
Transcription-replication interactions reveal
principles of bacterial genome regulation
Itai Yanai  (  Itai.Yanai@nyumc.org )

New York University School of Medicine https://orcid.org/0000-0002-8438-2741
Andrew Pountain 

New York University School of Medicine
Peien Jiang 

New York University
Tianyou Yao 

University of Illinois at Urbana Champaign
Ehsan Homaee 

University of Illinois at Urbana Champaign
Yichao Guan 

University of Illinois at Urbana Champaign
Magdalena Podkowik 

University of Glasgow
Bo Shopsin 

New York University School of Medicine
Victor Torres 

New York University Grossman School of Medicine https://orcid.org/0000-0002-7126-0489
Ido Golding 

University of Illinois https://orcid.org/0000-0002-4308-4959

Biological Sciences - Article

Keywords:

Posted Date: March 31st, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2724389/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Additional Declarations: There is NO Competing Interest.

https://doi.org/10.21203/rs.3.rs-2724389/v1
mailto:Itai.Yanai@nyumc.org
https://orcid.org/0000-0002-8438-2741
https://orcid.org/0000-0002-7126-0489
https://orcid.org/0000-0002-4308-4959
https://doi.org/10.21203/rs.3.rs-2724389/v1
https://creativecommons.org/licenses/by/4.0/




 

1 

Transcription-replication interactions reveal principles of bacterial 1 

genome regulation 2 

 3 

Andrew W. Pountain1, Peien Jiang1,2, Tianyou Yao3, Ehsan Homaee3,4†, Yichao Guan3†, 4 

Magdalena Podkowik5, Bo Shopsin5,6, Victor J. Torres6, Ido Golding3,7, Itai Yanai1,8* 5 

 6 
1Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 7 
USA 8 
2Department of Biology, New York University, New York, NY, USA 9 
3Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL USA 10 
4Center for Biophysics and Computational Biology, University of Illinois at Urbana-11 
Champaign, Urbana, IL USA 12 
5Department of Medicine, Division of Infectious Diseases, NYU Grossman School of 13 
Medicine, New York, NY, USA 14 
6Department of Microbiology, NYU Grossman School of Medicine, New York, NY USA 15 
7Department of Microbiology, University of Illinois at Urbana Champaign, Urbana,IL 16 
USA 17 
8Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of 18 
Medicine, New York, NY, USA  19 
*Corresponding author. Email: Itai.Yanai@nyulangone.org      †Contributed equally.   20 
 21 

Organisms determine the transcription rates of thousands of genes through a few 22 
modes of regulation that recur across the genome1. These modes interact with a 23 
changing cellular environment to yield highly dynamic expression patterns2. In 24 
bacteria, the relationship between a gene’s regulatory architecture and its 25 
expression is well understood for individual model gene circuits3,4. However, a 26 
broader perspective of these dynamics at the genome-scale is lacking, in part 27 
because bacterial transcriptomics have hitherto captured only a static snapshot of 28 
expression averaged across millions of cells5. As a result, the full diversity of gene 29 
expression dynamics and their relation to regulatory architecture remains 30 
unknown. Here we present a novel genome-wide classification of regulatory modes 31 
based on each gene’s transcriptional response to its own replication, which we 32 
term the Transcription-Replication Interaction Profile (TRIP). We found that the 33 
response to the universal perturbation of chromosomal replication integrates 34 
biological regulatory factors with biophysical molecular events on the 35 
chromosome to reveal a gene’s local regulatory context. While the TRIPs of many 36 
genes conform to a gene dosage-dependent pattern, others diverge in distinct 37 
ways, including altered timing or amplitude of expression, and this is shaped by 38 
factors such as intra-operon position, repression state, or presence on mobile 39 
genetic elements. Our transcriptome analysis also simultaneously captures global 40 
properties, such as the rates of replication and transcription, as well as the 41 
nestedness of replication patterns. This work challenges previous notions of the 42 
drivers of expression heterogeneity within a population of cells, and unearths a 43 
previously unseen world of gene transcription dynamics.  44 
  45 
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Our ability to understand and manipulate bacteria, from design of synthetic regulatory 46 

circuits6 to determining how bacterial pathogens establish and maintain infection in their 47 

hosts, demands a sophisticated understanding of gene regulatory processes. Bacterial 48 

gene regulation occurs primarily at the level of transcription7, but while decades of 49 

research has produced a wealth of knowledge about RNA polymerase and its interactions 50 

with promoters, repressors, and activators of transcription, this work is primarily based on 51 

measurements averaged across a population of millions of cells. Therefore, much is still 52 

unclear about how transcription takes place in individual cells in the context of a constantly 53 

changing cellular environment2. In rapidly proliferating cells, transcription occurs on a 54 

chromosome that is under continuous replication8,9. However, although there has been 55 

some exploration of the effects of replication on individual genes10,11, the transcriptome-56 

wide consequences of this perturbation are unknown12,13. Measuring global gene 57 

expression during the replication cycle has traditionally been hampered by the 58 

requirement for analysis of synchronized populations at a bulk level, limiting this analysis 59 

to organisms such as Caulobacter crescentus14–16 where natural biological features 60 

facilitate synchronization, or to populations synchronized by batch synchronization 61 

methods such as starvation17 or temperature shift18 that may be both of questionable 62 

efficacy and liable to introduce artefacts19. 63 

 64 

Here we combined state-of-the-art bacterial single cell RNA sequencing (scRNA-seq)20–65 

23 with a new cell cycle analysis framework to reveal extensive transcriptional variation 66 

during the cell cycle in two unrelated species – the model organism and Gram-negative 67 

rod Eschericha coli (E. coli), and the Gram-positive coccus Staphylococcus aureus (S. 68 

aureus), both major bacterial pathogens. We identified first a global replication-dependent 69 

pattern that depends on a gene’s chromosomal location, then developed a predictive 70 

computational analysis framework to reveal diverse types of divergence from this pattern. 71 

In E. coli, we found an effect of a gene’s position within its operon on expression dynamics 72 

that is largely absent in S. aureus. Other genes diverged from the expected pattern in 73 

both amplitude and timing of their expression in ways that are sensitive to gene-specific 74 

factors such as repression state. Therefore, while DNA replication introduces a universal 75 

perturbation, how individual genes respond to this perturbation depends on their local 76 
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regulatory context, providing a new lens through which to understand the behavior of 77 

genes at their native loci.  78 

 79 

Global gene expression in proliferating bacterial populations is shaped by 80 

chromosomal organization. 81 

 82 

To investigate transcriptional heterogeneity in proliferating bacterial populations, we 83 

applied a recently-described scRNA-seq method, PETRI-seq20, to 73,053 individual S. 84 

aureus cells in exponential phase (Fig. 1A). S. aureus is an important human pathogen, 85 

yet little is known about heterogeneous gene expression dynamics within its populations. 86 

We detected on average 135 transcripts per cell (Fig. S1A), an increase on the 43 87 

transcripts per cell previously published for this species with this method20. As the data 88 

are very sparse, we denoised them using the single-cell variational inference (scVI) 89 

method, an unsupervised deep learning approach24. Studying gene-gene correlations, we 90 

recovered the expected covariance of genes within operons (Fig. 1B). However, when we 91 

investigated gene-gene correlations on a genomic scale, we discovered a striking ‘X-92 

shaped’ pattern of gene expression covariance (Fig. 1C, Fig. S2A). The central ‘X’ of this 93 

pattern reflects symmetry around the origin of replication, meaning that genes equidistant 94 

from the origin on each side of the chromosome correlate with each other. Beyond the ‘X’ 95 

itself, however, we observed an additional correlation directly between genes at the origin 96 

and terminus (Fig. 1C). This pattern was strengthened by averaging expression into 50 97 

kb bins by chromosome position (Fig. 1C), and was reproducible in a second independent 98 

dataset under the same conditions of 21,257 cells (Fig. S2C). It was detectable even 99 

without the use of scVI, although the signal was noisier (Fig. S2B). The pattern was 100 

abolished when we studied 55,894 cells in stationary phase, suggesting that it is a 101 

property of proliferating cells (Fig. 1D). 102 
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 103 
Figure 1: scRNA-seq reveals a global pattern of replication-associated gene covariance. 104 
A) PETRI-seq workflow20. Bacterial cells were fixed and permeabilized, then subjected to three 105 
rounds of cDNA barcoding to give transcripts of each cell a unique barcode combination. This 106 
method is highly scalable to multiple samples and tens of thousands of cells. B) Local operon 107 
structure is captured by gene-gene correlations (Spearman’s r). Operons are indicated by 108 
shared colors of genes. Gray genes indicate those removed by low-count filtering. Names of 109 
SAUSA300_RS04760 and SAUSA300_RS04765 are truncated. C & D) Global gene-gene 110 
correlations reflect chromosomal position in (C) exponential phase and (D) stationary phase S. 111 
aureus. Spearman correlations were calculated based on scVI-smoothed expression averaged 112 
in 50 kb bins by chromosome position. E) Simulated correlation patterns in unsynchronized E. 113 
coli populations at three different growth rates. F) Spearman correlations between scaled data 114 
averaged into 50 kb bins, as for (C) but for E. coli grown at three growth rates. G) Introducing 115 
ectopic origins of replication in E. coli leads to predictable perturbations in gene expression 116 
heterogeneity. Top: schematic of predicted replication patterns based on previous studies25–27. 117 
Middle: Predicted correlation patterns based on the copy number simulation. Bottom: Real 118 
correlation patterns in oriX and oriZ mutant strains, as in (C). Heatmaps of correlations without 119 
chromosome position-dependent binning are shown in Fig. S2D. 120 
 121 

As we observed correlations among genes that are equidistant from the origin of 122 

replication and cells in stationary phase did not show such correlations, we hypothesized 123 

that the ‘X-shaped’ pattern reflects the effect of DNA replication on gene expression. In 124 

the model organism E. coli, replication patterns are growth rate-dependent: at high rates 125 

of proliferation, overlapping cycles of replication occur simultaneously, whereas at slower 126 

proliferation rates one round of replication is completed before the next one begins8,28. 127 

This arises because the ‘C-period’, the time for one complete round of replication from 128 

the origin to the terminus, remains approximately constant and can be greater than the 129 
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doubling time8,28. The effect of replication on gene expression covariance should reflect 130 

this. To test this, we therefore measured the doubling times (td) of E. coli grown at 37 °C 131 

in three medium conditions (Fig. S3A): LB (26.0 ± 1.3 min), M9 minimal medium with 132 

glucose and amino acids (M9GA, 39.4 ± 2.3 min), and M9 medium with glucose only 133 

(M9G, 69.1 ± 9.8 min). We next developed a simulation to predict correlation patterns 134 

arising from gene dosage in cells proliferating with these doubling times (Fig. 1E & Fig. 135 

S4). At an intermediate growth rate (td = 39.4 min), we predicted a correlation pattern 136 

similar to that observed for S. aureus (Fig. 1C). However, simulating faster growth 137 

produced a nested “multi-X” pattern resulting from overlapping cycles of replication, and 138 

slower growth greatly reduced origin-terminus correlations (Fig. 1E). 139 

 140 

When we compared these predictions to the observed data for E. coli grown under the 141 

three conditions, we observed a close correspondence between simulated and observed 142 

expression patterns (Fig. 1F). Correlations became less defined at slower growth rates, 143 

although this may reflect technical noise due to lower transcript counts (Fig. S1B), 144 

resulting from lower RNA content at slower growth rates29. The correlation pattern of E. 145 

coli grown in M9G, the slow-growth condition, further resembled bulk RNA-seq of 146 

synchronized C. crescentus (Fig. S4C)15, a species that undergoes a single round of 147 

replication prior to asymmetric division14, which is a similar situation to that of slower-148 

growing E. coli. Next, we reasoned that if this pattern is driven by the effect of gene copy 149 

number on expression levels (as assumed in our simulation), we also expect to find a 150 

relationship between origin distance and expression levels. Indeed, despite high variation 151 

in intrinsic promoter activity, we found that on average gene expression decreased with 152 

distance from the origin, and this effect was stronger at faster growth rates30 (Fig. S5). 153 

Finally, while these patterns could theoretically arise due to reads from contaminating 154 

genomic DNA, multiple lines of evidence from the data (Fig. S6), as well as our 155 

observation of the X-shaped pattern in a previously published dataset of bulk RNA from 156 

synchronized C. crescentus15 (Fig. S4C), demonstrate that this is very unlikely to be the 157 

case and support our interpretation that the observed patterns are driven by the effect of 158 

DNA replication on mRNA abundance. 159 

 160 
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To further test our ability to predict global correlations from expected replication patterns, 161 

we examined strains in which normal replication is perturbed. We compared wild-type E. 162 

coli grown in LB to two strains with ectopic origins of replication at either 9 o’clock (oriX) 163 

or 3 o’clock (oriZ) positions in addition to oriC25–27. In these strains, replication initiates 164 

simultaneously at both native and inserted origins, while ending at the same terminus, 165 

ter25. Our simulation predicted perturbed correlation patterns that were almost mirror 166 

images of each other, given that the ectopic origins of the mutants we chose were nearly 167 

equidistant from oriC on each side of the chromosome (Fig. 2G). Again, we found that the 168 

observed patterns matched closely with our predictions (Fig. 2G). These results support 169 

the notion that DNA replication kinetics produce a predictable effect on transcriptional 170 

heterogeneity within a population of proliferating bacteria, and that this effect is sensitive 171 

to growth rate and genetic perturbations.  172 

 173 

The effect of chromosomal replication on transcription facilitates resolution of 174 

bacterial gene expression by cellular replication state. 175 

 176 

Since DNA replication exerts a strong influence over gene expression, we reasoned that 177 

this effect can be used to resolve a cell’s position within the replication cycle given only 178 

its transcriptome. To examine the distribution of cellular states in a population of cells, we 179 

projected gene expression measurements of LB-grown E. coli cells in two dimensions by 180 

uniform manifold approximation and projection (UMAP31). Cells arranged into a “wheel” 181 

shape (Fig. 2A) when we performed UMAP on expression averaged by chromosomal 182 

position (which was found to strengthen global correlation patterns, Fig. 1C). To 183 

determine the order of cells along this wheel, we calculated cells’ angle θc between UMAP 184 

coordinates (Fig. 2A). Examining gene expression as a function of θc, we observed waves 185 

of gene expression progressing from the origin to the terminus (Fig. 2B), suggesting that 186 

cells’ positions on this wheel reveal their replication state. Performing equivalent analysis 187 

to resolve replication states in S. aureus, we observed a similar pattern (Fig. 2C, Fig. 188 

S7B). These data suggest that we can infer a cell’s replication state from the 189 

transcriptome alone, and that this holds across different bacterial species. 190 

 191 
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 192 
Figure 2: Ordering expression by cell angle and gene angle provides a quantitative 193 
description of cell cycle gene expression. A) UMAP of LB-grown E. coli with expression 194 
averaged in 100 kb bins by chromosome position. Cell angle θc is the angle between UMAP 195 
dimensions relative to the center. For UMAP without averaging, see Fig. S7A. B & C) Heatmap 196 
of scaled gene expression in E. coli (B) or S. aureus (C) averaged in 100 bins by θc. D) Derivation 197 
of gene angle θg in LB-grown E. coli. Principal component analysis was performed on the 198 
transpose of the matrix in (B), and θg was defined as the angle between principal components 199 
(PCs) 1 and 2. Genes form a wheel in UMAP (Fig. S7C). E & F) The relationship between θg and 200 
origin distance for E. coli grown in LB (E) and S. aureus grown in TSB (F). G) Predicted replication 201 
patterns in LB-grown E. coli (td = 26.0 ± 1.3 min) and S. aureus (td = 24.9 ± 0.6 min). Overlapping 202 
rounds of replication lead to shared θg in simultaneously-replicated chromosomal regions. Note 203 
that greater overlap in replication rounds is observed for E. coli than for S. aureus. 204 
 205 

As we observed that the expression of most genes is strongly influenced by a cell’s 206 

replication state, we reasoned that we should also be able to order genes by their timing 207 

of expression within the cell cycle and that this would generally reflect their order of 208 

replication. To do this, we projected the genes themselves into two dimensions to derive 209 

a gene angle, θg (Fig. 2D). We observed a close relationship between the order of genes 210 

by θg and the distance from the origin of replication in both E. coli and S. aureus (Fig. 2E 211 

& F), suggesting that θg does indeed capture the order of replication. However, we also 212 

observed that the period of θg (i.e. the chromosomal distance associated with a 360° 213 

rotation) was less than the full origin-terminus distance, meaning that genes at multiple 214 

positions on the origin-terminus axis had the same θg value. We can interpret this to mean 215 

that at high growth rates, overlapping rounds of replication lead to simultaneous 216 

replication of genes at multiple distances from the origin. Furthermore, we observed that 217 

in E. coli, the gradient of change of θg with respect to origin distance decreased with 218 
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slowing growth rate (Fig. S7D & F). We can use this gradient to infer two parameters 219 

about the replication pattern. Firstly, this gradient provides an estimate of the average 220 

DNA polymerase speed. For E. coli in LB, this estimate was 780 bp/s (Fig. S7F),  very 221 

close to previously reported values of ~800 bp/s32,33. Secondly, the gradient can also be 222 

used to estimate an “overlap fraction” (Fig. 2G), the fraction of one round of replication 223 

happening before the previous one has finished. When we compared E. coli at different 224 

growth rates, we observed that, in line with expectations8,28, decreasing proliferation 225 

speed in E. coli is associated with reduced overlap in rounds of replication (Fig. S7E), 226 

while the average DNA polymerase speed (and hence the C-period) remains roughly 227 

consistent (Fig. 7F). In S. aureus, the reduced size of its genome (2.9 Mb vs 4.6 Mb in E. 228 

coli) explains why, despite similar proliferation rates and DNA polymerase speeds (Fig. 229 

S7F), less overlap in rounds of replication is observed than E. coli (Fig. 2G). Therefore, 230 

the gene angle θg and its relationship to distance from the replication origin provide a 231 

quantitative and interpretable description of the relationship between gene expression 232 

and global replication patterns. 233 

 234 

Finally, the two parameters we introduce here – the cell angle θc and the gene angle θg 235 

(Fig. S7 G & H) – led us to construct an inference model to predict the expression of a 236 

given gene (by θg) at a given point in the cell cycle (by θc), based on global replication-237 

dependent trends (Fig. S8). Thus based on a given pattern of gene expression, the model 238 

infers the state of the cell along the cell cycle; conversely, for a particular cell cycle state, 239 

the model infers an expected gene expression pattern based solely on a gene’s distance 240 

from the origin (and hence replication timing). Overall, we found a moderate correlation 241 

of this prediction with the observed data (Pearson’s r = 0.59, Fig. S9A), and subtraction 242 

of this prediction from the observed data eliminated the global correlation pattern (Fig. 243 

S9B), confirming that our model effectively captured position-dependent gene expression 244 

trends. 245 

 246 

 247 

 248 
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The global consensus pattern of gene expression reflects a replication-dependent 249 

gene dosage effect. 250 

 251 

We next sought to confirm that the transcriptional dynamics we inferred from the scRNA-252 

seq data represent cell cycle-dependent gene expression. To do this, we first identified 253 

three operons whose genes’ expression closely fits the model-predicted pattern (Fig. 3A), 254 

then compared our measurements for genes within the selected operons to cell cycle-255 

dependent gene expression measurements obtained using single molecule fluorescence 256 

in situ hybridization (smFISH)10,34. Overall, population-averaged expression 257 

measurements from the two methods were in close quantitative agreement (Fig. S10D). 258 

The smFISH approach resolves cell cycle by using cell length to infer cell age, thus 259 

defining the cell cycle relative to division timing10. By contrast, we defined cell angle θc = 260 

0 to be the assumed time of replication initiation (see Materials & Methods). As expected 261 

given these differing “start” points, we observed a phase shift in expression profiles 262 

between the two methods that was consistent across genes (Fig. S10E). Modeling of total 263 

DNA content as a function of cell length supported that this phase shift was roughly 264 

consistent with our choice of θc = 0 as the point of replication initiation (Fig. S10F), albeit 265 

with some discrepancy (see Materials & Methods). 266 

 267 

By correcting for this phase shift between methods, we aligned the scRNA-seq profile to 268 

that of the smFISH data (Fig. 3B). In doing so, we observed that expression dynamics 269 

inferred by the two methods were highly correlated, confirming that our scRNA-seq 270 

approach captures cell cycle-dependent expression. Moreover, while our scRNA-seq 271 

measurements capture only relative expression of a gene among total cellular mRNA, our 272 

smFISH experiments additionally provide us absolute abundance. This revealed a 273 

discrete twofold stepwise increase in expression (Fig. 3B), consistent with genes that are 274 

sensitive to gene dosage but otherwise exhibit constant expression10. These observations 275 

support an interpretation that the model-predicted pattern corresponds to cell cycle 276 

expression variation driven by gene dosage.  277 

 278 
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 279 

Figure 3: Genes show a spectrum of divergence from a dosage-driven consensus pattern. 280 
A) Expression of genes in operons that conform to the consensus pattern across 100 bins 281 
averaged by θc. Expression is z-scores derived from scVI (jagged lines) or predicted as a 282 
replication effect (smooth, red lines). B) Comparison of scRNA-seq and smFISH data for genes 283 
within non-divergent operons. From left to right: 1) Microscopy images of E. coli cells labeled 284 
using smFISH against the indicated gene (cspA is visualized with alternative contrast; for negative  285 
control see Fig. S10A); 2) scRNA-seq expression shown as fraction of  total cellular mRNA 286 
(expression is averaged in 100 bins by θc); 3) mRNA concentration, measured using smFISH, as 287 
a function of cell length. Single-cell data (scatter plot) was binned by cell length (shaded curve, 288 
moving average ± SEM, 10% sample size per bin). Dashed lines indicate the twofold length range 289 
where most cells reside, used to infer the mean values at birth and division; 4) Alignment of scaled 290 
data from smFISH and scRNA-seq measurements; 5) Absolute mRNA copy number, measured 291 
using smFISH, as a function of cell length. Single-cell data was processed as in column 3 (5% 292 
sample size per bin). Black line, fit to a sum of two Hill functions, corresponding to two gene 293 
replication rounds. C) Expression of divergent genes compared to model predictions (as in (A)). 294 
D) Comparison of scRNA-seq and smFISH as in (B) but for divergent genes. See Material and 295 
Methods for further details. 296 
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 297 

Genes that diverge from the global consensus pattern exhibit gene dosage-298 

independent features. 299 

 300 

While many genes conform to this gene dosage-driven expression pattern, others differ 301 

from it in a variety of ways. To identify genes that diverged from the expected pattern, we 302 

used the predictive model developed above to derive a score for divergence, which we 303 

found to be correlated between replicates for genes that showed high variance across the 304 

cell cycle (Pearson’s r = 0.80, Fig. S9D). We then focused on three operons whose genes 305 

strongly diverged from the expected pattern, two of which were involved in replication 306 

initiation and elongation (dnaAN-recF and nrdAB-yfaE, respectively) and one involved in 307 

the response to reactive electrophilic species (nemRA-gloA)35–37. Divergent genes within 308 

the same operon showed highly similar expression profiles (Fig. 3A & C), but showed 309 

reproducible patterns that differed markedly from predictions (Fig. 3C), while also closely 310 

aligning with smFISH measurements (Fig. 3D, Fig. S11). Moreover, both scRNA-seq and 311 

smFISH showed that the amplitude of cell cycle expression (i.e. the relative change 312 

between cell cycle minimum and maximum expression) was higher for these divergent 313 

genes than the non-divergent ones (Fig. S10G). Finally, absolute mRNA copy number 314 

measurement demonstrated that unlike the non-divergent genes, dnaA and nrdA do not 315 

conform to a dosage-related step function (Fig. 3D). Taken together, therefore, we 316 

observe that genes diverging from the predicted global pattern do so in both shape and 317 

timing of expression profile, as well as amplitude, suggesting that additional factors 318 

beyond gene dosage drive their expression dynamics. This motivated us to investigate 319 

further the factors shaping the divergences in each species. 320 

 321 

The location of genes within operons influences cell cycle expression dynamics in 322 

E. coli. 323 

 324 

We first sought to determine what contributes to differential timing of expression profiles 325 

among divergent genes. In E. coli, we observed the systematic bias that the majority of 326 

divergent genes showed delayed expression dynamics relative to predictions (θg is more 327 
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“clockwise” than θg-pred, Fig. 4A). Many of these genes were encoded in large operons, 328 

such as those involved in energy biogenesis (e.g. nuo and atp operons) and cell surface 329 

synthesis (e.g. the mraZ-ftsZ operon). We found that genes with a more distal position 330 

within these operons exhibited a greater delay (Fig. 4B, Fig. S13A). Moreover, this delay 331 

was relative to the timing of replication: in genes whose replication-predicted pattern 332 

changed in the oriZ mutant, expression shifted in this strain so that the delay was relative 333 

to this new replication time (Fig. 4B). Across all genes, we observed a modest but highly 334 

significant correlation between this “angle difference” and distance from the 335 

transcriptional start site (TSS) (Fig. 4C). We hypothesized that this delayed phenotype 336 

arises due to the time for RNA polymerase (RNAP) to reach genes after replication by 337 

DNA polymerase (DNAP) has occurred. The speed of RNAP has previously been 338 

estimated as 40 nt/s10,38, much slower than the ~800 nt/s speed for DNAP (32,33 and Fig. 339 

S7F). By performing linear regression to measure the angle difference/transcriptional 340 

distance relationship (Fig. 4C) and converting θg into time by assuming that 360° is 341 

equivalent to one doubling time of 26 min, we infer that distance from the TSS is 342 

associated with a delay that is consistent an with average RNAP speed of 32 nt/s (38 nt/s 343 

in a second replicate, Fig. 13C). Therefore, our data support the hypothesis that when a 344 

gene is replicated, the time for expression to increase to the higher-expressed state (due 345 

to higher gene dosage) correlates with the time for RNAP to reach that same gene after 346 

transcription from the replicated locus restarts. 347 

 348 

To further understand the nature of this transcriptional distance effect, we focused on a 349 

single operon encoding the NADH dehydrogenase I complex (nuo). We observed a 350 

delayed effect that increased with distance from the major TSS for this operon, similar to 351 

the delay recently observed for this operon in response to transcription initiation inhibition 352 

by rifampicin7 (Fig. 4B). Additionally, however, where coverage of genes close to the TSS 353 

increase in expression immediately after the predicted time of gene replication, coverage 354 

at the distal end of the operon dropped sharply before recovering to a higher level (Fig. 355 

4D & E). A similar drop was observable for genes far from the TSS in the mraZ-ftsZ 356 

operon (Fig. S13B). A potential mechanistic explanation for this is as follows: since 357 

passage of the replication fork leads to local disruption of ongoing transcription39, genes 358 
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at the distal end of a transcript are more likely to experience disruption before their 359 

transcription can be completed, and there will be a longer delay before new transcription 360 

of these genes resumes after replication. This in turn would lead to a post-replication drop 361 

in expression of genes far from the TSS, compared to an immediate rise in genes close 362 

to it. In turn, this would lead to higher amplitude of expression (maximum vs minimum 363 

expression) within the cell cycle for genes far from their TSS . Consistent with this, we 364 

observed a weak but significant correlation in E. coli between genes’ distance from their 365 

TSS and their amplitude of expression (Spearman’s r = 0.16, P = 2.3 x 10-10) (Fig. S13D). 366 

We note that many long operons in E. coli (e.g. the nuo and mraZ-ftsZ operons described 367 

here, Fig. 4D, Fig. S13B, and 40) contain internal promoters, and we suggest that these 368 

may contribute to expression by buffering the effects of replication-associated abortive 369 

transcription in long operons. 370 

 371 

Finally, we asked whether similar trends could be observed in S. aureus. In contrast to E. 372 

coli, we did not observe an excess of “delayed” genes among the divergent genes (Fig. 373 

4F). Moreover, the relationship between operon position and the difference between 374 

observed and predicted gene angles was weaker in this species (Fig. 4G), with no 375 

observable effect of distance from the TSS on expression amplitude (Spearman’s r = 376 

0.01, P = 0.73) (Fig. S13D). From the gradient of this relationship, we predicted that 377 

distance from the TSS introduces a delay of 64 nt/s (92 nt/s and 59 nt/s in additional 378 

replicates, Fig. S13C). These differences between species persisted even when operons 379 

were redefined according to simpler criteria (tandemly arrayed genes with intergenic 380 

distance less than 40 bp41, Fig. S13E). One potential explanation for this is that if the 381 

RNAP processivity rate were faster in S. aureus than in E. coli, the delay before it reached 382 

genes at the distal end of operons would be far less pronounced. In keeping with this, 383 

experimental measurement of RNAP by a reporter system in Bacillus subtilis, like S. 384 

aureus a firmicute of the order Bacillales, suggested that it was substantially faster (75–385 

80 nt/s) than its counterpart in E. coli measured by the same method (~48 nt/s)42,43. 386 

Therefore, the interplay between DNAP and RNAP processivity may lead to species-387 

specific effects of operon position on cell cycle expression dynamics. 388 

 389 
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 390 

Figure 4: A gene’s position within its operon produces a characteristic delay in expression 391 
dynamics in E. coli but not S. aureus. A) Plot of divergence from predictions against the 392 
difference between predicted and observed angles in E. coli, with divergent genes in red. Angle 393 
difference therefore represents whether a gene is expressed earlier or later than expected, as 394 
indicated by the black arrows. B) Cell cycle expression plots for operons showing “delayed” genes 395 
as in Fig. 3A & C but colored by position within the operon. Model-predicted expression is 396 
represented in red. Shown for WT and the oriZ mutant. C) Plot of maximum distance from a 397 
transcriptional start site against difference between predicted and observed angles in E. coli. Red 398 
line indicates the linear model fit and red points indicate averages of 2 kb bins. D) Normalized 399 
per-base read depth at the nuo operon locus for cells averaged in 10 bins by cell angle, θc. Traces 400 
are smoothed by a 1 kb centered rolling mean and colored by mean cell angle relative to the 401 
predicted timing of gene replication (see Materials & Methods). The nuo operon structure is 402 
indicated by the schematic above, with the surrounding genes in grey. E) Per-base read depth as 403 
shown in (D) for the nuo operon, but with expression shown as fold-change relative to expression 404 
at the predicted time of gene replication. F) Plot of divergence from predictions against the 405 
difference between predicted and observed angles, as in (A) but for S. aureus. G) Plot of 406 
maximum distance from a transcriptional start site against difference between predicted and 407 
observed angles, as in (B) but for S. aureus. 408 
 409 

 410 

 411 
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Repressed genes exhibit higher amplitude pulses in cell cycle gene expression. 412 

 413 

Although the position of genes within operons explains the delayed expression pattern 414 

observed in E. coli, it can not explain divergent patterns for many other genes in both E. 415 

coli and S. aureus. Therefore, we investigated more closely the shape of cell cycle 416 

expression curves for those genes that had reproducible dynamics across replicates (Fig. 417 

S14B). To compare genes at different chromosomal loci, we introduced an alignment 418 

procedure whereby time is represented as progression by cell angle relative to a gene’s 419 

predicted replication time, θc-rep (Fig. 5A). Most genes rise rapidly (presumably due to a 420 

doubling of gene dosage) before declining as a relative fraction of the transcriptome. 421 

Many genes, however, exhibited patterns that could not be explained by gene dosage 422 

effects alone.  423 

 424 

To identify the range of behaviors, we partitioned E. coli genes into 20 clusters based on 425 

the aligned dynamics (Fig. 5B). Of these, several exhibited particularly divergent 426 

expression, differing from the expected pattern in both the timing of expression dynamics 427 

and the amplitude (i.e. the relative difference between maximal and minimal cell cycle 428 

expression). Cluster E. coli (Ec) 12 comprised the nrdAB-yfaE operon and cluster Ec5 429 

contained the dnaAN-recF operon and other delayed expression genes, including some 430 

nuo genes. Cluster Ec17 showed an early-peaking pulse in expression with greater 431 

amplitude than most genes (Fig. 5C). Many genes in these clusters were in operons that 432 

encode repressors, at least some of which have autorepressive activity (including nemA, 433 

which is co-transcribed with the autorepressor nemR) (Table S4). Cluster Ec9, whose 434 

members peak at the expected time but show increased amplitude (Fig. 5D), also 435 

included several repressed genes (Table S4), such as the glyoxylate shunt operon, 436 

aceBAK, which is IclR-repressed. While these clusters showed the most dramatic 437 

patterns, other clusters composed of low-expressed genes showed similar trends (Fig. 438 

S14A). Globally, we observed that lower average expression was associated with 439 

expression amplitude when amplitude was measured either as peak-to-trough fold 440 

change or standard deviation after mean-adjustment (Fig. 5E, Fig. S14C), and this trend 441 

was stronger when we focused on only the most-reproducible genes (Fig. S14D & E). 442 
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Previously, Wang and colleagues10 observed that for the lacZ gene in E. coli, gene 443 

replication is associated with a pulse in transcription, but that this effect is reduced as its 444 

repression by LacI is relieved. Our data suggest that similar repression-driven effects, 445 

while varying greatly between genes, may be present across the E. coli transcriptome.  446 

 447 

 448 

Figure 5: Repression is associated with higher amplitude in cell cycle gene expression. A) 449 
Procedure to align expression profiles of different genes. Smoothed expression for each gene 450 
normalized by division by its mean (left) is standardized by rotating cell angle so the predicted 451 
replication time expression is at zero. We term this aligned cell angle progression metric θc-rep.  452 
See Materials & Methods. B) Average aligned expression profiles for 20 k-means clusters in E. 453 
coli. The dotted black line represents average expression across all reproducible genes. C & D) 454 
Plots of individual genes from clusters in (B). E & F) Comparison of average expression to the 455 
log-ratio of peak to trough expression in E. coli (E) and S. aureus (F). G) Aligned expression 456 
profiles for select operons in clusters Sa11 and Sa18, with operon structure shown. H) Aligned 457 
expression profiles for GbaA regulon genes in JE2 and a gbaA- transposon mutant. Thick black 458 
and gray lines represent average expression across all reproducible genes. 459 
 460 

Extending this analysis to S. aureus, we also observed a negative relationship between 461 

average expression and amplitude of cell cycle expression, suggesting similar principles 462 

(Fig. 5F, Fig. S14F & G). After clustering genes based on their aligned dynamics, we 463 

noted extreme divergence in several clusters, in which we identified genes belonging to 464 
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genome-integrated mobile genetic elements (MGEs) (Fig. S15). Genes within these 465 

clusters were localized within the core of the MGE, suggesting a role in MGE mobilization 466 

as opposed to host-related functions (such as virulence factors)44–46. After excluding all 467 

MGE genes, however, a range of behaviors were still evident (Fig. S14H). For example, 468 

as in E. coli, we observed high amplitude and delayed dynamics in a cluster, S. aureus 469 

(Sa) 9, comprised of dnaAN. Analogous to clusters Ec17 and Ec9 in E. coli, we observed 470 

high-amplitude clusters with (Sa18) and without (Sa11) a “left” shift, indicating that 471 

expression peaked earlier than expected (Fig. S14I & J). Sa11 contained a range of genes 472 

including the heat shock response operon, hrcA-grpE-dnaK, and an amino acid 473 

biosynthesis operon, hom-thrCB, which showed a particularly large expression amplitude 474 

(Fig. 5G). Sa18 was almost exclusively composed of genes in the GbaA regulon (Fig. 475 

5G). In contrast, another cluster (Sa12) showed delayed dynamics (Fig. S14K). Notably, 476 

this included several genes involved in stress and virulence. 477 

 478 

Since high amplitude in gene expression is typically associated with low average 479 

expression levels, and based on previous observations10,47,48, we reasoned that 480 

transcriptional repression could be driving the high amplitude pulses observed for genes 481 

in certain clusters (Ec9, Ec17, Sa11, Sa18). Therefore, we focused on genes of the S. 482 

aureus GbaA regulon (Fig. 5G), which showed a particularly strong early pulse in 483 

expression. This regulon consists of two divergent operons (referred to here as “GbaA-L” 484 

and “GbaA-R”) that are repressed by GbaA. GbaA is a transcriptional repressor encoded 485 

by gbaA within the GbaA-R operon whose repression is relieved by reactive electrophilic 486 

species such as quinones or aldehydes49,50. To test whether GbaA repression was 487 

responsible for the divergent dynamics of its regulon, we compared wild-type expression 488 

dynamics to those of a gbaA transposon mutant, where GbaA-mediated repression 489 

should be relieved. Since transposon insertion happens within the GbaA-R operon, 490 

transcription of this locus was disrupted, whereas in the GbaA-L operon we observed a 491 

>100-fold increase in expression (Fig. S16A) due to loss of repression. As predicted, this 492 

loss of repression was accompanied by a clear reversion of GbaA-L expression to the 493 

expected pattern in the transposon mutant, as well as reduced expression amplitude (Fig. 494 

5H). To further verify that this change resulted directly from loss of the regulator rather 495 
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than disruption of the locus, we measured transcription from the GbaA-L promoter upon 496 

integration at an alternative chromosomal locus. While repression by GbaA was less 497 

efficient at this locus than for native GbaA-L (Fig. S16B), we nonetheless observed a 498 

spike in reporter expression on a wild-type JE2 background that was absent when the 499 

reporter was integrated on a gbaA- transposon mutant background (Fig. S16C), further 500 

supporting that the GbaA regulon dynamics arise due to repressor-promoter interactions. 501 

These observations suggest that repression drives the high-amplitude pulses in 502 

expression seen for low-expressed genes. 503 

 504 

Discussion 505 

 506 

Our analysis reveals, for the first time, the cell cycle transcriptomes of rapidly 507 

proliferating bacteria. Although the expression of most genes fluctuates, crucially, these 508 

fluctuations do not appear to be a response to cell cycle-dependent changes in the 509 

cellular environment (with a few exceptions: DnaA is not only the major regulator of 510 

replication initiation51, but also regulates its own transcription in a cell cycle-dependent 511 

fashion52,53, explaining its highly divergent expression in both species). Instead, gene 512 

expression fluctuations during the cell cycle appear to be responses to the local 513 

perturbation that each gene experiences upon passage of the replication fork. This 514 

appears to be the case even for major cell cycle regulators and explains why despite 515 

the known cell cycle-dependent fluctuations of ftsZ54,55,which  encodes the major 516 

regulator of cell division in E. coli, division timing appears to be relatively insensitive to 517 

the expression patterns of this protein56–58. A direct link between ftsZ replication and 518 

transcriptional inhibition was previously postulated but the authors at the time could not 519 

provide a satisfactory mechanistic explanation55. Here, we explain these augmented 520 

fluctuations in ftsZ abundance as a consequence of transcription from a distant 521 

promoter40 (Fig. 4B, Fig. S13B). Our observations therefore support the view that the 522 

cytoplasm may be relatively invariant during cell cycle progression of bacteria in a state 523 

of balanced growth59, at least as it pertains to the activity of specific transcriptional 524 

modulators. Thus a gene is likely to experience few environmentally-induced changes to 525 

its transcription during the cell cycle besides its own replication. While it is important to 526 
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consider the potential influence of global factors on gene expression (such as 527 

competition for RNA polymerase between genes60,61), it is not clear which of these could 528 

lead to the dynamics we describe here. By redefining cell cycle expression of a gene 529 

relative to its replication time, as measured by θc-rep (Fig. 5), we explicitly focus instead 530 

on the response of each gene after perturbation by its replication. This provides an 531 

expression trace specific to each gene, which we here term the Transcription-532 

Replication Interaction Profile (TRIP). 533 

 534 

Analysis of each species reveals a diversity of TRIPs that may reflect gene-specific 535 

variation in local regulatory motifs. This variation may arise from each gene’s distance 536 

from the promoter, local repression state, and possibly other factors such as chromatin 537 

structure, together generating a high degree of complexity that we are only beginning to 538 

untangle. Nevertheless, we can distinguish several archetypal behaviors of TRIPs (Fig. 539 

6). First, we delineate the non-divergent or “canonical” pattern (Class 1). For genes that 540 

fall into this category, expression increases in response to gene dosage at a rate that is 541 

likely to be proportional to mRNA half-life13, before being gradually diluted as a fraction 542 

of total mRNA as gene dosage increases the expression of subsequently-replicated 543 

genes. For genes outside this category, we observe divergence of TRIPs along two 544 

main axes: heterochrony, or differential expression timing, and heterometry, or 545 

differential amplitude (or “peak/trough ratio”). Many operons under repression exhibit 546 

heterometry (Class 2 & 3), while a subset of these peak earlier than expected 547 

(heterochrony) (Class 2). Genes can also exhibit heterochrony as a “delayed” 548 

expression profile (Class 4). Finally, we note that in S. aureus, many genes located in 549 

MGEs, particularly those involved in mobilization, exhibit heterogeneity patterns that are 550 

entirely distinct from those of the host genome (Class 5). Future work will be required to 551 

fully describe the heterogeneous expression of these elements. 552 
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 553 

Figure 6: Classes of Transcription-Replication Interaction Profiles of non-divergent and 554 
divergent genes. Top left: Canonical TRIP driven by gene dosage. Other panels: Archetypal 555 
patterns of TRIPs that do not (Class 1) or do (Classes 2-5) diverge from this pattern. Genes in 556 
E. coli and S. aureus are represented as Ec and Sa, respectively. 557 
 558 

Mechanistically, much remains to be explored. For genes with Class 2 or 3 TRIPs, 559 

many genes are under repression (or even autorepression). This suggests a possible 560 

mechanism in which the passage of the replication fork through the promoter transiently 561 

displaces the repressor, leading to a temporary increase in transcription shortly after 562 

replication10,62. Other modes of replication-induced transcription have also been 563 

suggested47,48. However, it is unclear what drives the precise timing of these transient 564 

increases. In E. coli, iclR, which encodes a transcriptional repressor that represses itself 565 

as well as the neighboring aceBAK operon, has a Class 2 TRIP, whereas its target, 566 

aceBAK, belongs to Class 3. This demonstrates that the presence of binding sites for a 567 

particular repressor may not alone be sufficient to determine the expression timing. For 568 

Class 4, the delayed pattern, the effect of gene position within operons in E. coli clearly 569 

points to the greater disruption experienced by genes far from their promoters, but in 570 

other cases, particularly in S. aureus, there must be other drivers. Overall, while certain 571 

themes emerge, many questions remain about how these myriad influences on gene 572 

expression interact to produce the observed patterns.  573 

 574 

As our interpretation of these signatures continues to improve, we may be able to 575 

distinguish additional modes of regulation. For example, does low expression of a 576 

specific gene reflect weak intrinsic promoter strength (subject to positive regulation) or 577 

strong repression (subject to negative regulation)? A Class 2 or 3 TRIP would indicate 578 

the latter. Alternatively, what does the delay in expression of genes associated with 579 
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stress responses or virulence in S. aureus tell us about their regulation, and how might 580 

this relate to the phenotypic heterogeneity in stress sensitivity and virulence observed in 581 

bacterial pathogens63? Our work demonstrates that this approach can be extended 582 

beyond standard model organisms to allow comparison across genes, genetic 583 

backgrounds, or even distantly-related species, helping to characterize control of 584 

virulence or resistance genes in an emergent pathogen, or regulation of a gene cassette 585 

with potential biotechnology applications64. Finally, our ability to infer global parameters 586 

directly from the data, including replication patterns and both RNA and DNA polymerase 587 

speeds, facilitates comparison across very different growth conditions and will allow us 588 

to connect gene-specific dynamics to the overall state of the cell. 589 

 590 

This work represents only an initial effort in this direction, but provides a foundational 591 

framework for genome-wide exploration of novel bacterial regulatory phenomena. As 592 

bacterial scRNA-seq methods evolve in scale, capture efficiency, and cost5,65–67, we 593 

predict that these methods, in combination with microscopy and molecular genetics 594 

approaches that allow mechanistic dissection of these phenomena, will illuminate a 595 

diverse ecosystem of dynamic transcriptional processes.  596 
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Materials and Methods 597 

 598 

Bacterial strains and growth conditions 599 

Strains used are listed in Table S1. All E. coli strains (a gift from Dr. Christian Rudolph) 600 

were routinely grown in modified Luria Broth (LB) (1% tryptone (Sigma-Aldrich), 0.5% 601 

yeast extract (Sigma-Aldrich), 0.05% NaCl, pH adjusted to 7.426). For growth in minimal 602 

media, an M9 base (1X M9 minimal salts (Gibco), 2 mM MgSO4, 0.2 mM CaCl2) was 603 

supplemented with 0.4% glucose (M9G) or with both 0.4% glucose and 0.2% acid casein 604 

peptone (Acros Organics) (M9GA). All S. aureus strains were routinely grown in Bacto 605 

tryptic soy broth (TSB) (BD Biosciences). The gbaA transposon mutant was provided by 606 

the Network on Antimicrobial Resistance in Staphylococcus aureus (cat. # NR-46898). 607 

 608 

Growth curves 609 

Strains were grown overnight in LB (E. coli) or TSB (S. aureus) at 37°C, shaking at 225 610 

rpm. For initial experiments with S. aureus (Datasets D3 & D4), strains were diluted to an 611 

A600 value of 0.05 in prewarmed TSB, after which A600 was measured at the times 612 

specified. A600 was measured on a BioMate 3S spectrophotometer (Thermo Scientific). 613 

For experiments with S. aureus in balanced growth (Datasets D5-D8), overnight cultures 614 

were diluted in TSB first to 0.005, then after 3 hr diluted again to 0.005 before measuring 615 

A600 at the time intervals specified. For E. coli growth curves, strains were diluted to an 616 

A600 value of 0.05 and incubated for 2 hr in the desired medium then diluted again in the 617 

same prewarmed medium to an A600 value of 0.005, after which A600 was measured at 618 

the time intervals specified. Where E. coli cells were diluted into a different medium, cells 619 

were washed once with PBS prior to dilution. To measure growth rate, a linear model 620 

log2(A600) ~ mT + c was calculated for the linear portion of this relationship (where T is 621 

the time in minutes) using the LINEST function in Microsoft Excel and the doubling time 622 

in minutes td was calculated as 1/m.  623 

 624 

PETRI-seq analysis 625 

Cells were grown as described for the growth curves except that after specific time 626 

intervals (for S. aureus, 2 hr 20 min in initial experiments, 1 hr 30 min in balanced growth 627 

experiments; for E. coli, 2 hr, 3 hr, and 7 hr in LB, M9GA, and M9G, respectively, when 628 

growth rates appeared constant (Fig. S3)) cells were harvested by centrifugation and 629 

resuspension in 4% formaldehyde in PBS. For S. aureus initial experiments, 630 

centrifugation was at 10,000 x g, 1 min at room temperature and for E. coli and balanced 631 

growth S. aureus experiments, centrifugation was at 3,220 x g, 5 min, 4°C. PETRI-seq 632 

was carried out as described previously20 with the following modifications. Initial fixing, 633 

permeabilization, and DNase treatment were carried out as described but with cell wall 634 

permeabilization using 100 µg/ml lysostaphin (Sigma-Aldrich) for S. aureus and 100 µg/ml 635 

lysozyme (Thermo Scientific) for E. coli. For Dataset D4, samples were split into 636 
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processing with or without DNase treatment and subsequent wash steps, to test whether 637 

this would affect correlation patterns (suggesting contaminating genomic DNA could play 638 

a role). However, no difference was observed in the presence or absence of DNase 639 

treatment, although UMI/barcode was slightly higher after DNase treatment (Table S1). 640 

For barcoding, the number of cells included was reduced from 3 x 107 to a maximum of 1 641 

x 107, since preliminary experiments indicated lower input at this stage was associated 642 

with a higher UMI/barcode for S. aureus. Tagmentation was performed using the EZ-Tn5 643 

transposase (Lucigen) as described in the latest version of the PETRI-seq protocol 644 

(available at https://tavazoielab.c2b2.columbia.edu/PETRI-645 

seq/updates_April2021/PETRI_Seq_Protocol.pdf). Briefly, the transposase was loaded 646 

by incubating EZ-Tn5 with pre-annealed oligonucleotides 647 

(/5Phos/CTGTCTCTTATACACATCT and 648 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG) at 4 µM and 40% glycerol at room 649 

temperature for 30 min. Tagmentation was then performed incubating samples with 650 

loaded EZ-Tn5 (at a final further dilution of 400x) and 2x Tagment DNA buffer; either 651 

using the Nextera 2x Tagment DNA (TD) buffer or 20 mM 652 

Tris(hydroxymethyl)aminomethane; 10 mM MgCl2; 20% (vol/vol) dimethylformamide, pH 653 

adjusted to 7.6 with acetic acid68. After incubating for 5 min at 55°C and decreasing the 654 

temperature to 10°C, either Nextera NT buffer (Illumina) or 0.2% sodium dodecyl sulfate 655 

was added, allowing neutralization to proceed for 5 min at room temperature. Final 656 

amplification was performed with Q5 polymerase (New England Biolabs) using the 657 

NEBNext Universal i5 primer (New England Biolabs) and the N7 indices from the Nextera 658 

XT Index Kit v2 Set A (Illumina) as also described in the updated PETRI-seq protocol. 659 

Sequencing was performed on an Illumina NextSeq 500 to obtain 58 x 26 base paired-660 

end reads. For each barcoding experiment, multiple libraries of ~20,000 cells were 661 

prepared and sequenced, and no batch effects were noted across libraries. 662 

 663 

Pre-processing and scVI analysis 664 

Initial demultiplexing of barcodes, alignment, and feature quantification was performed 665 

using the analysis pipeline described in 20 except that feature quantification was 666 

performed at the gene level rather than operon level. Reference sequences and 667 

annotations were obtained from Genbank (https://www.ncbi.nlm.nih.gov/genbank/). E. 668 

coli reads were aligned to the K-12 MG1655 reference assembly (GCA_000005845.2) 669 

and S. aureus to the USA300_FPR3757 reference assembly (GCF_000013465.1). After 670 

initial processing, counts by cell barcode were pooled across different libraries and initial 671 

filtering was performed using Scanpy v1.7.169. Barcodes with UMI below a threshold (15 672 

for Dataset D1, D2, D4; 20 for Dataset D3, D5-7, 40 for Dataset D8) were removed, as 673 

well as any genes with fewer than 50 UMI across all included barcodes (100 for Dataset 674 

D3). To generate the denoised representation of the data, scVI v0.9.024 was applied with 675 

the following hyperparameters, chosen through grid search to distinguish between closely 676 
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related S. aureus strains in a pilot dataset: two hidden layers, 64 nodes per layer, five 677 

latent variables, a dropout rate of 0.1, and with a zero-inflated negative binomial gene 678 

likelihood (other hyperparameters maintained as defaults). Denoised expression values 679 

based on the scVI model were obtained using the scVI function 680 

“get_normalized_expression”. 681 

 682 

Cell cycle analysis 683 

Cells were assigned to cell cycle phases by calculating the angle θc relative to the origin 684 

between x and y coordinates in a two-dimensional UMAP embedding of the data as tan-685 
1(x / y), similar to the ZAVIT method our lab has described previously70,71. scVI-denoised 686 

expression values were first log2-transformed then converted to z-scores. Embeddings 687 

were computed by averaging these z-scores within bins according to chromosomal 688 

location (50-400 kb bins, depending on the dataset), and then performing two-689 

dimensional UMAP analysis using the umap-learn v0.5.1 library in Python (https://umap-690 

learn.readthedocs.io/en/latest/) with the ‘correlation’ distance metric. These embeddings 691 

were then mean-centered (Fig. 2A & Fig. S7B). To get the expression by cell angle matrix 692 

used in Fig. 2B, gene expression z-scores were then averaged within 100 equally spaced 693 

bins of θc to produce a cell angle-binned expression matrix. To order genes based on 694 

their cell cycle expression, gene angle, θg, was calculated as follows. PCA was performed 695 

on the transpose of the cell angle-binned expression matrix and θg was calculated as the 696 

angle between PCs 1 and 2 relative to the origin. Together, θc and θg are metrics for 697 

ordering of cells and genes, respectively, within the model of cell cycle gene expression 698 

described here. 699 

 700 

Modeling the gene angle-origin distance relationship 701 

While there was a strong relationship between origin distance D and gene angle θg, 702 

modeling this relationship is challenged by the fact that the relationship is “wrapped” with 703 

an unknown periodicity with respect to D (Fig. 2E & F, Fig. S7D) (i.e. after a period of 704 

increased θg with D, θg starts again at zero). To fit this relationship, a custom Bayesian 705 

regression analysis was developed according to the following model partially adapted 706 

from 72, with both θg and D standardized to the range -π to π:  707 
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θg ~	𝑣𝑜𝑛	𝑀𝑖𝑠𝑒𝑠(𝐴, 𝜅) 708 

𝑐𝑜𝑠(𝐴) 	= 𝛽!𝑐𝑜𝑠(𝛾𝐷) 	−	𝛽"𝑠𝑖𝑛(𝛾𝐷) 709 

𝑠𝑖𝑛(𝐴) 	= 𝛽"𝑐𝑜𝑠(𝛾𝐷) 	+	𝛽!𝑠𝑖𝑛(𝛾𝐷) 710 

 711 

Where: 712 

𝑙𝑜𝑔(𝜅)	~	𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, 1) 713 

𝛽
!
	~	𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, 0.5) 714 

𝛽
"
	~	𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, 0.5) 715 

𝑙𝑜𝑔(𝛾)	~	𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, 0.5) 716 

 717 

The von Mises probability distribution is a circular probability distribution here 718 

parameterized by A, the predicted mean angle, and κ, the concentration parameter 719 

(higher κ implies greater concentration of the distribution around A). The parameter ɣ can 720 

be interpreted as the gradient of D with respect to θg after standardizing both variables to 721 

to the range -π to π. The inverse of ɣ, 1/ɣ, is the gradient of θg with respect to D (after 722 

range standardization) and therefore is the fraction of the origin-terminus distance 723 

covered within a single span of θg. Therefore, 1 - 1/ɣ is the fraction of D during which the 724 

next round of replication has already initiated, referred to as the “overlap fraction” in Fig. 725 

2G & Fig. S7E. Here, ɣ is constrained to be positive by the lognormal prior distribution 726 

(Fig. S17), which is appropriate since the ordering of angles θg are reversed (i.e. 360 - θg 727 

when θg is in degrees) if during analysis this relationship shows a negative trend. This 728 

can occur because the directionality of PCs used to calculate θg is arbitrary. Posterior 729 

distributions for the parameters were obtained by Hamiltonian Monte-Carlo sampling 730 

using Rstan v2.21.373. Fitted values for θg based on D (θg-pred) were calculated by 731 

determining θg-pred for all sampled parameter values and then calculating the mean value 732 

of θg-pred as tan-1(mean(sin(θg-pred)) / mean(cos(θg-pred))). 733 

 734 

Calculating replication pattern statistics. We can use the gradient parameter, ɣ, of the 735 

gene angle-origin distance model to calculate statistics of the replication pattern. The 736 

parameter ɣ can be interpreted as the gradient of D with respect to θg after standardizing 737 

both variables to to the range -π to π. To convert the gradient to °/Mb (as in Fig. S7F), 738 

this value is multiplied by 360 divided by origin-terminus distance in Mb. The average 739 

DNA polymerase speed can be estimated from this as follows: 740 

𝑣#$%& 	= 	 (
10' 	× 	360

60	
)(𝑡(𝛾°/+,)

-! =	 (6	 × 10')(𝑡(𝛾°/+,)
-! 	 741 

Here, vDNAP is the DNAP speed in bp/s, td is the doubling time in min, ɣ°/Mb is the gradient 742 

of the gene angle-origin distance relationship in °/Mb. 743 

 744 

 745 

 746 
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Modeling the cell angle-gene angle relationship 747 

To predict expression based on cell angle θc and gene angle θg, a linear regression model 748 

was constructed using scikit-learn v0.24.174 with features generated from θc and θg. 749 

Specifically, both angles were converted to radians and then transformed into cos(θc), 750 

sin(θc), cos(θg), and sin(θg). All interactions and combinations of these terms up to a fourth 751 

degree polynomial were constructed using the scikit-learn PolynomialFeatures function. 752 

The untransformed θc and θg values in radians were also included as features. These 753 

features were then used to fit a Ridge regression model (ɑ = 10). The model was trained 754 

on scVI expression z scores averaged first in 100 bins by θc then in 100 bins by θg (i.e. 755 

the expression matrix used for Fig. 3F). An alternative approach considered was a non-756 

linear approach using the scikit-learn implementation of kernel ridge regression with 757 

kernel “rbf”. However, the fourth degree polynomial model performed similarly and was 758 

computationally far more efficient so was chosen (increasing the polynomial degree 759 

further made little difference to performance). 760 

 761 

Predicting expression dynamics based on DNA replication alone 762 

To derive a prediction of cell cycle gene expression dynamics based on the expected 763 

effect of replication alone, the two regression models above were combined to yield the 764 

pipeline in Fig. S8. Firstly, the gene angle-origin distance model (see Section “Modeling 765 

the gene angle-origin distance relationship”) was used to predict the expected value θg-766 

pred from origin distance D. Next, cell cycle expression was predicted using the cell angle-767 

gene angle regression model (see Section “Modeling the cell angle-gene angle 768 

relationship”) using θg-pred values. For cell angle θc, values used were the average θc 769 

values of cells binned into 100 equally spaced bins by θc. This gives a replication-770 

predicted gene expression matrix of 100 bins x number of genes. The success of this 771 

model fit was evaluated based on the correlation with the θc-binned expression z-scores 772 

derived from scVI (Fig. S9A & F), as well as the loss of global chromosome position-773 

dependent gene-gene correlations upon correction of scVI expression with replication-774 

predicted expression (Fig. S9B & G). Additionally, we used this modeling approach to set 775 

the zero angle for gene expression plots.  776 

 777 

Setting the position of θc = 0. Initially, the cell angle θc orders cells by their cell cycle 778 

position within a circle but the start point, when θc = 0, is arbitrary. This is not only 779 

challenging to interpret but impedes comparing across replicates. Therefore, we 780 

standardized θc so that θc = 0 was the predicted point of replication initiation. Using the 781 

inference approach described above, we predicted the gene expression profile by θc for 782 

an imaginary gene at D = 0 (i.e. at the origin of replication). We then determined the value 783 

of θc giving the minimum predicted expression, reasoning that if increased expression in 784 

this model is responsive to a doubling of copy number, the doubling event should occur 785 

at the expression minimum. Therefore, we determined this angle, θ0 to be the most likely 786 
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value of θc at which replication initiation occurs, rotating the angles by the operation (θc - 787 

θ0) mod 360 to set this point as 0°. This interpretation is roughly in accordance with the 788 

estimated timing of replication initiation as determined directly from smFISH data (Fig. 789 

S10F and see Section “Inferring cell-cycle phase from the DAPI signal”). Crucially, 790 

however, it also provides a point of standardization that allows in-phase comparison of 791 

cell cycle expression profiles across independent replicates.  792 

 793 

Identifying replication-divergent genes 794 

We identified replication-divergent genes based on two criteria: absolute variability by cell 795 

angle θc and divergence from the replication model.  796 

 797 

Identifying genes with high cell cycle variance. First, we identified highly variable genes 798 

as follows (based on the method implemented in Seurat v375). We normalized raw counts 799 

for library size (so that the total sum of UMI for each barcode was the median 800 

UMI/barcode), then to reduce sparsity while retaining cycle information, we averaged 801 

counts across 20 bins by θc. Next, we log2-transformed the data (removing any genes 802 

with zero values after binning to allow log-transformation). We observed a negative 803 

overall relationship between the mean and variance of genes in log-transformed data (Fig. 804 

S9C), to which we fitted a regression line with locally weighted scatterplot smoothing 805 

(LOWESS) using the Python package statsmodels v0.12.276. We used this fit to develop 806 

a mean-dependent variance threshold. In all cases, genes were considered highly 807 

variable if they had a ratio of observed to LOWESS-predicted variance > 1.3 as well as a 808 

log2 mean normalized expression > -10. These thresholds typically classified ~25% of 809 

genes as highly variable. 810 

 811 

Identifying genes with high divergence from predicted expression. Next, to quantify 812 

divergence from the replication model, we subtracted the replication-predicted expression 813 

from the scVI-derived expression z-scores (both averaged in 100 bins by θc) to “correct” 814 

for the effect of replication, and then calculated the standard deviation of this replication-815 

corrected value, σcorrected. A high σcorrected indicates that the dynamics behave differently 816 

from that expected based on replication alone. Thresholds for σcorrected (0.6 for E. coli, 0.5 817 

for S. aureus) were determined manually based on inspection of the relationship between 818 

σcorrected across two datasets and choosing a value above which the correlation between 819 

datasets was stronger (Fig. S9E & I) (below the threshold, lack of reproducibility of 820 

σcorrected suggests divergences are small and dominated by noise). To calculate 821 

peak/trough fold changes in expression, normalized gene expression derived from scVI 822 

was averaged into 100 bins by θc and then the ratio between the fourth highest and fourth 823 

lowest values were calculated (this was chosen instead of maximum/minimum values to 824 

increase robustness to noise). 825 

 826 
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Analyzing the effect of operon gene position on expression dynamics 827 

We identified the excess of genes with a “delayed” expression profile by calculating the 828 

angle difference as 𝑡𝑎𝑛-!(𝑠𝑖𝑛(θg - θg-pred) / cos(θg - θg-pred)) where θg and θg-pred are the 829 

observed and predicted gene angles in radians, respectively. For operon annotations, E. 830 

coli transcription units from Biocyc 77,78 (https://biocyc.org/) were used. To investigate the 831 

relationship between gene distance from transcriptional start sites and angle difference 832 

in E. coli, all genes in polycistrons (transcription units with more than one gene) were 833 

included. The distance was measured from the annotated transcription unit start site to 834 

the midpoint of each gene. Where genes were in multiple transcription units, the longest 835 

distance from a start site was taken. Angle difference was converted into time by dividing 836 

the angle by 360° then multiplying by the doubling time in seconds. For S. aureus, operon 837 

annotation was obtained from AureoWiki79 (aureowiki.med.uni-greifswald.de). Since this 838 

provided only the genes within an operon and not its start, the first base of the first gene 839 

was taken as the transcriptional start site. 840 

 841 

Per-base analysis of the nuo and mraZ-ftsZ operons. To analyze per-nucleotide coverage 842 

of the nuo operon (Fig. 4D & E), we obtained “.bam” alignment files from the analysis 843 

pipeline (see “Pre-processing and scVI analysis) and removed PCR duplicates with UMI-844 

tools v0.5.580. Next, for a genomic interval encompassing the nuo operon and neighboring 845 

genes, we quantified per-base per-barcode read depth using the mpileup function in 846 

Samtools v1.3.181. This coverage was then normalized by total per-cell library depth 847 

(division by per-cell total mRNA count then multiplication by median mRNA count across 848 

all cells) and averaged in 10 bins by θc. For the plots in Fig. 4D & E, we recenter θc so 849 

that 0° is the predicted minimum expression of nuoA, the first gene in the operon, so that 850 

θc corresponds to the approximate time elapsed since the locus was replicated. Analysis 851 

of the mraZ-ftsZ locus was carried out as for the nuo operon except that θc was recentered 852 

so that 0° is the predicted minimum expression of mraZ. 853 

 854 

Aligning gene expression profiles of based on their predicted minimum expression 855 

To align cell cycle gene expression profiles as displayed in Fig. 5A & C, we use the 856 

replication-predicted expression profiles derived above to determine the minimum cell 857 

angle, θc-min, predicted for each gene. Profiles of gene expression by cell angle (averaged 858 

in 100 bins by θc as used elsewhere) are then rotated so that θc = 0 corresponds to this 859 

new minimum by the transformation (θc - θc-min) mod 360 to give the cell angle relative to 860 

the predicted timing of a gene (θc-rep). Gene expression profiles are then divided by their 861 

mean to center them, but they are not scaled (so that amplitude differences are 862 

preserved). These profiles are used to generate the k-means clusters described.  863 

 864 

 865 

 866 
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Simulating the effect of DNA replication on gene expression 867 

We predicted the gene-gene correlation patterns arising from DNA replication using a 868 

simulation written in Python (see Fig. S4) as follows. Cells were represented by genomes 869 

with 200 genes, each represented as a single integer and divided into individual 870 

replication units. In the simplest case, genomes were divided into two units of 100 genes 871 

(i.e. the two “arms” of the chromosome). In each cell, replication initiation events were 872 

simulated at intervals determined by a Poisson distribution with expected value μ. After 873 

an initiation event, replication proceeds in stepwise fashion along the length of each 874 

replication unit, doubling the copy number at each point until the end of that replication 875 

unit has been reached. We also simulate “cell division” events in which all copy numbers 876 

are halved. These are timed independently from replication initiation but in the same way 877 

(at Poisson-distributed intervals with rate μ), with an additional offset from the first 878 

replication initiation event. In practice, we found that this offset did not affect correlations, 879 

since all genes are scaled equally. We used an initial offset of 150 steps (i.e. 1.5x the 880 

time to replicate a 100 gene replication unit, equivalent to the 40 min C-period + 20 min 881 

D-period originally proposed for E. coli B/r 8). For each simulation, we generated 1,000 882 

cells. Cells were initiated one at a time to yield an unsynchronized population, then the 883 

simulation was run for a further 1,000 steps with the whole population. We then 884 

normalized expression by total counts and calculated Spearman correlations across all 885 

genes. In order to simulate specific doubling times, the rate μ was calculated as 𝜇	 =886 

	(𝑛	 × 𝑡()	/	𝑡. where n is the number of genes in the longest replication unit (here, 100 887 

genes), td is the doubling time, and tc is the C-period (here a value of 42 min was chosen 888 

for E. coli MG1655 based on 82). The td/tc ratio represents the fraction of one round of 889 

chromosomal replication that can take place in one cell cycle. Finally, for simulation of 890 

cells with additional origins of replication, genes were split into replication units according 891 

to the following assumptions: a) all origins initiate replication simultaneously; b) replication 892 

stops at the termination site ter, which is halfway along the chromosome; c) genes are 893 

replicated by the nearest origin (unless the replication fork must pass through ter to reach 894 

that gene). 895 

 896 

Bulk RNA-seq analysis 897 

For the analysis of bulk RNA-seq from 15 (Fig. S4C), we accessed data from the Gene 898 
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) under accession ID 899 
GSE46915. Counts were size factor-normalized with DESeq2 v1.32.0 83, then data were 900 
standardized to z-scores and averaged into 100 kb bins by chromosomal position. 901 
Spearman correlations of binned values across all time points and replicates are shown. 902 
 903 
Single-molecule fluorescence in situ hybridization (smFISH) 904 

Our smFISH protocol was described previously34,84. Briefly, we first designed seven sets 905 

of antisense DNA oligonucleotide probes. Six probe sets were against E. coli mRNAs 906 

dnaA, nrdA, nemA, metN, rho, and cspA, and another against bacteriophage lambda cI 907 
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mRNA (which serves as a negative control, since the probes have no target in the 908 

bacterial cell). All oligos were synthesized with a 3’ amine modification (LGC Biosearch 909 

Technologies). The oligos against a given gene (oligo set) were pooled and covalently 910 

linked to 5-Carboxytetramethylrhodamine succinimidyl ester (5’-TAMRA SE, Cayman 911 

Chemical) and purified using ethanol precipitation. Probe sequences are listed in Table 912 

S2. 913 

 914 

Microscopy 915 

An inverted microscope (Eclipse Ti2E, Nikon), equipped with motorized stage control 916 

(TI2-S-SE-E, Nikon), a universal specimen holder, an LED lamp (X-Cite XYLIS), a CMOS 917 

camera (Prime 95B, Photometrics), and a ×100, NA 1.45, oil-immersion phase-contrast 918 

objective (CFI60 Plan Apo, Nikon) was used for imaging. The following fluorescent filter 919 

sets were used: DAPI (Nikon, 96370) and Cy3 (Nikon, 96374).  920 

 921 

E. coli cells were grown as described in Section “Bacterial strains and growth conditions”. 922 

After overnight culture, dilution, and re-dilution at 37°C, 220 rpm, cells were grown to a 923 

density of !"#$%&"'()*"+,-")./("0)*)&"12"34",+"/54'5-)"6.7"/,44)/')8&"933)89.')4:"+9;)8".*8"924 

<)-3).=949>)8&"'()*"9*/5=.')8"69'("'()"+45,-)7/)*'"<-,=)"7)'&"6.7()8. Next, we loaded 2 925 

μl of the cell suspension on a circular coverslip, then covered it by a 1 × 1 cm agarose 926 

pad made of 1.5% agarose (Sigma) in 1× PBS, as described in 34. The coverslip was then 927 

lodged in an Attofluor Cell Chamber (Invitrogen), which was then placed onto the 928 

microscope’s slide holder and the cells were visually located using the phase-contrast 929 

channel. Images were taken in the following order: phase-contrast (100 ms; to detect the 930 

cell outline), Cy3 (400 ms; smFISH-labeled mRNA), and DAPI (4′,6-diamidino-2-931 

phenylindole) (100 ms; bacterial DNA). Snapshots were taken at seven z-positions (focal 932 

planes) with steps of 300 nm. Images were acquired at multiple positions on the slide, to 933 

image a total of 500–2000 cells per sample (typically 9-16 positions). 934 

 935 

Cell segmentation 936 

Cells were identified in the phase-contrast channel, as described previously10,84. Briefly, 937 

we first defined the “in-focus” z-slice in every image stack by finding the one with the 938 

highest variance among pixels. We then used U-Net, a convolutional network for image 939 

segmentation85, previously trained on our E. coli images, to recognize all pixels that are 940 

within any given cell. Finally, the segmentation results were manually inspected, with 941 

poorly segmented cells manually corrected or removed. 942 

  943 

To estimate the dimensions of each cell, the cell area A was first measured by counting 944 

the number of pixels within the cell, and the cell length L by calculating the length of its 945 
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long axis. Approximating the bacterial cell as a spherocylinder86, we estimated the cell 946 

width d and cell volume V using the equations below: 947 

, 948 

. 949 

 950 

The estimated cell volume V is used when measuring mRNA concentrations in each cell 951 

(Section “mRNA quantification”), and the cell length L serves as an indicator for cell cycle 952 

progression (Section “Cell-cycle analysis of smFISH data”).  953 

 954 

mRNA quantification 955 

Following cell segmentation (Section “Cell segmentation”), we estimated the mRNA copy 956 

number in individual cells using two methods: (i) based on the recognition of fluorescent 957 

foci (“spots”), and (ii) based on the measurement of whole-cell fluorescence. The two 958 

methods yielded consistent results (Fig. S12) and were used interchangeably in 959 

subsequent analysis.  960 

 961 

Spot based quantification. Spot recognition and the subsequent mRNA quantification 962 

were done as described previously34,84. Briefly, we used the Spätzcells software34 to 963 

identify the spots in the fluorescent images. The software fits the fluorescence intensity 964 

profile near each spot to a two-dimensional elliptical Gaussian. The fitting results yielded 965 

the properties of each spot, including the position, spot area, peak height (amplitude of 966 

the fitted Gaussian), and spot intensity (integrated volume under the fitted Gaussian), 967 

used in the subsequent analysis. 968 

 969 

To discard false positive spots, such as the ones resulting from nonspecific binding of 970 

smFISH probes, we performed a gating procedure as described in 34,84. Briefly, we 971 

compared the 2D scatter plots of peak height versus spot area for all detected spots in 972 

the experimental samples to that from the negative control (the sample incubated with 973 

probes against lambda cI, see Section “smFISH”). We then defined a polygon in the 2D 974 

plane, such that most spots from the negative sample were located outside of it. All spots 975 

outside of this polygon were discarded, and the gating results were confirmed by manual 976 

inspection of a subset of images. 977 

 978 

Following spot recognition, we estimated the fluorescence intensity of a single mRNA 979 

molecule as described in 34. We fitted the histogram of spot intensities in each 980 

experimental sample to a sum of three Gaussians corresponding to one, two, and three 981 

mRNA molecules per spot. The center of the first Gaussian was then used to estimate 982 

the fluorescence intensity of a single mRNA molecule. Using this procedure, we found 983 
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that the Gaussian fitting results for genes dnaA, nrdA, nemA, metN, and rho were very 984 

close to each other, consistent to the fact that the probe sets against them have the same 985 

number of probes (see Table S2). Therefore, we used the mean of their first-Gaussian 986 

center as our estimated single-mRNA intensity. The high expression level of the cspA 987 

samples (Fig. S10B) was likely to hinder the identification of individual mRNA 988 

molecules34. Since the number of probes in the cspA set is 1/3 of that against other genes 989 

(Table S2), we assumed its single-mRNA intensity to be a third of that for the other genes. 990 

Finally, the mRNA copy number for a given gene in each cell was calculated by summing 991 

the mRNA spot intensities within the cell and dividing by the single-mRNA intensity34, and 992 

the mRNA concentration for a given gene in each cell was calculated by dividing the 993 

mRNA copy number by the estimated cell volume (Section “cell segmentation”). 994 

 995 

Whole-cell based mRNA quantification. An alternative approach to relying on spot 996 

recognition is the use of total cell fluorescence as a proxy for the total number of bound 997 

probes, in turn indicating the number of target mRNA molecules. We first chose the z-998 

slice with the largest coefficient of variation among intracellular pixels, indicating 999 

maximum contrast. Next, we determined the background fluorescence intensity by 1000 

calculating the average fluorescence per intracellular pixel in the negative control (the 1001 

sample incubated with probes against lambda cI, see Section “smFISH”). After 1002 

subtracting this background intensity from cells in each positive sample, we calculated 1003 

the total and average (per pixel) fluorescence of each cell. These values exhibited a linear 1004 

relation with the spot-based measurements of mRNA number and concentration, 1005 

respectively (Fig. S12). The fitted slopes were used as calibration factors to convert the 1006 

whole-cell fluorescent signals to mRNA numbers and concentrations.  1007 

 1008 

Modeling the distribution of cell length 1009 

Within a population of exponentially growing cells, under the assumption that the 1010 

instantaneous growth rate a cell is proportional its length, the cell length distribution is 1011 

predicted to follow87:  1012 

 1013 
with L0 the cell length at birth. To account for the stochasticity of cell-cycle processes88, 1014 

as well as the experimental error, we described the measured cell length data using a 1015 

Gaussian-smoothed version of the original function: 1016 

 1017 
where σ represents the noise magnitude. Fitting this equation to the experimental data 1018 

(Fig. S10C) yielded L0 = 3.43 ± 0.05 μm, σ = 0.56 ± 0.10 μm (N = 12 samples, each with 1019 

> 500 cells. See Table S3 for detailed sample sizes).  1020 

 1021 
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Cell-cycle analysis of mRNA concentration  1022 

Comparing the mean expression levels of the six genes (dnaA, nrdA, nemA, metN, rho, 1023 

and cspA) as measured by smFISH with the estimated abundance obtained by scRNA-1024 

seq showed that the two methods were highly correlated(Fig. S10D). We next aimed to 1025 

test whether the cell-cycle dependence of transcription, revealed by scRNA-seq (Fig. 3 B 1026 

& D, 2nd column) is too found in the smFISH data. 1027 

 1028 

We first examined the cell cycle dependence of mRNA concentration, since we reasoned 1029 

that those values would correspond closely to the mRNA fraction measured in scRNA-1030 

seq. For this purpose, we followed the approach of 10 and used cell length as an indicator 1031 

for cell cycle progression. In each sample, we first found the two-fold range of cell length 1032 

containing most cells. The lower bound of this range provides an estimate for the cell 1033 

length at birth (L0), and the value found (L0 = 3.34 ± 0.07 μm, N = 12) was consistent with 1034 

the estimate in Section “Modeling the distribution of cell length”. The measured single-1035 

cell mRNA concentration was binned based on cell length (with each bin containing 10% 1036 

of the cells in the sample, and a shift of 1 cell between adjacent bins), and the average 1037 

mRNA concentration within each bin was calculated (Fig. 3 B & D, 3rd column). For all 1038 

genes, we observed that the mRNA concentration fluctuates along the cell cycle, 1039 

returning at cell division (length of 2L0) to a level similar to that at cell birth (length of L0), 1040 

as expected.  1041 

 1042 

To directly compare cell cycle patterns between smFISH and scRNA-seq, we needed to 1043 

correct for differences in both amplitude and phase of the two signals. In particular, 1044 

whereas the smFISH pattern is aligned by cell length, hence the bacterial birth-to-division 1045 

cycle, the scRNA-seq data is aligned, through the cell angle, to the timing of genome 1046 

replication (oriC replication to next oriC replication). Aligning the two signals was done as 1047 

follows. We first linearly converted the cell length to a parameter β within the range 0 to 1048 

2π: 1049 

. 1050 

 1051 

Next, we fitted the relationship between smFISH-measured mRNA concentration and β 1052 

to a sinusoid: 1053 

. 1054 

 1055 

In this function, A and B indicate the median level and fluctuation of the mRNA 1056 

concentration, and C indicates the phase. Specifically, the maximal mRNA concentration 1057 

is reached when  or  (Fig. S10E).  1058 

 1059 
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Similarly, for the scRNA-seq data, we fit the relationship between the mRNA fraction and 1060 

cell angle θc to a sinusoid: 1061 

. 1062 

 1063 

We then estimated the cell angle at cell birth using the phase difference  1064 

between the fits for scRNA-seq and smFISH data (Fig. S10E). This estimated value 1065 

(~155°) was consistent across the 6 genes examined (Fig. S10E). 1066 

 1067 

To overlay the scRNA-seq and the smFISH data (Fig. 3B & D, 4th column and Fig. S11), 1068 

we scaled and shifted the measured values using the fitting parameters above. The 1069 

experimentally measured mRNA concentration (smFISH) and fraction (scRNA-seq) were 1070 

converted using the equations below: 1071 

, 1072 

. 1073 

 1074 

The cell angle θc was first shifted by the estimated phase difference, then linearly 1075 

converted to the corresponding cell length using the equations below: 1076 

, 1077 

. 1078 

Specifically, the cell length at which oriC replicates is estimated to be 1079 

. 1080 

 1081 

Comparison to a replication-transcription model  1082 

In the simplest model of cell cycle dependent transcription, mRNA levels follow gene 1083 

dosage, and will thus double following gene replication. To test whether the non-divergent 1084 

patterns (revealed by scRNA-seq) correspond to this simple scenario, we first binned the 1085 

smFISH-measured mRNA numbers based on cell length (each bin contains 5% cells in 1086 

the sample, with a shift of 1 cell between adjacent bins) (Fig. 3B & D, 5th column). 1087 

Following 10, we then fitted the data to the sum of two Hill functions, corresponding to two 1088 

gene replication rounds: 1089 

. 1090 

 1091 

In this expression, the parameter Lr indicates the cell length at which gene replication 1092 

occurred, and n2 indicates the fold change in cell length between successive replication 1093 

events. As seen in Fig. 3B & D, 5th column, the data for the three genes defined as non-1094 
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divergent (metN, rho, cspA) is well described by this expression, with the fitted n2 close 1095 

to 2 as expected (n2 = 1.89, 2.04, and 2.04 respectively for metN, rho, and cspA). In 1096 

contrast, two of the three divergent genes (dnaA and nrdA) exhibit a noticeable deviation 1097 

from the expected form. In particular, mRNA levels appear to overshoot, consistent with 1098 

our previous observation10.    1099 

 1100 

Inferring cell-cycle phase from the DAPI signal 1101 

When comparing the cell cycle expression patterns obtained by scRNA-seq and smFISH 1102 

(Section “Cell-cycle analysis of mRNA concentration”), we aligned the two datasets by 1103 

horizontally shifting by a constant cell-length interval of ~1.4 μm, equivalent to cell angle 1104 

of ~155° (Fig. S10E). This shift is interpreted as corresponding to the cell cycle interval 1105 

between cell birth and oriC replication (which was estimated to take place at cell length 1106 

of ~5.2 μm). Whereas in Section “Cell-cycle analysis of mRNA concentration” this value 1107 

was inferred directly from the mRNA data, we also attempted to estimate the same 1108 

parameter from single-cell measurements of DNA contents in the smFISH samples, 1109 

obtained using DAPI labeling (Section “Microscopy”). 1110 

 1111 

We assume that the replication speed is constant along the genome, and designate by 1112 

 the cell doubling time, duration of genome replication, and the time between 1113 

replication termination to cell division82. We specifically consider the case 1114 

 where genome replication initiates at cell age 1115 

 89. Under these assumptions, the cellular DNA contents (in equivalent 1116 

number of chromosomes) as a function of cell length (assuming cell length grows 1117 

exponentially with time87, will be given by89:    1118 

 1119 
 1120 

 is the cell age when one round of genome replication ends, and  1121 

is the cell age when another round of genome replication begins. When , there 1122 

are three pairs of replication forks present. When , there 1123 

are only two pairs of replication forks. When , there are six pairs of 1124 

replication forks. Therefore, the ratios of DNA production rates during these three phases 1125 

are 3:2:6 (Fig. 10F). In particular, a 3-fold jump in slope takes place at the cell cycle age 1126 

(length) when oriC replicates. We use this constraint to fit our experimental data. We first 1127 

plotted the single-cell DAPI fluorescence against cell length. We then determined the two-1128 

fold range of cell length containing most cells (see Section “cell-cycle analysis of mRNA 1129 
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concentration”), and fitted the data within this length range to the equation above. 1130 

Discarding those fits where the fitted parameters fell on the boundary of the allowable 1131 

range and whose r-square value was less than 0.4, the average fitted cell length when 1132 

the replication of oriC occurs is 4.0 ± 0.3 μm (N = 6, with 6 samples discarded). The 1133 

imperfect agreement between this estimate and the one obtained from scRNA-1134 

seq/smFISH alignment (5.2 µm) reflects multiple sources of error. Most notably, the 1135 

analyses above assumed a simple linear mapping from both cell angle (scRNA-seq) and 1136 

cell length (smFISH) to cell age, but the relation between observables is in fact nonlinear 1137 

and subject to stochastic effects. These conceptual errors are likely compounded by 1138 

experimental ones, for example, the distortion of cell length during fixation, and 1139 

heterogeneity in DAPI staining. 1140 

 1141 
Generation of chromosome-integrated reporter constructs in S. aureus 1142 
For generation of the reporter construct, we modified the pJC1111 vector90, which 1143 
integrates at the SaPI1 chromosomal attachment (attC) site. The vector was linearized 1144 
with restriction enzymes SphI and XbaI (New England Biolabs) and insertion fragments 1145 
were amplified using Q5 polymerase (New England Biolabs). For the GbaA-L promoter, 1146 
the intergenic region of the GbaA regulon (130 bp upstream of the SAUSA300_RS13955 1147 
start codon) amplified from USA300 LAC genomic DNA using primers 5’-1148 
CCGTATTACCGCCTTTGAGTGAGCTGGCGGCCGCTGCATGGATTACACCTACTTAA1149 
AATTCTCTAAAATTGACAAACGG-3’ and 5’-1150 
AGTTCTTCTCCTTTGCTCATTATCAACACTCTTTTCTTTTATGATATTTAATAGTTATT1151 
GCAAATTCA-3’. S. aureus codon-optimized sGFP was amplified from the genomic DNA 1152 
of S. aureus USA300 LAC previously transformed with the pOS1 plasmid (VJT67.6391) 1153 
using primers 5’-1154 
AAAAGAAAAGAGTGTTGATAATGAGCAAAGGAGAAGAACTTTTCACTG-3’ and 5’-1155 
ATAGGCGCGCCTGAATTCGAGCTCGGTACCCGGGGATCCTTTAGTGGTGGTGGTG1156 
GTGGTGGG-3’. Fragments were assembled using the NEBuilder HiFi assembly kit (New 1157 
England Biolabs) and transformed into competent E. coli DH5ɑ (New England Biolabs). 1158 
The plasmid was purified and then electroporated into RN9011 (RN4220 with pRN7023, 1159 
a CmR shuttle vector containing SaPI1 integrase), and positive chromosomal integrants 1160 
were selected with 0.1 mM CdCl2. Finally, this strain was lysed using bacteriophage 80ɑ 1161 
and the lysate was used to transduce JE2 and JE2 gbaA- strains, selecting for 1162 
transduction on 0.3 mM CdCl2. 1163 
 1164 

Data and materials availability 1165 

All counts matrices and raw sequencing reads used to perform the scRNA-seq analysis 1166 

are available in the Gene Expression Omnibus (GEO) under the accession number 1167 

GSE217715. 1168 

  1169 
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 1431 

 1432 
Figure S1: mRNAs captured per cell by PETRI-seq. mRNA captured is quantified as unique 1433 
molecular identifiers (UMI) per unique cell barcode combination. A) S. aureus in TSB from 1434 
Dataset D3. B) E. coli in different media from Dataset D1.  1435 
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 1436 
Figure S2: Chromosome-wide gene-gene correlation patterns. A) Spearman correlations 1437 
from Fig. 1C without binning by chromosome position. B) Correlations from Fig. 1C without the 1438 
use of scVI, binning in 200 kb bins by chromosome position. C) Spearman correlations in 1439 
exponential S. aureus data from Dataset D4, averaged in 50 kb bins, as for Dataset D3 in Fig. 1440 
1C. D) Initial correlations from unbinned, scVI-predicted gene expression data. Sample “S. 1441 
aureus exponential 2” is from Dataset D4, whereas E. coli LB replicates 1 and 2 are from 1442 
Dataset D1 and Dataset D2, respectively.  1443 



 

45 

 1444 
Figure S3: Growth curves of bacterial strains. A) Growth of E. coli in three conditions. 1445 
Doubling times were calculated based on the linear portions of growth (marked as fitted lines). 1446 
Data are from four (LB and M9GA) or three (M9G) biological replicates. B) Growth of S. aureus 1447 
under standard growth conditions. The time and log2(A600) values when exponential and 1448 
stationary phase samples were taken are marked with dotted lines. The line is fitted to the mean 1449 
at each time point, with the gray area representing standard deviation. Data are from five 1450 
biological replicates. Doubling times for exponentially growing cells are estimated for the linear 1451 
portion of the curve (~60-150 min). C) Growth of S. aureus under balanced growth conditions 1452 
(see Materials & Methods). The black line indicates the linear portion from which doubling time 1453 
was estimated. Data are from three biological replicates.  1454 



 

46 

 1455 
Figure S4: Simulation of replication-dependent gene-gene correlation patterns. A) 1456 
Schematic figure of the simulation. Each “arm” of the circular chromosome is represented as an 1457 
array of integers (initially ones), representing each gene. Replication proceeds stepwise from 1458 
origin to terminus, doubling copy number as it does (steps 1 to 2). At high replication rates, a 1459 
second round of replication will initiate before the first has finished (step 3). When one round of 1460 
replication reaches the terminus, that round finishes and after a given time interval copy 1461 
numbers are globally halved, reflecting cell division (steps 4 to 5). Figures on the right indicate 1462 
the represented states on the circular chromosome. See Materials & Methods for details. B) 1463 
Simulation of DNA copy number effects predicts the global gene covariance pattern. For 1,000 1464 
simulated, unsynchronized cells where the doubling time td is equal to the C-period, the 1465 
normalized, scaled gene expression matrix (left) is used to calculate gene-gene correlations 1466 
(right). C) Gene expression correlations in synchronized C. crescentus bulk RNA-seq from 15. 1467 
Scaled gene expression is averaged into 100 kb bins.   1468 
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 1469 
Figure S5: The relationship between origin distance and expression levels. A) For each E. 1470 
coli growth condition, the average fraction of total mRNA UMI from each gene was calculated 1471 
and log2-transformed. A linear regression model (black line) was fitted between log-fraction 1472 
counts and origin distance. B) The gradient of the linear model fits in (A). Note that in each 1473 
case, there is a negative relationship, with a steeper gradient for faster growth rates. This is 1474 
expected given that at fast growth rates, genes near the origin may attain higher copy number 1475 
states (>2) than at slow growth rates. Spearman correlations are -0.13 (LB, P = 3.8 x 10-10), -1476 
0.09 (M9GA, P = 2.2 x 10-5), and -0.07 (M9G, P = 6.0 x 10-4).  1477 
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 1478 
Figure S6: Evidence indicating that the global gene covariance pattern results directly 1479 
from gene expression. A) Histogram showing that length-adjusted average gene expression 1480 
varies over several orders of magnitude. This is a broad distribution that would not be expected 1481 
from genomic DNA. Raw expression counts were normalized by library size (to sum to 1 per 1482 
barcode) and the average expression was calculated. Length correction was performed as 1483 
expression divided by gene length then multiplied by median gene length. B) Spearman 1484 
correlations between genes in the top and bottom 20% of genes. Genes are arranged by 1485 
chromosome order. C) Spearman correlations between top and bottom 20% of genes after 1486 
averaging expression in 50 kb bins as in Fig. 1C. For (C & D), if the pattern was driven by low-1487 
level contaminating genomic DNA, it would be expected to be more evident in low-expressed 1488 
genes (since a higher proportion of reads from these genes should come from genomic DNA) 1489 
than in high-expressed genes. The opposite is true, with a much stronger pattern in high-1490 
expressed genes (presumably due to less noise in these measurements). Taken together, these 1491 
observations strongly support that the pattern is driven by variation in the transcriptome rather 1492 
than contaminating genomic DNA. 1493 
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 1494 
Figure S7: Cell and gene angle analysis to model replication-dependent gene expression. 1495 
A) UMAP analysis of LB-grown E. coli based on scVI-predicted expression. B) UMAP of S. 1496 
aureus with gene expression averaged in 50 kb bins by chromosome position. Cells are colored 1497 
by the cell angle θc between UMAP dimensions relative to the center of the projection. C) UMAP 1498 
of E. coli genes, performed on the same data as the PCA in Fig. 2D. Gene angles shown are 1499 
those derived from PCA. D) The relationship between θg and origin distance for E. coli grown in 1500 
M9 + glucose + amino acids (M9GA) or M9 + glucose (M9G). The black line indicates the model 1501 
fit as described in Materials & Methods Section “Modeling the gene angle-origin distance 1502 
relationship”. E) Predicted replication patterns as for Fig. 2G but for E. coli under slower growth 1503 
conditions. F) Gradients of the gene angle-origin distance relationship and estimates of DNA 1504 
polymerase speed from these gradients. See Materials & Methods for details. G) Expression in 1505 
LB-grown E. coli is first averaged in 100 bins by θc then averaged in 100 bins by θg to yield the 1506 
100 x 100 matrix represented here as a heatmap. This is used to train the model to predict gene 1507 
expression at a given point in the cell cycle (θc) for a given gene (θg). H) Conceptual 1508 
representation of the cell cycle expression parameterization. Cells are ordered in their cell cycle 1509 
state by θc, whereas genes are ordered by their cell cycle expression by θg. Cell cycle 1510 
expression can be described as the concurrent cycling of cells and genes ordered by these 1511 
metrics. 1512 
 1513 
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 1514 
Figure S8: Predicting gene expression dynamics based on distance from the origin. The 1515 
following pipeline predicts cell cycle expression for a given gene based only on its distance from 1516 
the origin of replication. A regression model predicts gene angle θg-pred based on origin distance 1517 
alone (left) and this is converted into a prediction of expression by cell angle θc using a second 1518 
regression model (middle). Ordering genes by chromosome position (right) shows a smoothed 1519 
version of the expression pattern in Fig. 2B. The bar at the top of this figure shows the real and 1520 
predicted gene angles. Data are from E. coli grown in LB. See Materials & Methods for full details. 1521 
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 1522 
Figure S9: Correcting for and measuring divergence from predicted replication-1523 
associated patterns. A) Two-dimensional histogram for E. coli showing the relationship 1524 
between observed expression from scVI and replication-predicted expression. Expression is 1525 
averaged in 100 bins by cell angle θc. The red line indicates x = y i.e. the case where expression 1526 
in both matrices is identical. Overall, there is a rough 1:1 correspondence between observed 1527 
and predicted expression, indicating a good model fit. B) Gene-gene correlations in LB-grown E. 1528 
coli across θc-binned expression data (100 bins) for the full scVI observed model (left), the 1529 
replication-only model (middle), and the corrected model that is the difference of the two 1530 
expression matrices (right). C) The mean-variance relationship in E. coli of log-transformed 1531 
normalized counts. The black line indicates the locally weighted scatterplot smoothing 1532 
(LOWESS)-fitted values and red points are genes classed as highly variable. See Materials & 1533 
Methods for further details. D) Comparison of the divergence score σcorrected between LB-grown 1534 
E. coli in Datasets D1 & D2 of genes classed as highly variable in both datasets (287 genes). 1535 
Red indicates replication-divergent genes (σcorrected > 0.6). E) Comparison of σcorrected (standard 1536 
deviation of divergence from the replication model) between LB-grown E. coli in Dataset D1 and 1537 
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Dataset D2 of all genes present in both datasets. Red indicates σcorrected > 0.6 in both datasets, 1538 
meaning that they are considered replication-divergent. The Pearson correlation between 1539 
replicates is 0.38. F) Two-dimensional histogram as in (A) but for S. aureus. G) Gene-gene 1540 
correlation plots as for (B) but for S. aureus. H & I) Comparison of σcorrected (standard deviation 1541 
of divergence from the replication model) between S. aureus in Dataset D5 and Dataset D6 for 1542 
highly variable genes in both datasets (H) (Pearson’s r = 0.66) and all genes (I) (Pearson’s r = 1543 
0.48). Red indicates σcorrected > 0.5 in both datasets, meaning that they are considered 1544 
replication-divergent. 1545 
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 1546 
Figure S10: smFISH analysis of cell cycle gene expression correlates with phase-shifted 1547 
scRNA-seq data. A) Negative control for smFISH labeling. E. coli cells labeled against 1548 
bacteriophage lambda cI mRNA.  smFISH signal is shown using the same contrast as in Fig. 3, 1549 
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B & D. See Section “smFISH”. B) The distribution of mRNA copy-number per cell for each gene. 1550 
See Section “mRNA quantification”. Red line, fit to a negative binomial distribution plus a “zero 1551 
spike”10. C) The distribution of cell length in each sample. Black line, fit to the theoretical model 1552 
of 87, see Section “Modeling the distribution of cell length”. D) Comparison of the population-1553 
averaged mRNA fraction, as measured using scRNA-seq, with mRNA concentration, as 1554 
measured using smFISH. Markers and error bars indicate mean ± SD from two datasets of each 1555 
method. Blue line, fit to a function y = axb. E) Estimation of the cell-cycle phase difference 1556 
between scRNA-seq and smFISH. The phase of each dataset was estimated as described in 1557 
Section “Cell-cycle analysis of mRNA concentration”. Left, markers and error bars indicate 1558 
mean ± SEM from two datasets of each method. Blue line, fit to a linear function, indicating a 1559 
constant phase difference φ. Right, the estimated phase difference across the six genes 1560 
examined. F) Top, the theoretically predicted cellular DNA contents as a function of cell age, 1561 
see Section “Inferring cell-cycle phase from the DAPI signal”. Bottom, DAPI-measured DNA 1562 
content per cell as a function of cell length. Single-cell data was binned based on cell length 1563 
(moving average ± SEM, 21 cells per bin), Blue line, fit to the theoretical model. Inset, the 1564 
distribution of the inferred cell length where oriC replicates, estimated from all smFISH samples. 1565 
G) Divergent genes exhibit a larger amplitude of cell-cycle fluctuations. The ratio between the 1566 
maximum and minimum expression level of different genes, as measured using scRNA-seq and 1567 
smFISH. The mRNA fraction (scRNA-seq) and concentration (smFISH) were obtained as in Fig. 1568 
3 B & D, 2nd and 3rd columns. The maximum and minimum levels were determined from the 1569 
binned data. Markers and error bars indicate mean ± SD from two datasets of each method. 1570 
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 1571 
Figure S11: Cell cycle analysis of smFISH and scRNA-seq shows good agreement across  1572 
biological replicates. Pairwise comparison between two smFISH and two scRNA-seq 1573 
datasets. Analysis as in Fig. 3B & D, 4th column. See Section “Cell-cycle analysis of mRNA 1574 
concentration”. 1575 
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 1576 
Figure S12: Consistency between spot-based and cell-based smFISH quantification. 1577 
Comparison of the mRNA levels inferred from smFISH data using spot-based and cell-based 1578 
mRNA quantification. Both methods are described in Section “mRNA quantification”. Left, 1579 
mRNA concentration.  Right, mRNA copy number per cell. Markers indicate mean values from 1580 
each smFISH sample (Error bars are smaller than marker size). Black line, fit to a linear 1581 
function. 1582 
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 1583 
Figure S13: The relationship between distance from the transcriptional start site and 1584 
gene expression timing and amplitude. A) Cell cycle gene expresion plots for operons 1585 
showing “delayed” genes as in Fig. 4B but for LB-grown WT E. coli from Dataset D2. The red 1586 
line indicates predicted expression. B) Normalized per-base read depth at the mraZ-ftsZ locus. 1587 
Left: Normalized expression as in Fig. 4D. Right: Fold-change relative to expression at the 1588 
predicted time of replication, as in Fig. 4E. Schematic figures of the locus depict a simplified 1589 
version since several internal promoters have been identified. C) Plots of maximum distance 1590 
from a transcriptional start site against difference between predicted and observed angles as in 1591 
Fig. 4C. Red line indicates the linear model fit and red points indicate averages of 2 kb bins. 1592 
Data are shown for additional E. coli and S. aureus replicates. D) Plots as in (C) but of 1593 
maximum distance from a transcriptional start site against the log2-transformed peak/trough 1594 
ratio in gene expression, calculated as described in Materials & Methods. E) Plots as in (C) but 1595 
using manual operon annotation. Here, any tandem, contiguous stretch of genes with an 1596 
intergenic distance less than 40 bp is considered an operon. Transcriptional start sites are 1597 
defined as the start position of the first gene in the operon.  1598 
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 1599 
Figure S14: Expression-amplitude relationships and S. aureus cluster profiles. A) Clusters 1600 
as in Fig. 5B but colored according to their average, length-corrected expression. This was 1601 
determined by a gene’s mean fraction of total mRNA that was length-corrected by dividing by its 1602 
length and multiplying by the median gene length across genes. B) Scatter plot of length-1603 
corrected mean fraction counts (i.e. fraction of a gene within the whole transcriptome) against 1604 
Spearman correlation in E. coli. Spearman correlations for each gene were calculated as the 1605 
inter-replicate correlation between cell cycle gene expression measurements averaged in 100 1606 
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bins by θc (replicates from Datasets D1 & D2). Red genes indicate the reproducible genes used 1607 
in Fig. 5. C) Length-corrected mean expression against standard deviation across expression 1608 
averaged in 100 bins by θc. D & E) Plots as in Fig. 5E and (C) but including only those genes 1609 
with Spearman R > 0.9 (instead of 0.7). F) Plot as in (B) but for S. aureus (replicates from 1610 
Datasets D5 & D6). G) Plot as in (C) but for S. aureus. H) Plot as in Fig. 5B except for mean 1611 
expression of S. aureus clusters. Genes situated on mobile genetic elements were removed 1612 
prior to clustering analysis. I-K) Plots of individual genes from clusters indicated in (H). 1613 
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 1614 
Figure S15: Core genes of mobile genetic elements show highly divergent expression 1615 
patterns. A) Mean cluster expression of reproducible genes partitioned into 20 clusters by 1616 
aligned gene expression (θc-rep). Clusters in red are those that only contain genes located within 1617 
MGEs. B) Plot as in (A) but with clustering performed on all genes included in the scVI model 1618 
(regardless of reproducibility). These cluster assignments are used for (C-E). C-E) Expression 1619 
of genes within mobile elements. Genes are colored based on whether they are in MGE-1620 
exclusive clusters from (B) (red) or other clusters (black). Top: schematic figure of MGE gene 1621 
content. The x-axis represents chromosomal coordinate and + and - strands are plotted 1622 
separately by y-axis position. Predicted attachment sites attL and attR denote the predicted 1623 
boundaries of the MGE and are annotated in blue. Annotation for MGEs was taken from the 1624 
online tool Phaster92. Bottom: Plots of MGE genes by aligned gene expression (θc-rep) as 1625 
represented in Fig. 5. Gray genes represent the non-MGE background. Note that phage ΦSa2 1626 
is disabled and expression of its MGE-specific (“red”) cluster genes is low (0.002% of cells 1627 
contain at least three transcripts) compared to the staphylococcal pathogenicity island (SaPI) 5 1628 
(0.4%) and phage ΦSa3 (0.07%), potentially contributing to the less clear delineation between 1629 
expression profiles by gene type. MGE-specific expression patterns may arise due to MGE 1630 
mobilization and these patterns may represent rare events that are not effectively captured by 1631 
our cell cycle analysis, meaning that the plots here should be interpreted with caution. 1632 
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 1633 
Figure S16: Effects of gbaA disruption on cell cycle gene expression. A) Expression fold 1634 
change of genes in the GbaA regulon after gbaA transposon insertion. Genes of the GbaA-L 1635 
operon increase in expression >100–fold. However, due to the location of the transposon 1636 
insertion towards the 5’ end of gbaA, induction of GbaA-R genes is not observed. Genes with 1637 
names starting with SAUSA300_RS are truncated to give only the unique number. B) Average 1638 
expression of GbaA-L genes and sGFP in reporter strains (compared to JE2 in measurements 1639 
from the same experiment). Average expression measured as fraction of total mRNA was 1640 
length-corrected as elsewhere by dividing by the gene length and multiplying by the median 1641 
gene length across all genes. Note that sGFP expression in JE2 PGbaA-L-sGFP is approximately 1642 
fourfold higher than that of GbaA-L genes, and the derepressed form in gbaA- PGbaA-L-sGFP is 1643 
also fourfold lower (possibly reflecting lower copy number due to its further distance from the 1644 
origin). Therefore, while repression of the GbaA-L locus is ~96-fold, repression of sGFP by 1645 
GbaA is only 5.3-fold. C) Comparison of aligned expression (θc-rep) (as in Fig. 5) for GbaA 1646 
regulon genes and sGFP in the two reporter constructs. Thick black and gray lines represent 1647 
average expression across all reproducible genes. The schematic figure represents the relative 1648 
positions of the GbaA regulon and the PGbaA-L-sGFP integration site.  1649 
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 1650 
 1651 

 1652 
Figure S17: Sampling from the prior of the gene angle-origin distance regression model. 1653 
Based on the model and priors specified in Materials & Methods, values were randomly sampled 1654 
from the prior and used to predict either the expected gene angle A (A) or the predicted value of 1655 
gene angle θg after von Mises sampling (B). For each sampled set of parameters in (B) the 1656 
gradient ɣ and concentration parameter κ are shown. Both θg and origin distance D are 1657 
standardized to the range -π to π as per the model requirements. Overall, the prior assumptions 1658 
of the model are that there is a positive, linear relationship between θg and D, but there is 1659 
considerable flexibility regarding the gradient (and hence degree of wrapping), value of θg at D = 1660 
0, and noise.  1661 
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Table S1: Information about datasets and samples used. A600 refers to the optical density at 1662 
the time of harvesting. *Growth E. coli MG1655 in LB was measured in a separate series of 1663 
experiments for each dataset. 1664 

Dataset Sample Strain Medium A600 Doubling time 

(min) 

# cells Median 

mRNA 

UMI/barcode 

D1 eco_lb_1 E. coli MG1655 LB 0.15 26.0 ± 1.3 (n = 4)* 57,627 152 

 eco_mga_1 E. coli MG1655 M9GA 0.185 39.4 ± 2.3 (n = 4) 50,920 56 

 eco_mg_1 E. coli MG1655 M9G 0.062 69.1 ± 9.8 (n = 3) 45,898 40 

D2 eco_lb_2 E. coli MG1655 LB 0.152 27.0 ± 1.6 (n = 4)* 69,396 93 

 eco_orix_1 E. coli!"#$%&&!

'()*+,-.!/01234525,27 

LB 0.127 27.2 ± 2.4 (n = 4) 25,967 97 

 eco_oriz_1 E. coli!"#$%&&!

'()*+,-.!/01,34526 

LB 0.14 26.6 ± 2.1 (n = 4) 32,151 100 

D3 sau_tsb_1 S. aureus USA300 LAC TSB 0.97 30.1 ± 0.8 (n = 5) 73,053 135 

D4 sau_exp_plus S. aureus USA300 LAC TSB 1.12 30.1 ± 0.8 (n = 5) 13,075 87 

 sau_exp_minus S. aureus USA300 LAC TSB 1.12 30.1 ± 0.8 (n = 5) 8,182 57 

 sau_stat_plus S. aureus USA300 LAC TSB 5.76 NA 40,772 27 

 sau_stat_minus S. aureus USA300 LAC TSB 5.76 NA 15,122 24 

D5 sau_wt_1 S. aureus USA300 LAC TSB 0.088 24.9 ± 0.6 (n = 3) 49,307 159 

D6 sau_wt_2 S. aureus USA300 LAC TSB 0.112 24.9 ± 0.6 (n = 3) 38,426 136 

 sau_je2_1 S. aureus JE2 TSB 0.107 NA 46,719 107 

 sau_gbaa_1 S. aureus JE2 

SAUSA300_2515:: 

bursa (Nebraska library 

# NE355)93,94 

TSB 0.103 NA 37,985 109 

D7 sau_wt_3 S. aureus USA300 LAC TSB NA 24.9 ± 0.6 (n = 3) 31,852 152 

D8 sau_je2_2 S. aureus JE2 TSB NA NA 21,006 210 

 sau_je2_pgbaal

_1 

S. aureus JE2 pJC1111-

PGbaA-L-sGFP 

TSB NA NA 17,206 250 

 sau_gbaa_pgb

aal_1 

S. aureus JE2 

SAUSA300_2515:: 

bursa 

pJC1111-PGbaA-L-sGFP 

TSB NA NA 13,420 225 

  1665 
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Table S2: DNA oligos used for smFISH 1666 

Gene Number of 

probes 

Probe sequences (5’ - 3’) Source 

 

 

 

 

 
dnaA 

 

 

 

 

 
24 

TGCCAAAGCGAAAGTGACAC 

AATTCTGTGGCTGGTAACTC 

CAATGGGCGTATCCACATAC 

AGCGTGTTATCGCTCAGTTC 

GCAGAAACTGGTTAGCAGTC 

CGACTTCAAAACGCAGCTGT 

AGAACGATAGGTCGGTTCTG 

ACGTGTGTTTGACGTTTACG 

CGCCAGTTGGTTAGATTTAC 

ATGCAGCAGGTGAGTTTTAC 

TAAACCACTTTGGCATTCGG 

TTTGCAGGGCTTTAACCATG 

ATCTACGGAACGGTAGTAGC 

GAATATCGTCGATCAGCAGT  

GGCGTTGAAGGTGTGGAAAA 

ATAGCGATCCGAGGTGAGAA 

CAACGCCGTTGATCTCTTTC 

TTTTTCATCAGGATCGCCAC 

ACGAATGTCGTTTTCGTCGG 

GTACGTTAGATCGTAGACGC 

GGTAAAGTTGGCATTGGCAA 

CCGTCTTCTGAATATTGTCG 

CGCGACTTTGATCTTGTAGT 

TGTGGTTAGTCAGCTCTTTC 

 

 

 

 

 
This work 

 

 

 

 

 
nrdA 

 

 

 

 

 
24 

CAATCCAGAACGCGATGGAT 

AAACTGAATGTGGGAGCGCA 

ATGTCAGAGGTCTTGATACC 

CAGCCTTGATAATGGTTTCG 

CGCGGCGAGATACTGATAAT 

TTTACGCAGGTGGAAGATCG 

ATCTCGACCATTTTCACCAC 

GAACTCTTCTTCCGTGTAGT 

CGATAAAGGTGTCCATCTGC 

AAGGTCATATCACGGTCGTG 

CTGCTTAACGGCAGCATAAG 

ATATAAAGGAACTGGGCGCT 

GGGTAGTTCGAGAACAAGCA 

ATATTGCAGGCGCGTTTCAC 

AACCGCGTCGTAAAAACGCT 

CGTCGGCAGCGAAATTTTAA 

TTGATGGAATCCAGGCTGTC 

TTGTAGAACGGAATGCAGCC 

TTTCACCGCTGTCTGGAAAT 

CGGTTGTTTTTCAACACCAG 

CTTTCAGCAGACGGGTATAC 

GCTGAACAGGGTGATATCTT 

GACGTTCAAACTCTTCCTGA 

CTGCATCATCAGCGAGAACA 

 

 

 

 

 
This work 
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nemA 

 

 

 

 

 
24 

CTTTCAGTGGGGAATACAGT 

GTCAGCGGTGCCATAAAAAT 

CATCAACGGGGTAGGAATGT 

GCACGTTGGCGATAGTATTC 

CTTTTGCCTGGGCAGAAATT 

AATTTGCTCCGGACTATGGA 

GACCATTTTCAGCATGAACG 

ATCGCCTGACCATTTTCATC 

CGGCATGGATGTTTCAACAC 

AATCTCTTCCAGTTCAAGCG 

GCTCTACCAGATCAAAACCG 

AAATAACCGTGAGCAGAGTG 

AGGAGAAAGGAACTGATGCA 

TACCAAACGTGCGCGATTTT 

CATTCTTCAATCCCGGCATC 

AACGCGAATGCCAATGCGAT 

TCTGGAAAGTACCGATTGGT 

TTCATTCGGGCCGTTATCTG 

ATCAGATACAGTGCATCGGC 

ATAAGCAATGCCGCGTTTAC 

TTTGCCGATCAGCGTTTCAG 

TGTGGGTTAAGCTCAGCTTT 

ACCGTAGAAACTTTCGGCAC 

ACGTCGGGTAATCGGTATAG 

 

 

 

 

 
This work 

 

 

 

 

 
metN 

 

 

 

 

 
24 

TGGTGGAACACTTTGGTGAT 

GCACCGATAACGCCATAAAT 

TATAAGCGTACTCTTACCCG 

GCTCCAGCAGGTTTACACAA 

TTGGTCAACTCGGATTCTGA 

AAATCATACCAATCTGGCGG 

AGAGCCACGTTGCCAAAAAC 

GACGTTTGACCTCGTCTTTC 

CAATGACAGCAATTCCGTCA 

CAATTGCCACACGTTGTTTC 

TTTGGGATTGCTGGCTAACG 

TGGCTTCATCACACAGCAAT 

GAATAGAACGTGTCGTTGCC 

AACAGAATCGTCAACCCCAG 

TTCACAACGTCCATTTCGTG 

GAATAAACTTCTGCGCCAGC 

AGACGTTCCTGGTAATCTTC 

ACGCAGTCAGTAAATGGCTC 

ATTGACCGGTAAACTCCAGA 

TTCAGAAAGCAGTGGGGCAT 

CTGCGCGCTAATAATGTTGT 

CTTGCGTATCTTGTTGTGTG 

TTTACATGGTGTTCCTGCAG 

GACATAACCCAGTACCTCTA 

 

 

 

 

 
This work 

 

 

 

 

 
rho 

 

 

 

 

 
24 

TATTTTCGCCGAGAGTGATC 

AATGTCCTGCTTACGCATAC 

TATCTCCAGTACGCCATCAC 

GGAAACCAAATCCATCCTGC 

GGCGAATCTTACCAGAGATG 

TTCGTTAACTTTCAGCAGCG 

GCGGGGTTAAGTTCTCAAAG 

AGTAGAACCGTTACCACGTT 

GTACGCGAGCAGTTAAATCT 

CATGGTTTTACCGGCTTTCG 

ATGCTCTGAGCAATGTTCTG 

TCGATCAGCAGAACCATCAG 

TGCATCTCGGTTACTTCTTC 

GTTCGTCAAAGGTAGAAGCA 

CTTCTCGATCACCATTTCCG 

AGTGATGGAGTCGAGCAGAA 

AACAACGGTGTTGTAAGCGC 

CACCAAAGAAGCGTTTCGGA 

AGAACCGGTATCGATAAGCG 

TTACGAGAGAGGTGCAGTTC 

GAAGACGCGTTTTTCAGCGA 

CAGCTCTTCTTTACGGGTAC 

GTGAATGATTTTGCGCAGGA 

TTCCATTGCATCGATTTCGC 

 

 

 

 

 
This work 
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cspA 

 
8 

CGATACCAGTCATTTTACCG 

TTGTCAGCGTTGAACCATTT 

TCAGGAGTGATGAAGCCGAA 

CGAACACATCTTTAGAGCCA 

GTTCTGGATAGCAGAGAAGT 

CGTCCAGAGATTTGTAACCA 

GTGAAGGACACTTTCTGACC 

TACAGGCTGGTTACGTTACC 

 
This work 

 

 

 

 

 

 

 
cI 

 

 

 

 

 

 

 
30 

GGTTTCTTTTTTGTGCTCAT 

CTCAAGCTGCTCTTGTGTTA 

AATTGCTTTAAGGCGACGTG 

GGGATAAGCCAAGTTCATTT 

ATCTTGTCTGCGACAGATTC 

AATAAAGCACCAACGCCTGA 

GCATTTAATGCATTGATGCC 

TGCAAGCAATGCGGCGTTAT 

CTTCAACGCTAACTTTGAGA 

CTGGCGATTGAAGGGCTAAA 

CGCTTCATACATCTCGTAGA 

TAAGTGACGGCTGCATACTA 

ACAGGGTACTCATACTCACT 

CCCTGCCTGAACATGAGAAA 

TTCTAAGCTCAGGTGAGAAC 

TCCGCATCACCTTTGGTAAA 

TTTGGTTGTGCTTACCCATC 

AGAATGCAGAATCACTGGCT 

CGGTCATGGAATTACCTTCA 

AGCTTGGCTTGGAGCCTGTT 

AGAATTAACATTCCGTCAGG 

AACAGCCTGCTCAGGGTCAA 

CTATGCAGAAATCACCTGGC 

AACTCATCACCCCCAAGTCT 

CCTGATCAGTTTCTTGAAGG 

GTAAAAACACCTGACCGCTA 

TTGGGTACTGTGGGTTTAGT 

CAACTCTCATTGCATGGGAT 

AGCGATAACTTTCCCCACAA 

AAACGTCTCTTCAGGCCACT 

 

 

 

 

 

 
95 
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Table S3: Sample sizes for smFISH datasets 1668 

Gene Number of cells in 

smFISH dataset 1 

Number of cells in 

smFISH dataset 2 

dnaA 2701 1772 

nrdA 1481 1203 

nemA 1077 2582 

metN 1370 1892 

rho 2113 823 

cspA 572 1772 

cI (Negative control) 841 1309 
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Table S4: Evidence of repressed state in high-amplitude cell cycle expression clusters. 1670 
Evidence that genes within E. coli clusters Ec9 and Ec17 (Fig. 5C & D) are autorepressed or 1671 
otherwise in a repressed state. Besides the sources listed, the EcoCyc77,96 database was used 1672 
as a major source of information. 1673 
Gene 
ID 

Gene 
name 

Description Cluster Operon Regulation/evidence of repression Ref. 

b3872 yihL Putative DNA-
binding 
transcriptional 
regulator 

Ec17 yihLM Nac-repressed; yihL is a GntR-family regulator so 
may have repressor function; yihM is induced by 
hexane so may have specific regulation 

97,98 

b4017 arpA Regulator of acetyl 
CoA synthetase 

Ec17 arpA Unknown, but gene immediately downstream of the 
autorepressed transcription factor iclR 

 

b4018 iclR DNA-binding 
transcriptional 
repressor IclR 

Ec17 iclR Autorepression (also represses aceBAK operon)  99 

b4191 ulaR DNA-binding 
transcriptional 
repressor UlaR 

Ec17 ulaR Regulation unknown but repressor of ulaG and 
ulaBCDEF operons 

100 

b4278 insG KpLE2 phage-like 
element; IS4 
putative 
transposase 

Ec17 insG Unknown but NanR repressor binds promoter 101 

b1650 nemA N-ethylmaleimide 
reductase 

Ec17 nemRA-
gloA 

Operon autorepressed by NemR (gloA partially 
transcribed by read-through from this operon) 

35–37 

b3502 arsB Arsenite/ 
antimonite:H+ 
antiporter 

Ec17 arsRBC Operon autorepressed by ArsR 102 

b4014 aceB Malate synthase A Ec9 aceBAK Repressed by IclR; repressed by CRP in the 
presence of glucose 

103 

b4015 aceA Isocitrate lyase Ec9 aceBAK Repressed by IclR; repressed by CRP in the 
presence of glucose 

103 

b4016 aceK Isocitrate 
dehydrogenase 
kinase/isocitrate 
dehydrogenase 
phosphatase 

Ec9 aceBAK Repressed by IclR; repressed by CRP in the 
presence of glucose 

103 

b2675 nrdE Ribonucleoside-
diphosphate 
reductase 2, ɑ 
subunit dimer 

Ec9 nrdHIEF Repressed by NrdR; repressed by FUR in the 
presence of iron 

104,105 

b2676 nrdF Ribonucleoside-
diphosphate 
reductase 2, β 
subunit dimer 

Ec9 nrdHIEF Repressed by NrdR; repressed by FUR in the 
presence of iron 

104,105 

b3574 plaR DNA-binding 
transcriptional 
repressor PlaR 

Ec9 plaR Autorepression (also represses L-lyxose catabolism 
operon) 

106 

b3605 IldD L-lactate 
dehydrogenase 

Ec9 lldPRD Autorepression by LldR within the same operon 107 

 1674 


