Skip to main content
. 2023 Mar 28;29(12):1811–1823. doi: 10.3748/wjg.v29.i12.1811

Table 1.

Studies exploring artificial intelligence algorithms for the diagnosis of early lesions and prediction of pancreatic cancer

Ref.
Purpose of the model
Type of study
Type of model
Input data
Type of validation
No. cases
Qureshi et al[19], 2022 Identifying predictive features on prediagnostic CT scans for PDAC Retrospective NB 4000 radiomics from CT External 72 (36 with PC)
Sekaran et al[22], 2020 Predicting PC Retrospective CNN 19000 images from CT Internal 80 (NS)
Chen et al[36], 2018 Identification and classification methods for PC on MRI Retrospective CNN 863 images from MRI Internal 40 (20 with PC)
Muhammad et al[18], 2019 Prediction of PC risk Retrospective CNN 18 features of epidemiologic and clinical data External 800144 (898 with PC)
Alves et al[8], 2022 Detection and localization of small PDAC lesions on contrast-enhanced CT Retrospective DL 242 images from CT-CE External 242 (119 with PC)
Kuwahara et al[35], 2019 Investigate the value of EUS in predicting malignancy in IPMN Retrospective CNN 3970 radiomics from EUS Internal 50 (23 malignant)
Hussein et al[3], 2019 Identification of IPMN Retrospective CAD 171 MRI images Internal 171 (133 IMPN)
Chakraborty et al[15], 2018 Identification of high-risk IPMN Retrospective SVM 103 CT images Internal 103 (27 high-risk IMPN)
Liu et al[28], 2020 Classifying images as cancerous or noncancerous PC Retrospective CNN 21105 CT images Internal and external 1242 (752 with PC)
Lee et al[44], 2022 Prediction of risk for PC Retrospective DNN 9 factors Internal and external 2952 (738 with PC)

NB: Naïve Bayes; CT: Computed tomography; CNN: Convoluted neural network; PDAC: Pancreatic ductal adenocarcinoma; PC: Pancreatic cancer; NS: No specification; DL: Deep learning; EUS: Endoscopic ultrasound; IMPN: Intraductal papillary mucinous neoplasms; CAD: Computer-aided diagnosis; SVM: Support vector machine; MRI: Magnetic resonance imaging; DNN: Deep neural network.