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Summary: We examine the impact of genetic ancestry on gene expression and DNA methylation of 

admixed African/Black Americans, highlighting how genetic and environmental background affect 

risk for brain illness. 

Abstract:  

Ancestral differences in genomic variation are determining factors in gene regulation; however, most 

gene expression studies have been limited to European ancestry samples or adjusted for ancestry to 

identify ancestry-independent associations. We instead examined the impact of genetic ancestry on 

gene expression and DNA methylation (DNAm) in admixed African/Black American neurotypical 

individuals to untangle effects of genetic and environmental factors. Ancestry-associated differentially 

expressed genes (DEGs), transcripts, and gene networks, while notably not implicating neurons, are 

enriched for genes related to immune response and vascular tissue and explain up to 26% of 

heritability for ischemic stroke, 27% of heritability for Parkinson’s disease, and 30% of heritability 

for Alzhemier’s disease. Ancestry-associated DEGs also show general enrichment for heritability of 

diverse immune-related traits but depletion for psychiatric-related traits. The cell-type enrichments 
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and direction of effects vary by brain region. These DEGs are less evolutionarily constrained and are 

largely explained by genetic variations; roughly 15% are predicted by DNAm variation implicating 

environmental exposures. We also compared Black and White Americans, confirming most of these 

ancestry-associated DEGs. Our results highlight how environment and genetic background affect 

genetic ancestry differences in gene expression in the human brain and affect risk for brain illness. 
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Introduction 

Health disparities have endured for centuries (1). In neuroscience and genomics, individuals with 

recent African genetic ancestry (AA) account for less than 5% of large-scale research cohorts for 

brain disorders but are 20% more likely to experience a major mental health crisis (2, 3). Insights 

gained from genome-wide association studies (GWAS) about disease risk are promising for clinical 

applications (e.g., drug targets for novel therapeutics and polygenic risk prediction). However, the 

majority of GWAS of brain-related illness lack diversity with regards to inclusion of AA individuals, 

who account for less than 5% of GWAS participants (4), despite AA individuals having more 

extensive genetic variation than any other population. This lack of diversity limits the accuracy of 

genetic risk prediction, hinders the development of effective personalized neurotherapeutics for non-

European genetic ancestry (EA) individuals (5), and limits our potential for novel discovery. While 

diversity in large-scale GWAS has increased in recent years (e.g., 1000 Genomes Project (6), All of 

Us research program, Trans-Omics for Precision Medicine [TOPMed] (7), and Human Heredity and 

Health in Africa [H3Africa] Consortium (8)), population-based genetic association studies do not 

directly elucidate potential biological mechanisms of risk variants.  

To bridge this gap, we need studies of the biological impact of genetic variation on molecular traits 

(e.g., mRNA and DNA methylation [DNAm]) in disease-relevant tissues of diverse populations. 

Recent efforts to bridge this gap with cross-ancestry expression quantitative trait loci (eQTL) have 

focused on improved fine mapping while leaving unanswered the question of how gene expression 

and epigenetic regulation are parsed specifically by ancestry (9). Despite a clear urgent need, no large-

scale studies examine the biological impact of genetic ancestry on gene expression in the human brain 

focused on the differences between AA and EA.  

An obvious impediment to undertaking this task is the limited availability of brain tissue from AA 

individuals. Currently, the most widely used resource for human postmortem tissue is the Gene-Tissue 

Expression Project (GTEx), which has publicly available RNA-sequencing and single nucleotide 

polymorphisms (SNP) genotyping for nearly 1,000 mostly elderly individuals, including data from 13 

brain regions (114 to 209 individuals per region). However, the majority of GTEx brain samples are 

of EA, and for some brain regions, GTEx has no non-EA individuals. In comparison, the BrainSeq 

Consortium, a collaboration between seven pharmaceutical companies and the Lieber Institute for 

Brain Development (LIBD), has one of the largest postmortem brain collections of psychiatric 

disorders, including 784 Black American samples across 587 unique individuals, with a mean age of 

44. While reports from this consortium and other large-scale analyses in the brain – including from 

the hippocampus, caudate nucleus (“caudate”), dorsolateral prefrontal cortex (DLPFC), and granule 

cells of the dentate gyrus (“dentate gyrus”) – have samples of diverse genetic ancestry (10–16), they 

have typically been “adjusted” for ancestry status, which limits our understanding of ancestry-specific 

effects in the brain.  

To address these gaps, here we use the LIBD RNA-sequencing, SNP genotype, and whole genome 

bisulfite sequencing (WGBS) datasets to evaluate genetic and environmental contributions to genetic 

ancestry differences in gene expression in the human brain (Fig. 1). We identify transcriptional 

features associated with genetic ancestry (African or European) in admixed neurotypical Black 

American donors (n=151). We quantify the contributions of common genetic variations to genetic 

ancestry differences using a total of 425 samples, including the caudate (n=122), dentate gyrus 

(n=47), DLPFC (n=123), and hippocampus (n=133). Additionally, we examine the influence of 

genetic ancestry on DNAm using WGBS data of the admixed Black American donors from the 
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caudate (n=89), DLPFC (n=69), and hippocampus (n=69). To confirm the genetic ancestry-associated 

differences in gene expression and to highlight the effect of environment by genetic ancestry 

differences, we further examine transcriptional and DNAm differences in individuals of limited 

admixture (Black Americans ≥ 0.8 AA and White Americans > 0.99 EA).  

 

Fig. 1: Study design for the examination of the genetic and environmental contributions to 

genetic ancestry-associated expression differences. BA stands for Black Americans and WA for 

White Americans. 

Results 

Significant enrichment of immune response for differential expression associated 

with genetic ancestry across the brain 

We selectively examined our admixed Black American population (151 unique individuals; Table S1) 

to 1) characterize transcriptional changes associated with African or European genetic ancestry in 

neurotypical adults (age > 17) and 2) limit potential confounding effects of systematic environmental 

factors that may differ between Black and White American samples. These analyses included RNA 

sequencing data from caudate (n=122), dentate gyrus (n=47), DLPFC (n=123), and hippocampus 

(n=133). Our admixed Black American population showed a varied proportion of EA (STRUCTURE 

(17); EA mean = 0.21, range = 0-0.62; Fig. S1) consistent with previous reports (18, 19). As such, we 

used these continuous genetic ancestry estimates to identify differentially expressed features (genes, 

transcripts, exons, and junctions) that were linearly correlated with ancestry levels and adjusted for 

sex, age, and RNA quality. This RNA quality adjustment includes experiment-based RNA 

degradation metrics (obtained with the qSVA methodology) that account for batch effect and cell 

composition (12, 20). To increase our power of detection and improve effect size estimates, we 

applied the multivariate adaptive shrinkage (“mash” (21)) method, which leverages the correlation 

structure of genetic ancestry effects across brain regions (see Methods for details). 
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Of the 16,820 genes tested, we identified 2,570 (15%; 1,437 of which are protein coding) unique 

differentially expressed genes (DEGs) based on ancestry variation (local false sign rate [lfsr] < 0.05; 

Fig. 2A, Table S2, and Data S1) across the caudate (n=1,273 DEGs), dentate gyrus (n=997), DLPFC 

(n=1,075), and hippocampus (n=1,025). While this number increased when we examined differential 

expression based on local ancestry (9,906 [62% of genes tested]; 6,982 protein coding; Table S3) 

across the caudate (n=6,657 DEGs), dentate gyrus (n=4,154), DLPFC (n=6,148), and hippocampus 

(n=7,006), effect sizes between global- and local-ancestry DEGs showed significant positive 

correlations (all Spearman; rho > 0.57, p-value < 0.01; Fig. S3) across all brain regions. When 

examining isoform-level associations (transcripts, exons, and junctions), we found an additional 8,012 

unique global ancestry-associated DEGs (lfsr < 0.05; Fig. S2, Table S2, and Data S1) and 6,629 

unique local ancestry-associated DEGs (lfsr < 0.05; Table S3 and Data S2) in these Black Americans. 

Similarly, we found that isoform-level local ancestry DE features showed significant positive 

correlation in effect sizes compared with global ancestry DE features (Fig. S3). 

To evaluate the functional aspects of these genetic ancestry-associated DEGs (global and local 

ancestry), we performed gene set enrichment analysis with the Gene Ontology (GO) and Disease 

Gene Network (DisGeNET (22)) databases for each brain region. It is noteworthy that while there was 

no enrichment of neuronal gene sets, we observed significant enrichment (GSEA and hypergeometric, 

q-value < 0.05) for GO and DisGeNET terms primarily related to immune response, including innate, 

adaptive, and virus responses (Data S3, Fig. 2B, and Fig. S4). Interestingly, the caudate showed an 

opposite direction of effect compared with the DLPFC and hippocampus. Specifically, the caudate 

showed enrichment of immune response associated with DEGs upregulated in relation to AA 

proportion, while dentate gyrus, DLPFC, and hippocampus showed enrichment for immune-related 

pathways associated with DEGs upregulated in EA proportion (Fig. 2B and Fig. S5). While not 

significant, we observed the same pattern of opposite directionality of effect for immune-related 

pathways with local ancestry-associated DEGs (Fig. S6). 

When we expanded this analysis to the isoform level (transcripts, exons, and junctions), we also found 

significant association with immune-related pathways and similar directions of effect (upregulated for 

AA proportion in the caudate and upregulated for EA proportion in dentate gyrus, DLPFC, and 

hippocampus). Furthermore, we also found significant analogous enrichment of these DEGs for genes 

with population differences in macrophages (18) associated with innate immune response to infection 

(Fisher’s exact test, false discovery rate [FDR] < 0.05; Fig. S7). Additionally, we found significant 

enrichment (Fisher’s exact test, FDR < 0.01) for ancestry-associated DEGs (global ancestry) in gene 

coexpression network modules generated using WGCNA (Weighted Gene Co-expression Network 

Analysis (23); Fig. S8). Consistent with our DEG analysis, the immune response pathway enrichment 

in these modules showed analogous opposite direction of effects based on region (Fig. S9). 

Observing an enrichment of the immune response pathway in bulk tissue, we performed cell-type (24, 

25) enrichment analysis to evaluate the cellular context of these ancestry-associated DEGs (global 

ancestry). We found significant enrichment (Fisher’s exact test, FDR < 0.05; Fig. S10 and Fig. S11A) 

for genes specifically expressed in brain immune cells (i.e., glia and microglia cell types) and 

neurovasculature (i.e., pericyte, endothelial, and vascular tissue cells), but not peripheral immune 

cells. Additionally, we observed enrichment for distinct subtypes of glial cells (26) (Fig. S12). 

Interestingly, local ancestry-associated DEGs showed significant enrichment for brain and non-brain 

immune cells (Fisher’s exact test, FDR < 0.05; Fig. S13 and Fig. S11B) potentially due to the larger 

number of detected DEGs. Even so, we found the level of enrichment of non-brain immune cells 

(global and local) on average smaller than brain immune cells. Remarkably, we again found primarily 

significant depletion of DEGs (global and local) for any genes specific to neuronal cell types. 
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Consistently, we observed those immune-related pathways and associated cell types (i.e., microglia 

and perivascular macrophage) for DEGs upregulated with increasing AA proportion in the caudate 

and upregulated with increasing EA proportion in the dentate gyrus, DLPFC, and hippocampus. 

Although we found some glial cell subtype (26) composition differences (ANOVA, FDR < 0.05; 

Fig. S14) using publically available single cell data from brain regions with similar composition (27), 

no glial subtype (26) showed specificity for a specific direction of ancestry effect (Fig. S12). 

Altogether, these results suggest that ancestry-associated DEGs in the human brain are strongly 

associated with the brain-specific immune response, and specific direction of effects vary according to 

brain region.  

Sharing of genetic ancestry-associated expression differences across the brain 

To understand the regional specificity of global ancestry-associated differentially expressed features, 

we compared DEGs from each brain region and observed extensive sharing across regions. 

Specifically, we observed 1,210 DEGs (47.1%) shared between at least two brain regions, where all 

pairwise overlaps demonstrated significant enrichment (Fisher’s exact test, p-value < 0.01; Fig. 2C). 

Moreover, 478 DEGs (18.6%) were shared among at least three brain regions with a significant 

overlap of 112 of these DEGs (4.4%; Monte Carlo simulation, p-value < 1e-5) across all four brain 

regions.  

Interestingly, 27 of the 112 shared DEGs (24%) showed discordant direction of effect in at least one 

of the four brain regions. This correlated well with the pairwise correlation of shared DEGs that 

shared direction of effect (70% to 82%; Fig. 2D). While shared direction of effect across brain regions 

was relatively high, this proportion of sharing dropped substantially when effect size was taken into 

account (0.22 to 0.44; Fig. 2D). Corresponding with the large proportion of discordant DEGs, we also 

found a large number of brain region-specific DEGs (1360 [52.9%]; Fig. 2E), which increased when 

considering isoform-level analysis (transcript [63.6%], exon [67.6%], and junction [69.7%]). This is 

consistent with other studies that show isoform-level brain region specificity (28). 
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Fig. 2: Extensive ancestry-associated expression changes across the brain region. A. Circos plot 

showing ancestry DEGs across the caudate (red), dentate gyrus (blue), DLPFC (green), and 

hippocampus (purple). B. Gene set enrichment analysis (GSEA) of differential expression analysis 

across brain regions, highlighting terms associated with increased AA (African ancestry) or EA 

(European ancestry) proportions. C. UpSet plot showing large overlap between brain regions. Green 

is shared across the four brain regions; blue, shared across three brain regions; orange, shared between 

two brain regions; and black, unique to a specific brain region. * Indicating significant pairwise 

enrichment (Fisher’s exact test) or significant overlap between all four brain regions (Monte Carlo 

simulation). D. Heatmaps of the proportion of ancestry DEG sharing with concordant direction (sign 

match; top) and within a factor 0.5 effect size (bottom) E. Metaplot showing examples of brain 

region-specific ancestry effects. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 5, 2023. ; https://doi.org/10.1101/2023.03.28.534458doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.28.534458
http://creativecommons.org/licenses/by-nc/4.0/


HLA region and immune cell composition play a limited role on ancestry-

associated expression differences across the brain 

Given the primary enrichment signal for immune-related pathways and cell types, we next 

investigated if immune variation was driving the observed transcriptional changes. Initially, we 

examined enrichment of ancestry-associated DEGs for the major histocompatibility complex (MHC) 

region. Here, we found global ancestry-associated DEGs of the caudate, DLPFC, and hippocampus 

enriched for HLA class II, while dentate gyrus enriched for Zinc finger proteins associated with the 

extended class I MHC region (Fisher’s exact test, FDR < 0.05; Fig. S15). While we found limited 

enrichment of local ancestry-associated DEGs for gene clusters of the MHC region across brain 

regions, we still observed significant enrichment of HLA class II genes for the caudate similar to 

global ancestry DEGs (Fisher’s exact test, FDR < 0.05; Fig. S16). Altogether, these results suggest 

that ancestry-associated DEGs (global and local) within the MHC region are primarily enriched for 

HLA class II genes. 

Next, we re-examined functional enrichment of ancestry-associated DEGs after removing the MHC 

region (i.e., HLA-specific genes, MHC region, and extended MHC region) to determine if the limited 

MHC enrichment drove functional enrichment of immune-related pathways of our ancestry-associated 

DEGs. After excluding the HLA genes, we still observed strong enrichment for immune-related 

pathways (Fig. S17). Furthermore, we observed similar immune-related enrichment (i.e., response to 

virus, interleukin-12 production, macrophage activation, leukocyte migration, and innate immune 

response) after excluding the MHC region (Fig. S18) or the extended MHC region (Fig. S19) across 

brain regions. This was also the case with local ancestry DEGs (Fig. S20), suggesting that the 

extended MHC region does not drive ancestry-associated DEG enrichment of immune-related 

pathways. 

Although the MHC region did not appear to drive our immune response enrichment, immune 

variation either from HLA gene diversity or glial cell composition could still contribute to the 

transcriptional changes observed in our ancestry-associated DEGs. As such, we next assessed to what 

degree HLA variation or glial cell composition contributed to the expression changes. To assess glial 

cell composition, we added glial cells composition (astrocytes, microglia, macrophage, 

oligodendrocytes, oligodendrocyte progenitor cells, and T cells) as covariates in our DE model. When 

we compared effect sizes with the original model, we found a high degree of correlation (Spearman; 

rho from 0.81 to 0.92; Fig. S21A), suggesting glial cell composition had a minimal effect. For HLA 

variation, we added the first five PCs of imputed HLA alleles (accounting for 66% of variance 

explained) as covariates and compared effect sizes with our original model. Similar to glial cell 

composition, we found HLA genetic variation only minimally changed effect sizes (Spearman; rho 

from 0.83 to 0.87; Fig. S21B). Altogether, these sensitivity analyses suggest that immune variation 

contributes only minimally to transcriptional changes for ancestry-associated DEGs. 

Ancestry-associated DEGs are evolutionarily less constrained  

With consistent significant enrichment of DEGs and co-expression modules for immune response, we 

hypothesized that this functional connection for the DEGs with a cellular biology that is uniquely 

adaptable would render them more likely to be tolerant of phenotypic consequences of gene 

disruption and would therefore be evolutionarily less constrained. To test this hypothesis, we 

examined the gene and transcript constraint scores (29) for the global ancestry-associated DEGs. 

Unsurprisingly, we found significant depletion of DEGs for highly constrained genes (Fisher’s exact 
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test, FDR < 0.0001; Fig. 3A). On the transcript level, we found a similar trend (Fig. 3B) with 

differentially expressed (DE) transcripts associated with less constrained genes. Additionally, we 

observed a significant negative correlation with DEGs signal (lfsr) and gene and transcript constraint 

scores (Pearson, p-value < 0.0001; Fig. 3C). Unsurprisingly, these results suggest that ancestry-

associated DE features are associated with the more rapidly evolving genes as previously seen in 

immunity related genes (30, 31).   
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Fig. 3: Ancestry-associated genes and canonical transcripts are evolutionarily less constrained. 

A. Significant depletion of ancestry DEGs for evolutionarily constrained genes (canonical transcripts) 

across brain regions. Significant depletion/enrichments (two-sided, Fisher’s exact test, FDR corrected 

p-values, -log10 transformed) are annotated within tiles. Odds ratios (OR) are log2 transformed to 

highlight depletion (blue) and enrichment (red). B. Similar trend of depletion of ancestry DE 

transcripts (DETs; all, canonical, and non-canonical) for evolutionarily constrained transcripts across 

brain regions. Odds ratios are log2 transformed to highlight depletion (blue) and enrichment (red). C. 

The mean of ancestry-associated DE feature (i.e., gene and transcript) lfsr as a function of LOEUF 

(loss-of-function observed/expected upper bound fraction) decile shows a significant negative 

correlation for genes (left; for the caudate, dentate gyrus, DLPFC, and hippocampus: two-sided, 

Pearson, r = -0.20, -0.20, -0.21, and -0.21; p-value = 3.0x10-122, 7.6 x 10-113, 8.6x10-126, and 1.2 x 10-

122) and transcripts (right; for the caudate, dentate gyrus, DLPFC, and hippocampus: two-sided, 

Pearson, r = -0.05, -0.05, -0.04, and -0.04; p-value = 8.6x10–13, 1.7x 10–11, 9.0x10–11, and 3.2 x 10–10). 

Error bars correspond to 95% confidence intervals. 
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The role of genetic variants on ancestry-associated expression differences in the 

brain 

To assess the contribution of genetic variation to genetic ancestry-associated DEGs, we first mapped 

main effect cis-eQTL in Black American individuals (n=120, 45, 121, and 131 for the caudate, dentate 

gyrus, DLPFC, and hippocampus, respectively) examining genetic variants within +/- 500 kb of each 

feature (gene, transcript, exon, and junction). To improve detection of eQTL, we applied mash and 

identified at least one cis-eQTL for 13,857 genes (“eGenes”) across brain regions (lfsr < 0.05; 

n=10,867 for the caudate; n=11,664 for the dentate gyrus; n=11,173 for the DLPFC; and n=10,408 for 

the hippocampus; Table S4 and Data S6). Of these 13,857 eGenes, the majority (64.1%; Fig. 4A) 

were shared across all brain regions with only about 0.25 to 14.5% showing brain region specificity. 

When we examined the direction of effect, however, this number dramatically increased with more 

than 96% sign matching (Fig. 4B).  

We also examined eQTL whose effects may vary as a function of genetic ancestry. Our examination 

followed a similar model to the main effect analysis but with an interaction term between SNP and 

ancestry proportion. We identified at least one ancestry-dependent cis-eQTL (within +/- 500 kb of 

each feature) for 943 unique genes across brain regions (lfsr < 0.05, n=531, 942, 573, and 531 for the 

caudate, dentate gyrus, DLPFC, and hippocampus, respectively; Fig. S22, Table S5, and Data S7) 

with 54.1% (510 eGenes) shared across the four brain regions (Fig. S23). This relatively limited 

detection of ancestry-dependent eQTL supports other work showing high correlation of causal effects 

across local ancestry of admixed individuals (32). 

We next tested whether these eGenes (main effect and ancestry-dependent) were likely to be 

differentially expressed by genetic ancestry. Across brain regions, we found significant enrichment 

(Fisher’s exact test, FDR < 0.05) of these eGenes (lfsr < 0.05) with ancestry-associated DEGs (lfsr < 

0.05; Fig. 4C and Fig. S23C). Given the potential correlation of genotypes with eGenes and ancestry 

inference, we also examined allele frequency differences between DEGs and non-DEGs. We found a 

significant increase in allele frequency differences for DEGs compared with non-DEGs (Mann-

Whitney U, p-value < 0.05; Fig. 4D and Fig. S24) across brain regions. These results suggest that a 

genetic component is likely influencing these expression differences, potentially due to divergence in 

allele frequencies.  

To test this possibility, we imputed gene expression levels from genotypes using an elastic net model, 

and then examined the correlation between the observed genetic ancestry effect from our ancestry DE 

analysis and the predicted genetic ancestry effect computed from the predicted expression levels 

across samples. Unsurprisingly, eGenes showed higher prediction accuracy than non-eGenes; 

interestingly, however, eGenes with an ancestry difference in gene expression had a stronger genetic 

component (higher R2) than eGenes without an ancestry difference across the four brain regions 

(Fig. S25). Furthermore, the imputed gene expression levels explained an average of 59.5%, 58.7%, 

56.8%, and 56.8% of the variance in genetic ancestry effect sizes across the caudate, dentate gyrus, 

DLPFC, and hippocampus, respectively (Fig. 4E). This variance explained generally increased on the 

isoform level (transcript [R2 = 50.8%±7.0%], exon [R2 = 61.6%±4.1%], and junction [R2 = 

62.6%±5.1%]; Fig. S26) across brain regions. In contrast, the genetic variant for the top main effect 

eQTL associated with these genes explained on average ~20% of the variance in genetic ancestry 

effect sizes with a similar proportion for the isoform level (Fig. S27). Thus, genetic variants 

contributed to nearly 60% of the observed genetic ancestry in gene expression – and variant effects on 

alternative splicing were even greater. 
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Fig. 4: Genetic contribution of genetic ancestry differences in expression across the brain. A. 

UpSet plot showing large overlap between brain regions of eGenes. B. Heatmap of the proportion of 

ancestry DEG sharing with concordant direction (sign match). C. Significant enrichment of ancestry-

associated DE genes for eGenes (unique gene associated with an eQTL) across brain regions 

separated by direction of effect (increased in AA or EA proportion). D. Density plot showing 

significant increase in absolute allele frequency differences (AFD; one-sided, Mann-Whitney U, p-

value < 0.05) for global ancestry-associated DEGs (red) compared with non-DEGs (blue) across brain 

regions. A dashed line marks the mean absolute AFD. Absolute AFD calculated as the average 

absolute AFD across a gene using significant eQTL (lfsr < 0.05). E. Correlation (two-sided, 

Spearman) of elastic net predicted (y-axis) versus observed (x-axis) ancestry-associated differences in 

expression among ancestry-associated DEGs with an eQTL across brain regions. A fitted trend line is 

presented in blue as the mean values +/- standard deviation. The standard deviation is shaded in light 

gray. 

Differential gene expression in a binary contrast of Black and White Americans 

To extend our analysis of DEGs driven by genetic ancestry, we performed a binary analysis of 

combined Black and White American samples (Table S6) – the latter showing very little admixture of 

African ancestry (STRUCTURE; African ancestry mean = 0.03, range = 0-0.16; Fig. S1). Using these 

American samples, we selected individuals with relatively limited admixture (Black Americans ≥ 0.8 

African genetic ancestry and White Americans > 0.99 European genetic ancestry) across the caudate, 

dentate gyrus, DLPFC, and hippocampus. To limit the influence of the larger sample size for this 
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binary analysis (Black American vs White American), we randomly sampled ten times without 

replacement to approximate the admixed Black American-only analysis sample size (caudate, n=122 

[61 each]; dentate gyrus, n=46 [23 each]; DLPFC, n=124 [62 each]; and hippocampus, n=134 [67 

each]). We identified more than double as many ancestry-associated DEGs (5,324 unique genes, 

median lfsr < 0.05; Fig. S28A, Table S7, and Data S8) representing 28% of all genes tested across 

the caudate (n=2,877), dentate gyrus (n=2,219), DLPFC (n=3,318), and hippocampus (n=2,818) with 

similar immune system enrichment patterns (Fig. S28B and Data S9).  

We next compared the binary analysis DE results (genes, transcripts, exons, and junctions) with the 

admixed Black American-only results. While we found a significant overlap of ancestry associated 

DE features (Fisher’s exact test, p-value < 0.0001), approximately 72% of features (3847 unique 

genes) were unique to the binary DE results (Fig. S29). Even so, effect sizes from binary analysis 

were significantly correlated (Spearman, rho = 0.43 to 0.49, p-value < 0.0001; Fig. S30) with effect 

sizes from admixed Black American-only analysis across features and brain regions, which increased 

when we examined only shared features (Spearman, rho = 0.60 to 0.66, p-value < 0.0001; Fig. S31). 

While these results confirm most of the ancestry-associated DEGs in the Black American sample 

alone, they also highlight additional ancestry-related factors that influence gene expression 

presumably including environmental events (i.e., epigenetic).  

Environmental contributions to global ancestry-associated differential expression 

Our binary DE analysis of Black and White Americans suggests that environmental factors may also 

contribute to global ancestry-associated DEGs. To identify DEGs driven by environmental factors, we 

used DNAm as an environmental proxy in Black Americans. We began by identifying the top 1% of 

variable CpGs that are likely driven by unknown environmental factors. We identified these CpGs by 

removing variation attributable to batch and to unknown technical and biological factors as captured 

by the top five DNAm principal components, while preserving variation due to global ancestry. We 

then grouped those top variable CpGs into variable methylated regions (VMRs) for the caudate (89 

samples; 12,051 VMRs), DLPFC (69 samples; 9,701 VMRs), and hippocampus (69 samples; 9,924 

VMRs). In contrast to our DE analysis results, we identified fewer VMRs that were differentially 

methylated regions (DMRs) for global ancestry (FDR < 0.05; n=3, 1, and 8 for the caudate, DLPFC, 

and hippocampus, respectively). However, we identified a larger number of local ancestry-associated 

DMRs (FDR < 0.05; n=494, 260, and 265 for the caudate, DLPFC, and hippocampus, respectively; 

Fig. 5A).  

We reasoned that the difference in DMRs linked to global and local ancestry can be explained both 

biologically and statistically. Biologically, DNAm tends to be more influenced by local genetic 

variations. Statistically, local ancestry is more variable than global ancestry, which results in a higher 

power to detect DNAm differences and a smaller standard deviation in estimated effect size. This is 

demonstrated in Fig. S32 and Data S12, where we compared DNAm levels against local ancestry and 

global ancestry levels for VMRs associated with local ancestry. Even so, we find significant 

correlation between local and global ancestry-associated DMRs (Fig. S33). Functional enrichment 

analysis of local ancestry-associated DMRs suggested that these DMRs were enriched for gene sets 

related to immune functions across all three brain regions (Fig. 5B), consistent with the functional 

enrichment results of ancestry-associated DEGs. 

We next regressed out known biological factors (local ancestry, age, sex), as well as the potential 

batch effects and other unknown biological factors captured by the top five principal components of 

DNAm levels for each VMR. We used PST estimates (18) to provide a measure of proportion of 
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overall gene expression variance explained by between-population differences. PST values range from 

0 to 1, where values close to 1 imply the majority of expression variance is due to differences between 

populations. We defined deltaPST (ΔPST) as the difference between PST values before and after 

regressing out the effect of VMRs associated with each gene. Therefore, ΔPST quantifies the 

proportion of ancestry-associated DEGs that are likely due to environmental exposures. Using this 

method, we found that across brain regions the average ΔPST was 15% (12.2%, 14.4%, and 18.3% for 

the caudate, DLPFC, and hippocampus, respectively; Fig. 5C). Altogether, these results imply that 

unknown environmental exposures measured by DNAm provide a minor contribution to the observed, 

primarily immune-related expression differences in our Black American neurotypical sample. 

 

 

Fig. 5: Unknown environmental factors are primary drivers of nearby global ancestry-

associated DEGs. A. Circos plot showing local ancestry-associated DMRs across the caudate (red), 

DLPFC (blue), and hippocampus (green). Methylation status is annotated in red for hypermethylation 

and blue for hypomethylation. B. Gene term enrichment of DMRs across brain regions. C. 

Histograms showing distribution of ΔPST associated with the impact of unknown environmental 

factors as captured by residualized VMR (corrected by local ancestry, age, sex, and unknown 

biological factors captured by PCA) for nearby global ancestry-associated DEGs. A dashed line marks 

the mean ΔPST. A solid line shows the density overlay.  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 5, 2023. ; https://doi.org/10.1101/2023.03.28.534458doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.28.534458
http://creativecommons.org/licenses/by-nc/4.0/


Association of ancestry-associated expression differences with immune- and 

brain-related traits 

We reasoned that ancestry-associated DEGs may contain risk genes that explain susceptibility of 

brain-related illnesses based on ancestry. To explore this hypothesis, we conducted stratified LD score 

regression (S-LDSC) to assess the polygenic contributions of global ancestry-associated DEGs to 17 

brain-related traits (e.g., ADHD, autism, BMI, depression, and schizophrenia) (33). As our ancestry-

associated DEGs were enriched for gene sets related to immune functions, we included five immune-

related traits as a positive control in our S-DLSC analysis. Overall, we observed that ancestry-

associated DEGs were enriched for heritability of neurological disorders and immune-related traits 

but not for psychiatric disorders and behavioral traits (Fig. 6, Fig. S34, and Data S10). This also 

included limited enrichment of peripheral immune function (34–36) (Fisher’s exact test, FDR < 0.05; 

Fig. S35), which is consistent with our previous enrichment showing a greater association with brain 

immune cell types compared to non-brain immune cell types (Fig. S12). 

Specifically, we found enrichment for heritability of ischemic stroke (enrichment fold = 1.5, FDR = 

0.009) for ancestry-associated DEGs in the DLPFC, accounting for 26% of total heritability 

(Fig. S34). This enrichment was mainly driven by DEGs associated with an increase in AA proportion 

(enrichment fold = 1.7, FDR = 0.013), but not to EA (enrichment fold = 1.2, p-value = 0.2). 

Furthermore, stratified analysis by protein-coding and non-coding DEGs showed that enrichment was 

primarily driven by protein-coding DEGs, but not non-coding DEGs (Fig. 6). We observed stronger 

enrichment of ischemic stroke for protein-coding DEGs in the DLPFC (increased AA proportion; 

enrichment fold = 2.1, FDR = 0.011). This finding is consistent with epidemiological data that Black 

Americans are up to 50% more likely to experience ischemic stroke, and Black men are up to 70% 

more likely to die from stroke compared to non-Hispanic White men (37, 38). Moreover, our cell-type 

enrichment analysis showed that the DEGs associated with increased AA proportion were enriched 

for vascular smooth muscle cells, endothelial cells, and pericytes (Fig. S10), all of which may 

contribute to vascular pathology implicated in stroke. 

In addition to ischemic stroke, we also found enrichment for heritability of Parkinson’s disease 

(enrichment fold = 1.6, FDR = 0.025) for ancestry-associated DEGs in the DLPFC, accounting for 

27% of disease heritability (Fig. S34). Interestingly, this enrichment was primarily driven by DEGs 

that were increased with EA proportion (enrichment fold = 1.9, FDR = 0.032), but not to AA 

proportion (enrichment fold = 1.3, p-value = 0.23). Again, this enrichment for Parkinson’s disease in 

the DLPFC was driven by protein-coding DEGs (increased EA proportion; enrichment fold = 2.3, 

FDR = 0.038; Fig. 6). This finding echos epidemiological studies suggesting that the prevalence of 

Parkinson’s disease is greater in White Americans compared with Black Americans (39). 

Additionally, cell-type enrichment analysis for DEGs associated with increased EA proportion 

showed enrichment for cell-type-specific genes related to the microglia, astrocytes, and 

oligodendrocyte progenitor cells (Fig. S10). Interestingly, we also found ancestry-associated glial cell 

subtypes (i.e., astrocyte [AST7] and oligodendrocyte lineage [OPC1]) significantly enriched for 

Parkinson’s disease heritability (enrichment fold > 2.0, FDR < 0.01; Fig. S36), suggesting a potential 

role for specific glial subtypes in the pathogenesis of Parkinson’s disease. 

We also observed enrichment for heritability of Alzheimer's disease for ancestry-associated DEGs 

across DLPFC, hippocampus and caudate accounting for 26%, 23% and 30% of total heritability, 

respectively (Fig. S34). These enrichments were mainly driven by protein-coding DEGs associated 

with an increase in AA proportion for the DLPFC (enrichment fold = 2.0, FDR = 0.013; Fig. 6) and 
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hippocampus (enrichment fold = 1.9, FDR = 0.02; Fig. 6). Surprisingly, we found the opposite effect 

with an increase in EA proportion for the caudate when considering all DEGs (Fig. S34), which 

disappeared when considering only protein coding or non-protein coding DEGs (Fig. 6). Cell-type 

enrichment analysis of astrocytes, however, shows ancestry-specific effects consistent with this 

finding for the caudate (increased EA proportion; Fig. S10). Moreover, we found ancestry-associated 

glial cell subtypes (i.e., microglia [MG0] and astrocyte [AST1 and AST7]) significantly enriched for 

Alzheimer’s disease heritability (enrichment fold > 2.2, FDR < 0.01; Fig. S36) and ancestry-

associated DEGs enrichment for multiple activated microglia states (40) (Fig. S37A). Interestingly, 

these microglia states were associated with mouse Alzhiemer’s disease-associated microglial genes 

and Alzhiemer’s disease GWAS signals (Fig. S37B). We also observed significant enrichment of 

ancestry-associated DEGs primarily with Alzheimer’s disease-related DEGs between early 

Alzheimer’s and late Alzheimer’s (late response; Fig. S38).  

In contrast, we observed significant depletion in heritability for several brain-related traits (e.g., 

education years, smoking initiation, age of smoking, schizophrenia, and depression; enrichment fold < 

1, FDR < 0.05; Fig. 6, Fig. S34, and Data S10) of our ancestry-associated DEGs across brain regions. 

These results are consistent with our observations that ancestry-associated DEGs are depleted for gene 

sets related to the neuronal functions that are believed to play major roles in psychiatric disorders and 

behavior traits.  
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Fig. 6: Global ancestry-associated DEGs stratified by coding or non-coding DEGs show general 

enrichment for heritability of several neurological and immune-related traits, but depleted for 

brain-related behavioral traits. Heatmap for ancestry-associated DEGs that show enrichment (red) 

or depletion (blue) for heritability of brain- and immune-related traits from S-LDSC analysis. 

Significant enrichment for heritability traits disappears when limited to non-coding DEGs. Numbers 

within tiles are levels of enrichment (> 1) or depletion (< 1) that are significant after multiple testing 

correction (FDR < 0.05). The left panel shows results for all DEG in each brain region. The middle 

and right panels show results for DEG increased with AA or EA proportions for each brain region, 

respectively. 
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Discussion 

Here we provide the first detailed characterization of the impact of genetic ancestry on expression and 

DNA methylation in the human brain. Using admixed Black American donors, we have identified 

thousands of genomic features (i.e., genes, transcripts, exons, and junctions) associated with genetic 

ancestry and demonstrated that these features are evolutionarily less constrained. Approximately 60% 

of these ancestry-associated DEGs are associated with genetic variations. Our data show consistent 

enrichment for immune response pathways for genetic ancestry-associated DEGs and consistent 

absence of ancestry associations with neuronal functions. Furthermore, we found similar trends when 

we examined local genetic ancestry. Even so, given expression heritability is dominated (i.e., about 

70%) by many small trans effects (41, 42), we have chosen to focus primarily on global genetic 

ancestry. 

Interestingly, our findings show the direction of enrichment varies by brain region for immune-related 

pathways, increasing in relation to AA proportion in caudate and increasing in relation to EA 

proportion in the other regions. Because the specific genes in these immune function sets vary 

somewhat across regions, it is tempting to speculate on 1) how genetics and the environment sculpt 

variation in this regional biology and 2) whether the functional and behavioral impact of these 

ancestry-associated DEGs depends on the biology of particular brain regions. However, there is no 

simple “up or down” bias to the functional associations independent of brain region. For example, if 

AA proportion is a risk factor to immune response in the caudate, then by the same reasoning AA 

proportion would be a protector factor for immune response in the hippocampus and prefrontal cortex. 

We considered that differences in directionality across regions may reflect variation in cell 

composition as the caudate was the only brain region without a laminar architecture. However, 

laminar architecture in the brain has generally implicated neuronal biology (43), which was not the 

case here (i.e., enrichment of immune-related pathways). Notably, virtually all of our findings are 

more significant at the isoform level, implicating gene splicing and processing as a more incisive 

method for explaining the effect of ancestry on gene expression.  

Among the more striking findings of our data is the enrichment of heritability for neurological brain 

illness among ancestry-associated DEGs. Small vessel stroke and ischemic stroke are up to 50% more 

frequent in Black Americans (37, 38), and here we show that heritability for stroke was enriched 

among DEGs that were increased in proportion to AA in our admixed Black population. In contrast, 

heritability for Parkinson’s disease, which is more prevalent in White Americans (39), was enriched 

among DEGs in proportion to EA. Interestingly, we observed a nearly two-fold enrichment for 

heritability of Alzheimer’s disease among DEGs that were increased with AA proportion in DLPFC 

and hippocampus, regions cardinally involved in Alzheimer’s disease. This observation echoes the 

fact that Alzheimer’s disease is twice as prevalent in Black Americans (44, 45). However, general 

enrichment of DEGs for Alzheimer’s disease in the caudate associated with an increase in EA 

proportion highlights the potential regional complexity of the disorder in the brain as caudate is not 

generally considered a site of Alzheimer’s disease pathology. Ancestral DEGs increase heritability for 

several immune disorders and traits but not specifically in relation to either ancestry across the brain. 

It is noteworthy that the DEGs are not linked with heritability of psychiatric disorders and related 

behavioral traits, perhaps consistent with genes associated with these traits being especially enriched 

in neurons, which were again, conspicuously lacking in DEGs based on ancestry. 

In addition to our analysis of the admixed Black American population, we also performed a combined 

analysis with White Americans. As an internal validation, we found significant overlap between this 
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and our Black American-only analyses (i.e., DE), but a dramatic increase in the extent of differentially 

expressed features. Additionally, this combined analysis (Black and White Americans) revealed 

similar enrichment of the immune response, again in analogous alternating directionality depending 

on brain region. While these results implicate environmental exposures that might reflect systematic 

differences between the two ancestral groups, disambiguating genetic from environmental factors in 

this context is challenging. We, therefore, chose to examine the environmental impact on our Black 

American-only global ancestry-associated DEGs. To this end, we identified thousands of VMRs 

across the brain in this context.  

To highlight those VMRs likely enriched for environmental influence, we focused on the top 1% of 

VMRs and looked for ancestry-associated DMRs within these genomic regions. Consistent with DE 

analysis, we found that local ancestry DMRs were enriched for genomic regions related to immune 

functions. When we used VMRs as an environmental proxy to examine the effect of environmental 

exposures on the DEGs, we found they explained, on average, roughly 15% of population differences 

in gene expression. Although we used local ancestry to correct for genetic background, we cannot be 

sure that the variation captured via methylation is solely attributed to environmental factors or that 

methylation can capture all environmental factors. A limitation of this study is the lack of social 

determinants of health information, which could have directly measured specific environmental 

exposures instead of using DNAm as a proxy. Nevertheless, our analyses demonstrate the potential to 

limit the impact of potentially systematic environmental factors by leveraging admixture populations 

for genetic ancestry analyses. 

This enrichment in immune-related pathways is not altogether unexpected: a previous study showed 

population differences in macrophages associated with the innate immune response to infection (18). 

Furthermore, it is well documented that genetic variation is an important contributor to immune 

variation (46–48) and immune cell function (34–36). This research is particularly important for 

neuropsychiatric disorders (including schizophrenia, autism spectrum disorder, and Alzheimer’s 

disease) where the immune system has been implicated (49–51). Many of these neuropsychiatric 

disorders also show a racial health disparity (44, 52–54). As a result, we examined our enrichment of 

immune function in more detail. Interestingly, we found little evidence that the MHC region, HLA 

variation, or glial cell composition drove our identified immune-response pathway enrichment. 

Additionally, we found stronger enrichment of brain immune compared with peripheral immune cell 

types, suggesting the potential involvement of a brain-specific immune response of these DEGs. 

Altogether, our results provide a starting point for further investigation for potential therapeutic 

interventions involving the immune response – therapeutic interventions that could address these 

health disparities. 

In summary, we provide a detailed examination of the genetic and environmental contributions to 

genetic ancestry transcriptional changes in the brain. We leveraged genetic diversity within admixture 

populations to limit environmental confounders, resulting in converging evidence of the immune 

response in genetic ancestry-associated transcriptional changes in the brain. The research we have 

provided here substantively furthers our understanding of the contribution of genetic ancestry in the 

brain, opening new avenues to the development of ancestry-aware therapeutics and paving the way for 

equitable, personalized medicine.  
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Data availability  

Publicly available BrainSeq Consortium total RNA DLPFC and hippocampus 

RangedSummarizedExperiment R Objects with processed counts are available at 

http://eqtl.brainseq.org/phase2/. Publicly available BrainSeq Consortium total RNA caudate 

RangedSummarizedExperiment R Objects with processed counts are available at 

http://erwinpaquolalab.libd.org/caudate_eqtl/. Publicly available dentate gyrus 

RangedSummarizedExperiment R Objects with processed counts and phenotype information are 
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available at http://research.libd.org/dg_hippo_paper/data.html. Analysis-ready genotype data will be 

shared with researchers that obtain dbGaP access. FASTQ files are available for total RNA dentate 

gyrus, DLPFC, and hippocampus via Globus collections jhpce#bsp2-dlpfc and jhpce#bsp2-hippo 

available at https://research.libd.org/globus/. For the caudate, FASTQ files are available via dbGaP. 

We used publicly available single cell datasets. Glial subpopulation single-cell data from the human 

postmortem hippocampus astrocyte, microglia, and oligodendrocyte lineage is available from UCSC 

cell browser (“Human Hippocampus Lifespan” collection). The human PBMCs single-cell data is 

available from Zenodo (10.5281/zenodo.4273999). Multiple human brain region single-cell datasets 

(i.e., DLPFC, hippocampus, nucleus accumbens, amygdala, and subgenual anterior cingulate cortex) 

are available by brain region from GitHub (https://github.com/LieberInstitute/10xPilot_snRNAseq-

human). Human microglial state dynamics in Alzhiemer’s disease single-cell data is available from 

http://compbio.mit.edu/microglia_states/.  

Code availability  

All code and Jupyter Notebooks are available through GitHub at 

https://github.com/LieberInstitute/aanri_phase1 with more detail (55).  
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Figure captions 

Fig. 1: Study design for the examination of the genetic and environmental contributions to 

genetic ancestry-associated expression differences. BA stands for Black Americans and WA for 

White Americans. 

Fig. 2: Extensive ancestry-associated expression changes across the brain region. A. Circos plot 

showing ancestry DEGs across the caudate (red), dentate gyrus (blue), DLPFC (green), and 

hippocampus (purple). B. Gene set enrichment analysis (GSEA) of differential expression analysis 

across brain regions, highlighting terms associated with increased AA (African ancestry) or EA 

(European ancestry) proportions. C. UpSet plot showing large overlap between brain regions. Green 

is shared across the four brain regions; blue, shared across three brain regions; orange, shared between 

two brain regions; and black, unique to a specific brain region. * Indicating significant pairwise 

enrichment (Fisher’s exact test) or significant overlap between all four brain regions (Monte Carlo 

simulation). D. Heatmaps of the proportion of ancestry DEG sharing with concordant direction (sign 

match; top) and within a factor 0.5 effect size (bottom) E. Metaplot showing examples of brain 

region-specific ancestry effects. 

Fig. 3: Ancestry-associated genes and canonical transcripts are evolutionarily less constrained. 

A. Significant depletion of ancestry DEGs for evolutionarily constrained genes (canonical transcripts) 

across brain regions. Significant depletion/enrichments (two-sided, Fisher’s exact test, FDR corrected 

p-values, -log10 transformed) are annotated within tiles. Odds ratios (OR) are log2 transformed to 

highlight depletion (blue) and enrichment (red). B. Similar trend of depletion of ancestry DE 

transcripts (DETs; all, canonical, and non-canonical) for evolutionarily constrained transcripts across 

brain regions. Odds ratios are log2 transformed to highlight depletion (blue) and enrichment (red). C. 

The mean of ancestry-associated DE feature (i.e., gene and transcript) lfsr as a function of LOEUF 

(loss-of-function observed/expected upper bound fraction) decile shows a significant negative 

correlation for genes (left; for the caudate, dentate gyrus, DLPFC, and hippocampus: two-sided, 

Pearson, r = -0.20, -0.20, -0.21, and -0.21; p-value = 3.0x10-122, 7.6 x 10-113, 8.6x10-126, and 1.2 x 10-

122) and transcripts (right; for the caudate, dentate gyrus, DLPFC, and hippocampus: two-sided, 

Pearson, r = -0.05, -0.05, -0.04, and -0.04; p-value = 8.6x10–13, 1.7x 10–11, 9.0x10–11, and 3.2 x 10–10). 

Error bars correspond to 95% confidence intervals. 

Fig. 4: Genetic contribution of genetic ancestry differences in expression across the brain. A. 

UpSet plot showing large overlap between brain regions of eGenes. B. Heatmap of the proportion of 

ancestry DEG sharing with concordant direction (sign match). C. Significant enrichment of ancestry-

associated DE genes for eGenes (unique gene associated with an eQTL) across brain regions 

separated by direction of effect (increased in AA or EA proportion). D. Density plot showing 

significant increase in absolute allele frequency differences (AFD; one-sided, Mann-Whitney U, p-

value < 0.05) for global ancestry-associated DEGs (red) compared with non-DEGs (blue) across brain 

regions. A dashed line marks the mean absolute AFD. Absolute AFD calculated as the average 

absolute AFD across a gene using significant eQTL (lfsr < 0.05). E. Correlation (two-sided, 

Spearman) of elastic net predicted (y-axis) versus observed (x-axis) ancestry-associated differences in 

expression among ancestry-associated DEGs with an eQTL across brain regions. A fitted trend line is 

presented in blue as the mean values +/- standard deviation. The standard deviation is shaded in light 

gray. 
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Fig. 5: Unknown environmental factors are primary drivers of nearby global ancestry-

associated DEGs. A. Circos plot showing local ancestry-associated DMRs across the caudate (red), 

DLPFC (blue), and hippocampus (green). Methylation status is annotated in red for hypermethylation 

and blue for hypomethylation. B. Gene term enrichment of DMRs across brain regions. C. 

Histograms showing distribution of ΔPST associated with the impact of unknown environmental 

factors as captured by residualized VMR (corrected by local ancestry, age, sex, and unknown 

biological factors captured by PCA) for nearby global ancestry-associated DEGs. A dashed line marks 

the mean ΔPST. A solid line shows the density overlay. 

Fig. 6: Global ancestry-associated DEGs stratified by coding or non-coding DEGs show general 

enrichment for heritability of several neurological and immune-related traits, but depleted for 

brain-related behavioral traits. Heatmap for ancestry-associated DEGs that show enrichment (red) 

or depletion (blue) for heritability of brain- and immune-related traits from S-LDSC analysis. 

Significant enrichment for heritability traits disappears when limited to non-coding DEGs. Numbers 

within tiles are levels of enrichment (> 1) or depletion (< 1) that are significant after multiple testing 

correction (FDR < 0.05). The left panel shows results for all DEG in each brain region. The middle 

and right panels show results for DEG increased with AA or EA proportions for each brain region, 

respectively. 
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