
d 

in
se

r-
tio

n
N

C
T0

40
37

56
6

Ph
as

e 
1

Le
uk

em
ia

 a
nd

 ly
m

ph
om

a
B2

M
, C

IIT
A

 a
nd

 T
RA

C
​

G
en

e 
di

sr
up

tio
n 

an
d 

in
se

r-
tio

n
En

gi
ne

er
ed

 A
llo

ge
ne

ic
 A

nt
i-

C
D

19
 C

A
R-

T
G

en
e 

di
sr

up
tio

n 
an

d 
in

se
r-

tio
n

N
C

T0
50

37
66

9
Ph

as
e 

1

Ca
nc

er
C

IS
H

Ta
rg

et
ed

 g
en

e 
di

sr
up

tio
n

En
gi

ne
er

ed
 T

um
or

-In
fil

tr
at

-
in

g 
Ly

m
ph

oc
yt

es
G

en
e 

di
sr

up
tio

n
N

C
T0

44
26

66
9

Ph
as

e 
1/

Ph
as

e 
2

M
ye

lo
m

a
TR

A
C

, T
RB

C
 a

nd
 P

D
-1

Ta
rg

et
ed

 g
en

e 
di

sr
up

tio
n 

an
d 

in
se

rt
io

n
En

gi
ne

er
ed

 a
ut

ol
og

ou
s 

an
ti-

N
Y-

ES
O

-1
 T

C
R-

T
G

en
e 

di
sr

up
tio

n 
an

d 
in

se
r-

tio
n

N
C

T0
33

99
44

8
Ph

as
e 

1

M
ul

tip
le

 M
ye

lo
m

a
TR

A
C

 a
nd

 B
2M

Ta
rg

et
ed

 g
en

e 
di

sr
up

tio
n 

an
d 

in
se

rt
io

n
En

gi
ne

er
ed

 A
llo

ge
ne

ic
 A

nt
i-

BC
M

A
 C

A
R-

T
G

en
e 

di
sr

up
tio

n 
an

d 
in

se
r-

tio
n

N
C

T0
49

25
20

6
Ph

as
e 

1

N
C

T0
31

66
87

8
Ph

as
e 

1/
Ph

as
e 

2

En
gi

ne
er

ed
 A

llo
ge

ne
ic

 A
nt

i-
cd

19
 C

A
R-

T
G

en
e 

di
sr

up
tio

n 
an

d 
in

se
r-

tio
n

N
C

T0
42

44
65

6
Ph

as
e 

1

Re
na

l C
el

l C
ar

ci
no

m
a

TR
A

C
 a

nd
 B

2M
Ta

rg
et

ed
 g

en
e 

di
sr

up
tio

n 
an

d 
in

se
rt

io
n

En
gi

ne
er

ed
 A

llo
ge

ne
ic

 A
nt

i-
cd

70
 C

A
R-

T
G

en
e 

di
sr

up
tio

n 
an

d 
in

se
r-

tio
n

N
C

T0
44

38
08

3
Ph

as
e 

1

B 
A

cu
te

 L
ym

ph
ob

la
st

ic
 

Le
uk

em
ia

C
D

52
 a

nd
 T

RA
C

​
Ta

rg
et

ed
 g

en
e 

di
sr

up
tio

n 
an

d 
in

se
rt

io
n

En
gi

ne
er

ed
 A

llo
ge

ne
ic

 A
nt

i-
cd

19
 C

A
R-

T
G

en
e 

di
sr

up
tio

n 
an

d 
in

se
r-

tio
n

N
C

T0
45

57
43

6
Ph

as
e 

1

So
lid

 T
um

or
PD

-1
Ta

rg
et

ed
 g

en
e 

di
sr

up
tio

n
In

fu
si

on
s 

of
 C

RI
SP

R–
Ca

s9
 

tr
ea

te
d 

cy
to

to
xi

c 
T 

ly
m

ph
o-

cy
te

s 
(e

x 
vi

vo
)

G
en

e 
di

sr
up

tio
n

N
C

T0
37

47
96

5
Ph

as
e 

1

G
as

tr
ic

 c
ar

ci
no

m
a,

 n
as

o-
ph

ar
yn

ge
al

 c
ar

ci
no

m
a,

 
T 

ce
ll 

ly
m

ph
om

a,
 a

du
lt 

H
od

gk
in

 ly
m

ph
om

a,
 d

iff
us

e 
la

rg
e 

B 
ce

ll 
ly

m
ph

om
a

PD
-1

Ta
rg

et
ed

 g
en

e 
di

sr
up

tio
n

In
fu

si
on

s 
of

 C
RI

SP
R–

Ca
s9

 
tr

ea
te

d 
cy

to
to

xi
c 

T 
ly

m
ph

o-
cy

te
s 

(e
x 

vi
vo

)

G
en

e 
di

sr
up

tio
n

N
C

T0
30

44
74

3
Ph

as
e 

1/
Ph

as
e 

2

A
dv

an
ce

d 
H

ep
at

oc
el

lu
la

r 
Ca

rc
in

om
a

PD
-1

Ta
rg

et
ed

 g
en

e 
di

sr
up

tio
n

In
fu

si
on

s 
of

 C
RI

SP
R–

Ca
s9

 
tr

ea
te

d 
cy

to
to

xi
c 

T 
ly

m
ph

o-
cy

te
s 

(e
x 

vi
vo

)

G
en

e 
di

sr
up

tio
n

N
C

T0
44

17
76

4
Ph

as
e 

1

M
et

as
ta

tic
 n

on
-s

m
al

l c
el

l 
lu

ng
 c

an
ce

r
PD

-1
Ta

rg
et

ed
 g

en
e 

di
sr

up
tio

n
In

fu
si

on
s 

of
 C

RI
SP

R–
Ca

s9
-

tr
ea

te
d 

T 
ce

lls
 (e

x 
vi

vo
)

G
en

e 
di

sr
up

tio
n

N
C

T0
27

93
85

6
Ph

as
e 

1

Es
op

ha
ge

al
 c

an
ce

r
PD

-1
Ta

rg
et

ed
 g

en
e 

di
sr

up
tio

n
In

fu
si

on
s 

of
 C

RI
SP

R–
Ca

s9
-

tr
ea

te
d 

T 
ce

lls
 (e

x 
vi

vo
)

G
en

e 
di

sr
up

tio
n

N
C

T0
30

81
71

5
N

ot
 A

pp
lic

ab
le



Page 11 of 25Zhou and Yao ﻿Molecular Biomedicine            (2023) 4:10 	

Ta
bl

e 
2 

(c
on

tin
ue

d)

Ed
ito

r
D

is
ea

se
Ta

rg
et

 g
en

e
Ed

iti
ng

 o
ut

co
m

e
In

te
rv

en
tio

ns
Th

er
ap

eu
tic

 p
ri

nc
ip

le
Re

fe
re

nc
es

/id
en

tifi
er

Ph
as

e/
st

at
us

B 
Ce

ll 
Le

uk
em

ia
C

D
52

 a
nd

 T
RA

C
​

Ta
rg

et
ed

 g
en

e 
di

sr
up

tio
n 

an
d 

in
se

rt
io

n
En

gi
ne

er
ed

 A
llo

ge
ne

ic
 a

nt
i-

C
D

19
 a

nd
 C

D
20

 o
r C

D
22

 
C

A
R-

T

G
en

e 
di

sr
up

tio
n 

an
d 

in
se

r-
tio

n
N

C
T0

33
98

96
7

Ph
as

e 
1/

Ph
as

e 
2

T 
ce

ll 
m

al
ig

na
nc

ie
s

C
D

7
Ta

rg
et

ed
 g

en
e 

di
sr

up
tio

n 
an

d 
in

se
rt

io
n

En
gi

ne
er

ed
 A

llo
ge

ne
ic

 a
nt

i-
C

D
7 

C
A

R-
T

G
en

e 
di

sr
up

tio
n 

an
d 

in
se

r-
tio

n
N

C
T0

36
90

01
1

Ph
as

e 
1

B-
ce

ll 
M

al
ig

na
nc

y
TR

A
C

 a
nd

 B
2M

Ta
rg

et
ed

 g
en

e 
di

sr
up

tio
n 

an
d 

in
se

rt
io

n
In

fu
si

on
s 

of
 C

RI
SP

R–
Ca

s9
 

tr
ea

te
d 

C
D

19
-d

ire
ct

ed
 T

 
ce

lls
 (C

TX
11

0)
 (e

x 
vi

vo
)

G
en

e 
di

sr
up

tio
n 

an
d 

in
se

r-
tio

n
N

C
T0

40
35

43
4

Ph
as

e 
1

Si
ck

le
 C

el
l D

is
ea

se
β-

gl
ob

in
au

to
lo

go
us

 h
em

at
op

oi
et

ic
 

st
em

 p
ro

ge
ni

to
r c

el
ls

N
C

T0
47

74
53

6
Ph

as
e 

1/
Ph

as
e 

2

β-
Th

al
as

se
m

ia
BC

L1
1A

 e
nh

an
ce

r
Ta

rg
et

ed
 e

nh
an

ce
r d

is
ru

p-
tio

n
En

gi
ne

er
ed

 A
ut

ol
og

ou
s 

C
D

34
 +

 H
em

at
op

oi
et

ic
 

St
em

 a
nd

 P
ro

ge
ni

to
r C

el
ls

Re
gu

al
tio

n 
of

 g
en

e 
ex

pr
es

-
si

on
N

C
T0

36
55

67
8

Ph
as

e 
2/

Ph
as

e 
3

N
C

T0
49

25
20

6
Ph

as
e 

1

N
C

T0
42

08
52

9
N

ot
 A

pp
lic

ab
le

N
C

T0
37

45
28

7
Ph

as
e 

2/
Ph

as
e 

3

N
C

T0
54

77
56

3
Ph

as
e 

3

H
BB

M
ut

at
io

n 
co

rr
ec

tio
n

En
gi

ne
er

ed
 A

ut
ol

og
ou

s 
H

em
at

op
oi

et
ic

 S
te

m
 a

nd
 

Pr
og

en
ito

r C
el

ls

Re
st

or
e 

ge
ne

 fu
nc

tio
n

N
C

T0
37

28
32

2
Ea

rly
 P

ha
se

 1

Vi
ru

s 
in

fe
ct

io
n 

(H
SV

-1
)

H
SV

-1
D

N
A

 d
is

ru
pt

io
n

co
rn

ea
l i

nj
ec

tio
n 

of
 C

RI
SP

R/
Ca

s9
 m

RN
A

 ta
rg

et
in

g 
H

SV
-1

Vi
ru

s 
ge

no
m

e 
di

sr
up

tio
n

N
C

T0
45

60
79

0
N

ot
 A

pp
lic

ab
le

Vi
ru

s 
in

fe
ct

io
n 

(C
O

VI
D

-1
9)

PD
C

D
1 

an
d 

A
C

E2
Ta

rg
et

ed
 g

en
e 

di
sr

up
tio

n
En

gi
ne

er
ed

 T
 ly

m
ph

oc
yt

es
G

en
e 

di
sr

up
tio

n
N

C
T0

49
90

55
7

Ph
as

e 
1/

Ph
as

e 
2

H
IV

-1
-in

fe
ct

io
n

CC
R5

Ta
rg

et
ed

 g
en

e 
di

sr
up

tio
n

En
gi

ne
er

ed
 A

llo
ge

ne
ic

 
C

D
34

 +
 H

em
at

op
oi

et
ic

 
St

em
 a

nd
 P

ro
ge

ni
to

r C
el

ls

G
en

e 
di

sr
up

tio
n

N
C

T0
31

64
13

5
N

ot
 A

pp
lic

ab
le

H
PV

-r
el

at
ed

 C
er

vi
ca

l 
In

tr
ae

pi
th

el
ia

l N
eo

pl
as

ia
 I

E6
/E

7
Ta

rg
et

ed
 g

en
e 

di
sr

up
tio

n
G

el
 w

ith
 T

al
en

 o
r C

as
9 

pl
as

m
id

s
Vi

ru
s 

ge
no

m
e 

di
sr

up
tio

n
N

C
T0

30
57

91
2

Ph
as

e 
1

Le
be

r c
on

ge
ni

ta
l a

m
au

ro
si

s 
ty

pe
 1

0 
(L

C
A

 1
0)

C
EP

29
0

Ex
on

 s
ki

pp
in

g
Su

br
et

in
al

 in
je

ct
io

n 
of

 A
G

N
-

15
15

87
 (E

D
IT

-1
01

) (
in

 v
iv

o)
G

en
e 

co
rr

ec
tio

n
N

C
T0

38
72

47
9

Ph
as

e 
1/

Ph
as

e 
2

Ba
se

 e
di

to
r

he
te

ro
zy

go
us

 fa
m

ili
al

 
hy

pe
rc

ho
le

st
er

ol
em

ia
 

(H
eF

H
) /

 a
th

er
os

cl
er

ot
ic

 c
ar

-
di

ov
as

cu
la

r d
is

ea
se

 (A
SC

VD
) 

/ 
un

co
nt

ro
lle

d 
hy

pe
rc

ho
le

s-
te

ro
le

m
ia

pc
sk

9
Ta

rg
et

ed
 g

en
e 

di
sr

up
tio

n
LN

P-
Ba

se
 e

di
to

r m
RN

A
G

en
e 

di
sr

up
tio

n
N

C
T0

53
98

02
9

Ph
as

e 
1

β-
th

al
as

se
m

ia
 (T

D
T)

 /
si

ck
le

 
ce

ll 
di

se
as

e 
(S

C
D

)
BC

L1
1a

En
ha

nc
er

 d
is

ru
pt

io
n

Ba
se

 e
di

te
d 

C
D

34
 +

 h
em

at
-

op
oi

et
ic

 s
te

m
Re

gu
la

tio
n 

of
 g

en
e 

ex
pr

es
-

si
on

N
C

T0
54

56
88

0
Ph

as
e 

1/
Ph

as
e 

2



Page 12 of 25Zhou and Yao ﻿Molecular Biomedicine            (2023) 4:10 

the latter [224, 252–254]. Delivery of CRISPR/Cas9 sys-
tem targeting bcl11a enhancer into CD34 + hematopoi-
etic stem cells via in vitro electroporation is an effective 
way to reactivate the expression of γ-globin in red blood 
cells [50, 224]. Recently, such strategy has achieved posi-
tive outcomes in human patients [50, 224]. The infusion 
of edited HSC increased the level of fetal globin, reduced 
the requirement of blood transfusion in in β-thalassemia 
and the incidence of vaso-occlusive episodes in sickle cell 
disease [50, 224].

Besides producing undesired indels, Cas9 nuclease 
activity can also be rewired to produce targeted fragment 
deletions by coupling with dual sgRNAs against same 
loci [225]. This feature can be used to delete genomic 
fragment that contains mutations locating in the redun-
dant sequences but impaired the expression of that gene. 
For example, DMD gene that encodes a muscle nutri-
tion protein, dystrophin, contains 24 functional redun-
dant spectrin-like repeats, within which mutations may 
impair RNA splicing or translation (pre-mature codon) 
thereby disrupting the expression of DMD and leading 
to muscle mass loss [255]. Dual sgRNA strategy has been 
demonstrated to be efficient in deleting the mutant exon 
and restore DMD gene expression and function [225]. 
Targeted fragment deletion can also be used to delete 
mis-spliced exons that contained stop codons and were 
resulted from mutations to splicing elements, such as cis 
-regulatory elements, core spliceosomal components and 
trans -acting regulatory factors. For example, Lu et  al. 
used dual sgRNA strategy to deleted mis-spliced exons 
that contained stop codon in humanized ß-globin IVS-2 
mouse model, resulting in the correction of abnormal 

ß-globin RNA splicing and improved β-thalassemia 
related syndrome [256]. A type of Leber congenital amau-
rosis 10 (LCA10), a rare inherited retinal dystrophy, is 
also caused by mis-spliced exon, which is stemmed from 
CEP290 IVS26 mutation [257]. Ruan et  al.used AAV to 
deliver Cas9 and dual sgRNAs into the retinas of CEP290 
IVS26 mutant mice and observed efficient targeted dele-
tion of the mutant fragment. The deletion restored the 
expression of CEP290 protein and significantly rescued 
LCA related phenotypes [258].

Cas9 nucleases mediated gene konck‑in
As mentioned above, DSBs can also be fixed via HDR 
pathway when sufficient repair template donors were 
provided. Therefore, Cas9 nuclease can be used to cor-
rect gene mutations or insert therapeutic fragment into 
the target region (Table 3). For example, Yang et al. devel-
oped a dual AAV system enabling the HDR-mediated 
in  vivo correction of point mutation of OTC gene in 
mouse hepatocytes [44]. In this report, they infused two 
AAVs into neonatal or adult mice, one expressing Cas9 
and the other expressing a guide RNA and the donor 
DNA. The infusion resulted in correction of the mutant 
OTC gene in about 10% hepatocytes and increased sur-
vival rate in neonatal mice but not in adult mice, which 
is possibly due to that HDR activity is limited to S/G2 
phases of proliferating cells (Regulation of homologous 
recombination in eukaryotes. Enrichment of G2/M cell 
cycle phase in human pluripotent stem cells enhances 
HDR-mediated gene repair with customizable endonu-
cleases.) [44]. Richards et  al. also used AAV to deliver 
Cas9-mediated HDR editing system in to PKU mouse 

Fig. 4  Therapeutic Strategies of Cas9 nuclease, base editor and prime editor. Different Cas9-related editing tools (above) can produce different 
types of edits to the genome (middle) and thus can cause different changes to the corresponding genes (below)
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model and corrected the Pah point mutation in liver 
cells, partially restoring PAH activity and significantly 
reducing the level of blood phenylalanine [238]. Zhao 

et al. used similar strategy to correct a non-sense muta-
tion of Ldlr gene in mouse model and observed partial 
rescue of LDLR protein expression and function, which 

Table 3  Representative preclinical CRISPR/Cas9 therapy in inherited disease models

Editor Disease Target gene Editing outcome Delivery Therapeutic principle References

CRISPR/Cas9-knockout Sickle Cell Disease/β-
thalassemia

BCL11a Enhancer disruption Electroporation Gene disruption  [224]

Duchenne muscu-
lardystrophy (DMD)

DMD Exon skipping AAV Restore gene function  [225]

LNP Restore gene function  [226]

NanoMEDIC Restore gene function  [227]

Primary hyperoxaluria 
type I (PH1)

AGXT gene Targeted gene disrup-
tion

AAV Gene disruption  [228]

LDH Targeted gene disrup-
tion

AAV Gene disruption  [229]

Hearing loss Htra2 Targeted gene disrup-
tion

AAV Gene disruption  [230]

Hutchinson-Gilford 
(HGPS)

LMNA(laminA) Targeted gene 
disruption(part)

AAV Gene disruption  [231]

Myotrophic lateral 
sclerosis (ALS)

SOD1(mutant) Targeted gene disrup-
tion

AAV Gene disruption  [232]

Cone-rod dystrophy 
(CORD6)

GUCY2D Targeted gene disrup-
tion

AAV Gene disruption  [233]

Cancer FO CRISPR/Cas9-knockout Adv Gene disruption  [234]

TGFBR2 CRISPR/Cas9-knockout Electroporation Gene disruption  [235]

HIV-1/AIDS HIV-1 Targeted gene disrup-
tion

AAV Gene disruption  [236]

CRISPR/Cas9-HDR Sickle Cell Disease/β-
thalassemia

HBB Mutation correction AAV Restore gene function  [237]

Phenylketonuria (PKU) PAH Mutation correction AAV Restore gene function  [238]

Atherosclerosis LDLR Mutation correction AAV Restore gene function  [239]

Hemophilia B FIX gene knock-in AAV Restore gene function  [240]

OTC deficiency OTC Mutation correction AAV Restore gene function  [44]

Cancer AAVS1 gene knock-in Electroporation Restore gene function  [241]

TRAC​ gene knock-in AAV Restore gene function  [241]

Base editor Sickle Cell Disease/β-
thalassemia

HBG promotor mutation HDadv Restore gene function  [242]

Phenylketonuria (PKU) PAH Mutation correction AAV Restore gene function  [243, 244]

LNP Restore gene function  [245]

Duchenne muscu-
lardystrophy (DMD)

DMD Mutation correction AAV Restore gene function  [190]

Hearing loss TMC1 Mutation correction AAV Restore gene function  [246]

Hutchinson-Gilford 
(HGPS)

LMNA Mutation correction AAV Restore gene function  [247]

Atherosclerosis pcsk9 Targeted gene disrup-
tion

LNP Gene disruption  [248]

Targeted gene disrup-
tion

eVLP Gene disruption  [249]

Myotrophic lateral 
sclerosis (ALS)

SOD1(mutant) Targeted gene disrup-
tion

AAV Gene disruption  [232]

Leber congenital 
amaurosis (LCA)

RPE Mutation correction AAV Restore gene function  [250]

eVLP Restore gene function  [249]

Cancer CD52, CD7, PD1, 
and TCRα(CAR 
T cell)

Targeted gene disrup-
tion

Electroporation Gene disruption  [251]
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significantly reduced the serum levels of total cholesterol, 
total triglycerides and LDL-cholesterol [239]. Besides 
correcting point mutation, Cas9-mediated HDR strategy 
can also be used to targeted insert a therapeutic DNA 
fragment into desired locus. In most cases, the inserted 
fragments were designed to therapeutic genes. For exam-
ple, Lisjak et  al. used this strategy to insert the coding 
region of human coagulation factor IX (HFIX) into albu-
min locus in hepatocytes in vivo, enabling the co-expres-
sion of HFIX with albumin. The ectopically expressed 
HFIX successfully rescued hemophilia related pheno-
types [240]. Eyquem et al. used similar strategy to insert 
CD19-specific CAR into the T cell receptor α constant 
(TRAC) locus of T lymphocytes to allow the expression 
of CD-19 CAR under the control of TRAC promoter 
[241]. Besides HDR, another DNA repair mechanism, 
MMEJ, can also be used to insert therapeutic fragment. 
Compared with HDR that usually requires homologous 
arms of more than 500 bp, MMEJ strategy only requires 
20–30-bp homologous arms, which significant simpli-
fies the construction of donors and reduces size of donor 
DNA [205]. By using MMEJ strategy, Yao et al. inserted a 
full length fumalacetacetic acid hydrolase 1 (HT1) gene 
into the hepatocytes of HT1 deficient mice to rescue the 
liver damage phenotype [259] (Table 3).

Therapeutic applications of base editors
However, because NHEJ activity is prominent in mam-
malian cells, HDR or MMEJ strategy produced more 
unwanted indels than desired edits in most cases, mak-
ing it not so efficient and safe for clinical applications. 
By contrast, base editors are more precise and efficient 
in introducing single base conversions. Such a feature is 
particularly useful for correcting point mutations or cre-
ate desired functional base conversions (Table  3). For 
example, introducing missense or non-sense mutations 
within gene coding region can lead to either gain- or 
lose-of-function of target genes. Chadwick et  al. deliv-
ered cytosine base editor to the liver of adult mice to 
generate stop codon within pcsk9 gene and observed 
significant reduction in plasma PCSK9 protein and cho-
lesterol levels, demonstrating the therapeutic potential 
of base editing in silencing gene function [260]. More 
straightforwardly, base editors can also be used to correct 
diseases related point mutations. Rossidis et al. delivered 
cytosine base editor into the uterus of pregnant tyrosine-
mia type 1 mutant mice to correct Fah mutation [261]. 
They showed that in-utero delivery of base editor suc-
cessfully rescued the lethal phenotype of neonatal Fah 
mutant mice, demonstrating the potential of in utero 
base editing in the treatment of genetic diseases causing 
in prenatal or neonatal death [261]. Zhou et al. and Vil-
liger et  al. delivered cytosine base editors derived from 

SaCas9 into the liver of neonatal and adult PKU mice 
respectively [243, 244]. They showed that AAV-8 deliv-
ered SaCas9 base editor efficiently corrected PAH point 
mutation and reduced the plasma phenylalanine to physi-
ological level [243, 244]. In addition, base editing can also 
be used to manipulate RNA splicing via converting key 
bases within splicing regulatory elements. Li et  al. used 
a non-popular cytosine base editor developed by them-
selves, eTAM, to destroy DMD splicing site, leading 
the skip of 4th exon that contains frame-shifting muta-
tion, which genetically restored the open reading frame 
of DMD gene [262]. They showed that a single-dose of 
AAV9-eTAM achieved > 50% targeted exon skipping 
in  the Dmd mRNAs and restored up to 90% dystrophin 
protein in the heart, leading to an increased life span of 
the Dmd mutant mice [262].

Delivery of Cas9 and its derivates
CRISPR-Cas9-mediated gene editing tools are very 
powerful, revolutionizing the field of gene therapy and 
showing encouraging results in a variety of applications. 
However, the in vivo delivery of editors remains a criti-
cal limitation for these editing tools to treat specific dis-
eases. In vivo delivery methods of gene editing tools are 
classified into two main categories: viral and non-viral 
systems.

Viral delivery systems
Viruses have evolved naturally to deliver nucleic acids 
in vivo to different cell types, which makes them interest 
targets for delivering exogenous genes. Currently, several 
types of viral vectors have been developed and modified 
for the delivery of gene editing tools [263]. Among them, 
adeno-associated virus (AAV), as well as adenovirus have 
been widely used in preclinical studies of Cas9-mediated 
gene editing strategies [263] (Table 3).

AAV delivery
AAV is a single-stranded DNA virus, the smallest and 
simplest animal virus in the family Microviridae. AAV 
particles are envelope-free and consist of an icosahedral 
protein capsid of approximately 25 nm in diameter and 
a single-stranded DNA genome of ~ 4.7 kb [264]. Com-
pared with other viral delivery systems, AAV has the 
advantages of low immunogenicity, high efficiency and 
high biocompatibility [265]. And importantly, unlike 
lentivirus and retrovirus, recombinant AAVs very rarely 
integrate into host genomes [266–268]. In addition, 
there are plenty of different types of capsid serotypes, 
directing AAVs to different target tissues in  vivo [269]. 
These features nominate AAVs as promising gene ther-
apy vehicles [270].
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However, the small packaging capacity of AAVs is a 
major limitation for their application. AAVs have a pack-
aging capacity of about 5 kb, including the transgene cas-
cade and two flanking inverted terminal repeats (ITR) 
[271, 272]. Therefore, the room for exogenous transgene 
expression cascade is limited to ~ 4.7  kb, which lim-
its them as delivery tools for Cas9-related gene editing, 
since Cas9 proteins are generally large. The most widely 
used Cas9, SpCas9, is about 4.3 kb, and its derivates, such 
as BE and PE, are even larger [22, 27, 30].

To overcome size limitations, researchers have devel-
oped several methods that allow Cas9-mediated gene 
editing tools to be packaged into AAV vectors for in vivo 
delivery. Several groups have developed strategies to 
split Cas9 and its derivates into two halves. Intein medi-
ated protein splicing is the most frequently used splitting 
system. By optimizing the splitting sites, the efficien-
cies of split Cas9 systems are similar to or only slightly 
lower than those of their full-length equivalents, enabling 
practicable AAV mediated in  vivo genome editing. For 
example, David Liu’s group have designed a double AAV 
base editing strategy to treat the Hutchinson-Gilford 
premature aging syndrome (HGPS) mouse model and 
corrected the C·G-to-T·A mutation in the LMNA gene, 
achieving up to 30% gene correction efficiency in heart 
tissue [247]. Schwank and colleagues used a dual AAV9 
strategy to deliver ABE targeting Pcsk9 to mice, achieving 
60% base editing in the liver and significant reductions in 
serum pcsk9 protein levels as well as serum cholesterol 
levels [248]. Such strategy has also been used in central 
nervus tissue to knock out mutated Huntington (HTT) 
genes to correct pathogenic mutations in a mouse model 
of Niemann-Pick disease [273].

Alternatively, using smaller Cas9 can achieve single 
AAV delivery. For example, Cas9 from Staphylococ-
cus aureus (SaCas9) is commonly used for single AAV 
transduction because its size is only 3.2 kb [112]. Such 
a compact size endows it to be co-packaged with the 
sgRNA expression cascade in a single AAV. Zhang and 
colleagues used a single AAV system to in  vivo deliver 
SaCas9 to efficiently knock out Pcsk9 and lower serum 
cholesterol in mice [39]. In addition, an ongoing clinical 
trial uses a single AAV for subretinal delivery of SaCas9 
double sgRNA has been lunched to delete a pathogenic 
mutation in the CEP290 gene in patients with Leber con-
genital amaurosis 10 [258]. In addition to SaCas9, many 
other compact Cas9 variants were identified and charac-
terized, such as Nme2Cas9 (3.24 kb, PAM = N4CC) [96, 
102, 274–276], CjCas9 (2.95  kb, PAM = N4RYAC) [70, 
277, 278] and SauriCas9 (3.18 kb, PAM = N2GG) [82], all 
of which are capable of single AAV delivery. These Cas9 
variants also broaden PAM recognition and expand the 
targeting range of the single AAV gene editor.

Adenoviral delivery
Adenovirus (Ad) is an icosahedral envelope-free virus, 
90–100 nm in size, with a large (36 kb) genome [279]. Ad 
is the most commonly used viral vector (> 20%) in gene 
therapy clinical trials, possibly due to its large packag-
ing capacity, genetic stability, high transduction effi-
ciency, and ease of production [279]. Currently, there are 
57 known Ad serotypes that can infect human and 100 
serotypes that can infect primates, allowing researchers 
to modulate Ad tissue targeting by using different cap-
sids [249]. In 2017, Musunuru and colleagues used Ad to 
deliver CBE into mice and observed a 28% editing effi-
ciency of Pcsk9, successfully lowering plasma cholesterol 
levels in treated mice [260]. Lieber and colleagues used 
Ads to introduce ABE into HSC in  vivo to disrupt the 
blocker binding site in the fetal hemoglobin promoter, 
significantly upregulating fetal hemoglobin [280]. Ad has 
also recently been used for in vivo introduction of Prime 
editor. Schwank and colleagues used Ad to deliver PE2 
without the RNaseH structural domain into neonatal or 
adult mice and observed 58% and 36% editing efficiency, 
respectively [281]. Although adenoviruses can introduce 
gene editing tools in vivo and produce effective editing, 
their dosages are limited during application, possibly due 
to their high immunogenicity and cytotoxicity.

Non‑viral delivery
In addition to the modification of existing viral vectors, 
other types of delivery systems can be used for transient 
in  vivo delivery of exogenous genes, such as non-viral 
vectors (Table 3). Among them, lipid nanoparticles (LNP) 
are the most frequently used non-viral gene delivery sys-
tems, holding great potential for in  vivo applications of 
gene editing tools. Besides, virus-like particles (VLP) are 
also developed to deliver these tools.

LNP delivery
Lipid nanoparticles (LNPs) have been used for decades 
to deliver nucleic acids, including siRNA and therapeu-
tic mRNA, and in recent years LNPs have been widely 
used for in vivo delivery of gene editing tools [222, 226]. 
In most cases, these tools were delivered in the form of 
RNA, which is a negatively charged hydrophilic macro-
molecule and is electrostatically repelled by the same 
electrical properties as the cell membrane, making it 
difficult to enter the cell and susceptible to rapid deg-
radation by the ubiquitous ribonuclease (RNase) [282]. 
Therefore, RNA needs a protective layer to "transport" 
it into the cell. Since cell membranes are mainly com-
posed of lipids, liposome coating can make it easier for 
RNA to pass through the membrane and be released 
into the cytoplasm. To achieve this, liposomes require 
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a positively charged lipid molecule that can attach to 
negatively charged RNA, in addition to structural lipids 
(which mimic the cell membrane and shield the positive 
charge) and poly (ethylene glycol)-anchored lipids (which 
prevent aggregation of LNPs and side reactions with the 
biological environment). Therefore, LNPs are typically 
composed of four molecules: cationic or ionizable lipids, 
co-lipids, poly (ethylene glycol) -lipids, and cholesterol 
[283].

Compared with cationic lipids, ionizable lipids (ILs) 
are less toxic and more effective in in vivo delivery [284]. 
When formulated as LNPs, ILs are designed to display 
electroneutrality at physiological pH, but behave posi-
tively charged in  vivo in acidic LNP nuclei. This pH-
adapted ionization results in enhanced efficacy with 
reduced toxicity, making them more suitable for nucleic 
acid delivery [284]. These lipids typically make up 
30–50% of the total lipids in the formulation [285]. Cho-
lesterol, a naturally abundant component of cell mem-
branes, is one of the so-called structural lipids found 
mainly in the outer shell of LNPs and typically accounts 
for 20–50% of the total lipids in LNPs [285]. Phospholip-
ids contribute to the encapsulation of nucleic acids and 
the stability of LNPs and usually represent only 10—20% 
of the total lipids in the formulation [285]. Phospholipids 
are used as structural lipids because they can spontane-
ously organize into lipid bilayers and have a high phase 
transition temperature thus ensuring the membrane sta-
bility of LNPs. Phospholipids are located at the periphery 
of LNPs, just like cell membranes, and PEG lipids are an 
important component in controlling the half-life and cel-
lular uptake of LNPs [286]. During LNP assembly, PEG 
chains are located in the outer shell of the nanoparticles 
due to their hydrophilicity and large volume. PEG pro-
vides an external polymer layer for LNPs to hinder the 
adsorption of serum proteins and mononuclear phago-
cyte systems and prolong the in  vivo circulation. PEG 
also prevents aggregation of nanoparticles during stor-
age as well as in the blood [286]. Changing the properties 
of these components can produce LNPs with different 
properties, including different pharmacokinetic profiles 
and the ability to target different cell types.

The key advancement of the LNP formulation is that 
it enables efficient packaging and delivery of mRNA, 
allowing LNP to be widely used for in  vivo delivery of 
exogenous mRNA, including in  vivo introduction of 
Cas9-mediated gene editors. Anderson and colleagues 
co-packaged SpCas9 mRNA and chemically modified 
sgRNA via LNP and injected intravenously into mice, 
targeting Pcsk9 produced 80% editing efficiency and 
reduced and serum Pcsk9 to undetectable levels [287]. 
This result demonstrates for the first time the prom-
ise of therapeutic level gene editing in mice by LNP 

encapsulating both Cas9 nuclease mRNA and chemi-
cally modified sgRNA. Since then, researchers have 
shown that LNP can successfully introduce Cas9 in 
complex with sgRNA into crab-eating monkeys, which 
can achieve 73% TTR destruction in the liver and a cor-
responding reduction of serum TTR protein by more 
than 94% [288]. Next, clinical data showed that LNP 
introduced Cas9-sgRNA complex into patients could 
also reduce their serum TTR levels by up to 87% with low 
off-target editing. These results confirm the possibility of 
in vivo genome editing by LNP introduction of Cas9 and 
sgRNA complexes. In addition to delivering Cas9 nucle-
ase mRNA, LNP has also been used to deliver base editor 
mRNA into the liver of mice and non-human primates. 
Xue and colleagues observed that delivery of ABE mRNA 
by LNP into the liver of a mouse model of tyrosinemia 
yielded a 12.5% base editing efficiency [289]. Schwank 
and colleagues observed a 10% base editing rate of phe-
nylalanine hydroxylase mutations in the liver of mice 
with phenylketonuria model by delivery of LNP encapsu-
lating SaCas9-BE3 mRNA [243]. Recently, it was demon-
strated by Kathiresan, Schwank et al. that the splice site 
of PCSK9 can be effectively interrupted by LNP deliv-
ered ABE mRNA into the liver of mice as well as crab 
monkeys, thus disrupting the expression of functional 
PCSK9 protein. Accompanied with the delivery, substan-
tial (90%) and sustained (> 8 months) inhibition of serum 
PCSK9 protein and 60% reduction in blood cholesterol 
were achieved in crab monkeys [248]. The above studies 
suggest that the LNP delivered base editor has high clini-
cal therapeutic potential for liver related genetic or meta-
bolic diseases.

Since most LNPs injected intravenously naturally accu-
mulate in the liver, editing of other organs outside the 
liver is challenging. Dahlman and colleagues developed 
a strategy to screen hundreds of different LNPs simul-
taneously in  vivo [290]. The strategy uses unique DNA 
barcodes to label different LNP formulations, allow-
ing the LNPs to be traced by sequencing the barcodes 
[290]. Using this strategy, Dahlman and colleagues 
found an LNP that could target spleen endothelial cells. 
They also showed that this LNP could efficiently deliver 
Cas9 mRNA and sgRNA to mouse spleen endothelial 
cells, yielding editing efficiencies comparable to those of 
hepatocytes [291]. In addition, Siegwart et al. developed 
selective organ-targeted (SORT) LNPs by supplementing 
an additional charged lipid component to modulate the 
internal charge while without significantly disrupting the 
standard four-component nature of LNP [292, 293]. They 
found that altering the charge and concentration of this 
additional component was sufficient to redirect LNP to 
the lung or spleen. These SORT LNPs successfully deliv-
ered Cas9 mRNA and sgRNA specifically to the lungs of 



Page 17 of 25Zhou and Yao ﻿Molecular Biomedicine            (2023) 4:10 	

mice, achieving 15% lung tissue editing [292]. These stud-
ies have shown that the targeting of LNPs can be modu-
lated by changing their composition.

In addition, besides systematic delivery, local injection 
has been demonstrated to be effective in several organs. 
A panel of pre-clinical studies have shown that local 
injection of lipid-coated RNP into the inner ear and ret-
ina of mice can be effective for nuclease editing and base 
editing [246].

Virus‑like particle (VLP) delivery
In addition to LNP, the Virus-like Particle (VLP) are also 
capable of delivering gene editing tools. These particles 
are non-infectious viral protein assemblies that pack-
age the desired mRNA, protein or RNP for delivery to 
the appropriate tissues in  vivo [294]. Because VLPs are 
derived from existing viral backbones or viral capsid 
like proteins, they have the similar delivery properties 
to their corresponding viruses, including cargo encapsu-
late, endosome escapement, and the ability to be repro-
grammed to target different cell types [294]. However, 
unlike viruses, VLPs transiently deliver gene editors in 
the form of mRNA or RNP, which reduces the risk of off-
target gene editing and viral genome integration [295].

Almost all reported VLP architectures for deliver-
ing mRNA or protein cargo are based on retroviruses 
because retroviruses have several characteristics that are 
well suited for VLP [296]. Immature retroviral particles 
are spherical and typically lack rigid structural symmetry, 
which allows higher loading flexibility as compared with 
non-enveloped icosahedral viruses. In addition, the large 
particle size of retroviruses (100–200 nm) provides more 
physical space for packaging large proteins such as Cas9 
[296]. Finally, retroviruses are inherently modular in 
terms of cellular targeting and packaging [297]. Cell type 
specificity is determined by the envelope glycoprotein, 
while packaging is controlled by the capsid protein [297]. 
This modularity suggests that the VLP capsid structure, 
which effectively packages the desired "cargo", can eas-
ily bind to a variety of existing envelope glycoproteins to 
modulate targeting specificity.

David Liu’s group has recently developed an engi-
neered VLP (eVLP) based on Moloney MLV (MMLV) 
that greatly optimizes the protein packaging and deliv-
ery capabilities of the VLP [249]. eVLP can efficiently 
package Cas9 nuclease or base editors RNP and medi-
ate effective therapeutic levels of gene editing in multiple 
organs of mice. Local injection of eVLP into mouse brain 
successfully delivered base editor RNP in vivo, resulting 
in robust base editing in VLP-rich transduced cells (60% 
editing) [249]. Subretinal injection of eVLP into a mouse 
model of genetic blindness effectively corrected the 
causative point mutation and improved visual function. 

Finally, a single intravenous injection of eVLP into mice 
achieved 63% editing of Pcsk9 in the liver and 78% knock-
down of serum Pcsk9 levels, which is comparable to the 
efficiency that produced by AAV and LNP delivery [249]. 
VLP from lentivirus has also been developed to package 
Cas9 mRNA and sgRNA, which has been demonstrated 
to produce therapeutic level of genome editing when 
locally injected [298, 299]. VLP engineered from mam-
malian retrovirus-like protein PEG10 are also capable of 
delivering Cas9 mRNAs and sgRNAs, producing robust 
editing in  vitro (~ 60%) [300]. Together, these investiga-
tions demonstrated the potential of VLPs for therapeutic 
delivery of gene editing tools.

Perspectives and challenges
The past ten years have witnessed the explosion of 
genome editing technology, with more and more Cas9 
derived genome editing tools discovered and evolved. 
The ability of those tools to efficiently and precisely 
install a virtually wide range of changes to the genome 
has revolutionized the research of both basic life science 
and clinical medicine. In particular, these tools have pro-
vided fantastic new direction for the field of gene and cell 
therapy.

Noteworthy, many  challenges  need to be addressed 
before genome editing could be widely used in human 
patients.  One of the major challenges would be safety 
issue. Nearly all editing tools have been reported to pro-
duce more or less levels of off-target or undesired edit-
ing, ranging from base substitutions or small scale indels 
(several to tens of base pairs) to large scale fragment 
deletions (hundreds to millions of base pairs) and even 
chromosomal scale variations in either sequence depend-
ent or independent manner. Such unintended deleteri-
ous outcomes should be systematically evaluated when 
designing therapeutic strategies. Fortunately, several 
strategies have been developed to reduce such off-target 
effects, including high-specific and truncated sgRNAs, 
high-fidelity Cas9 variants, base editors with internally 
inlaid architecture or with engineered deaminases har-
boring hypoactive mutations. Alternatively, modulating 
endogenous pathways have also been4shown to reduce 
several types of undesired editing outcomes. Enhancing 
histone acetylation by HDAC inhibitors has been shown 
to improve product purity of cytosine base editors by 
strengthening the interaction between UGI and UNG. 
Inhibition of DNA mismatch repair pathway has been 
shown to reduce the frequency of prime editor produced 
unwanted indels. Another challenge came from the pre-
existing  adaptive immune responses to the  Cas9 pro-
teins. Since currently the most powerful and commonly 
used Cas9 proteins, SpCas9 and SaCas9, are derived 
from bacterial species that are prevalent in human, about 
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50% population harbor pre-existing immune response 
to them. Study from monkey revealed that such pre-
existing immune response would eliminate the genome-
edited cells. In addition, it was found that Cas9 delivered 
by AAV produces higher immune response than that 
delivered by LNP, suggesting that a transient expres-
sion of Cas9 is optimal to avoid the already existing Cas9 
immune response. Moreover, since repeated administra-
tion of Cas9 in monkeys produces a stronger immune 
response than the initial administration, it is highly rec-
ommended to achieve the therapeutic goal with a single 
dose. Additionally, in vivo delivery of genome editors to 
target cells is another big challenge, especially consid-
ering that Cas9 derived editors are large in size. Both 
viral and non-viral delivery systems have been used for 
in  vivo delivery of genome editors. However, viral sys-
tems, such as AAV, usually express the editors for a long 
term. Under such condition, sustained activity of the edi-
tor is supposed to amplify genotoxic effects. Moreover, 
long-term expression also increases the chances for the 
target cells to be cleared by immune system. Non-viral 
systems, especially lipid nano-particles, are efficient in 
delivering transgenes to several organs including liver, 
lung and spleen. Recently, LNP delivered Cas9 based 
editors has achieved significant success in manipulating 
liver related targets, such pcsk9, TTR and PAH. But as 
for organs other than the liver, LNP were not so efficient. 
Tremendous efforts have been made aiming to overcome 
these challenges and fill the gap between basic research 
and clinical translation by developing new editing tools, 
editing strategies and delivery systems. Hopefully, these 
efforts will speed up the therapeutic application of 
genome editing in the near future.  
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