Skip to main content
. 2023 Apr 6;23:54. doi: 10.1186/s12911-023-02154-y

Table 6.

Performance evaluation of the selected ML algorithm

N FS algorithm FS Type Feature set Classifier Performance metrics
Accuracy Sensitivity Specificity F1-score AUC Time to build a model (s)
1 Without performing feature selection NONE Full-featured dataset SVM 69.47 70.31 69.13 70.23 70.37 1635
95% CI (0.71, 0.69) (0.73, 0.68) (0.71, 0.68) (0.71, 0.68) (0.71, 0.68)
HGB  62.58 62.72 61.63 62.18 62.06 1241
95% CI (0.64, 0.61) (0.64, 0.61) (0.61, 0.60) (0.63, 0.61) (0.63, 0.61)
XGB 68.25 66.82 71.63 69.23 69.14 690
95% CI (0.69, 0.67) (0.69, 0.67) (0.73, 0.70) (0.72, 0.69) (0.71, 0.68)
2 Boruta-F Wrapper-based technique Tumor stage, tumor site, tumor size, age, metastatic status, type of treatment, lymphatic invasion, body weight SVM 85.68 86.54 86.39 85.64 83.77 1419
95% CI (8.401, 8.715) (8.520, 8.795) (8.571, 8.743) (8.421, 8.815) (8.274, 8.435)
HGB 88.25 89.71 86.13 89.31 88.63 1360
95% CI (8.72, 8.947) (8.811, 9.145) (8.531, 8.729) (8.80, 9.024) (8.631, 8.985)
XGB 82.54 86.43 87.02 85.97 86.10 730
95% CI (8.167, 8.346) (8.517, 8.812) (8.60, 8.827) (8.42, 8.62) (8.537, 8.750)
3 mRMR-F Filter feature selection method Tumor stage, history of other cancers, lymphatic invasion, tumor site, type of treatment, body weight, histological type, addiction SVM 82.12 83.42 81.24 82.98 83.15 1752
95% CI (8.094, 8.327) (8.251, 8.491) (8.02, 8.8217) (8.147, 8.410) (8.192, 8.551)
HGB 81.46 81.42 81.62 80.52 80.14 1502
95% CI (8.094, 8.327) (8.251, 8.491) (8.02, 8.8217) (8.147, 8.410) (8.192, 8.551)
XGB 80.24 80.52 80.35 80.26 81.24 1489
95% CI (7.927, 8.192) (7.974, 8.251) (7.914, 8.241) (7.915, 8.15) (8.037, 8.301)
4 LASSO-F Embedded-based technique Tumor site, tumor stage, age, type of treatment, tumor size, lymphatic invasion, weight loss, metastatic status SVM 83.07 85.21 82.49 83.75 81.59 950
95% CI (8.19, 8.51) (8.420, 8.725) (8.14, 8.397) (8.17, 8.496) (8.052, 8.30)
HGB 84.12 84.62 83.19 82.45 83.09 1037
95% CI (8.274, 8.61) (8.34, 8.61) (8.17, 8.517) (8.10, 8.34) (8.21, 8.394)
XGB 89.10 89.42 87.15 90.84 89.37 615
95% CI (8.771, 9.140) (8.752, 9.172) (8.682, 8.925) (8.940, 9.153) (8.790, 9.041)
5 Relief –F Filter feature selection method Histological type, tumor site, history of other cancers, age, vascular invasion, tumor size, type of treatment, tumor stage SVM 83.82 82.16 81.92 84.61 82.93 1306
95% CI (8.241, 8.527) (8.12, 8.417) (8.034, 8.241) (8.21, 8.516) (8.124, 8.481)
HGB 82.47 83.61 82.56 81.62 82.31 1512
95% CI (8.170, 8.347) (8.21, 8.492) (8.17, 8.397) (8.035, 8.306) (8.094, 8.427)
XGB 83.75 84.30 82.07 83.92 81.01 1250
95% CI (8.201, 8.581) (8.271, 8.609) (8.092, 8.417) (8.195, 8.463) (8.037, 8.278)