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Abstract
Background: Medical record abstraction (MRA) is a commonly used method for data collection in clinical
research, but is prone to error, and the influence of quality control (QC) measures is seldom and
inconsistently assessed during the course of a study. We employed a novel, standardized MRA-QC
framework as part of an ongoing observational study in an effort to control MRA error rates. In order to
assess the effectiveness of our framework, we compared our error rates against traditional MRA studies
that had not reported using formalized MRA-QC methods. Thus, the objective of this study was to
compare the MRA error rates derived from the literature with the error rates found in a study using MRA as
the sole method of data collection that employed an MRA-QC framework.

Methods: Using a moderator meta-analysis employed with Q-test, the MRA error rates from the meta-
analysis of the literature were compared with the error rate from a recent study that implemented
formalized MRA training and continuous QC processes.

Results: The MRA process for data acquisition in clinical research was associated with both high and
highly variable error rates (70 – 2,784 errors per 10,000 fields). Error rates for the study using our MRA-QC
framework were between 1.04% (optimistic, all-field rate) and 2.57% (conservative, populated-field rate)
(or 104 – 257 errors per 10,000 fields), 4.00 – 5.53 percentage points less than the observed rate from the
literature (p<0.0001).

Conclusions: Review of the literature indicated that the accuracy associated with MRA varied widely
across studies. However, our results demonstrate that, with appropriate training and continuous QC, MRA
error rates can be significantly controlled during the course of a clinical research study.

Background
Computers have been used in clinical studies since the early 1960s, although initial attempts to integrate
them into research workflows were experimental and sporadic.1,2 The early application of computers to
health-related research spawned a plethora of methods for collecting and preparing data for analysis.3,4

These activities continue to be evaluated by metrics of cost, time, and quality.5 While cost and time affect
the feasibility of research, and timeliness is certainly critical to the conduct and oversight of research, the
scientific validity of research conclusions depends on data accuracy.6

Data accuracy is attributable to how data are collected, entered, and cleaned, or otherwise processed; and
the assessment and quantification of data accuracy are crucial to scientific inquiry. Several texts describe
approaches to general data quality management, independent of the domain area in which they are
applied.7–10 These works focus on general methods for assessing and documenting data quality, as well
as methods for storing data in ways that maintain or improve their quality, but do not provide sufficient
details on data collection and processing methods applicable to specific industries and types of data.



Page 4/17

Thus, they provide little to no guidance to investigators and research teams planning a clinical research
endeavor or attempting to operationalize data collection and management.

In previous work, we extensively reviewed the clinical research data quality literature and identified gaps
that necessitated a formal review and secondary analysis of this literature to characterize the data quality
resulting from different data processing methods.11 Through this effort, we quantified the average,
overall error rates attributable to 4 major data processing methods used in clinical research (medical
record abstraction [MRA]), optical scanning, single-data entry, and double-data entry) based on the data
provided within 93 peer reviewed manuscripts.11 Our results indicated that data quality varied widely by
data processing method. Specifically, MRA was associated with error rates an order of magnitude greater
than those associated with other data processing techniques (70–2,784 versus 2–650 errors per 10,000
fields, respectively).11 MRA was the most ubiquitous data processing method over the time period of the
review. Unfortunately, in a more recent review of studies using MRA, the foundational quality assurance
activities identified as important in MRA processes were rarely reported with clinical studies: describing
and stating the data source within the medical record 0 (0%); use of abstraction methods and tools 18
(50%); controlling the abstraction environment, such as to prevent interruption and distraction 0 (0%); and
attention to abstraction human resources such as minimum qualifications and training 15 (42%).12 Only
3 (8.3%) of the articles reported measuring and controlling the MRA error rate.12

In an effort to mitigate the inherent risks associated with MRA, we developed and employed a theory-
based, quality control (QC) framework to support MRA activities in clinical research.13 Our MRA-QC
framework involves standardized MRA training prior to study implementation, as well as a continuous QC
process carried out throughout the course of the study. We implemented and evaluated the MRA-QC
framework within the context of the Advancing Clinical Trials in Neonatal Opioid Withdrawal Current
Experience (ACT NOW CE) Study14 to measure the influence of formalized MRA training and continuous
QC on data quality. We then compared our findings with MRA error rates from the literature to better
understand the potential influence of this framework on data quality in clinical research studies.

Methods

Preliminary Work: Comprehensive Literature Review
As described in a separate manuscript, a systematic review of the literature was performed to “identify
clinical research studies that evaluated the quality of data obtained from data processing methods
typically used in clinical research.”11 Here, we refer to this as the comprehensive literature review. The 93
manuscripts identified through the comprehensive literature review were categorized by data processing
method (e.g., MRA, optical scanning, single-data entry, and double-data entry), and only those specific to
MRA were considered for this meta-analysis.

Information Retrieval: Meta-Analysis of MRA Error Rates
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Excluding manuscripts for which MRA was not the primary method of data collection from the
comprehensive set yielded 64 MRA-centric manuscripts for inclusion in the meta-analysis (Fig. 1). For this
evaluation, we referenced only this subset of MRA-centric studies to conduct a meta-analysis of the
overall error rates as reported in the existing literature for comparison against the error rates derived for
our study using the MRA-QC framework. Several manuscripts discussed multiple processing methods
and/or studies, presenting unique error rates for each. Thus, within the set of 64 manuscripts, we
identified 71 studies (or 71 unique error rates) for inclusion in the meta-analysis (see Additional File 1,
Appendix A, Reference List A1 and Table A2).

Based on the residual and leave-one-out diagnostics,15–17 we identified 5 studies18–22 that were deemed
to be potential outliers. Thus, these studies were removed for the final meta-analysis to obtain the
estimate error rate for the literature reviews. In order to derive an overall MRA error rate for comparison
with our study, we performed a meta-analysis of single proportions to derive an overall error rate from the
literature based on an inverse variance method23,24 and generalized linear mixed model approach using
the R package “metafor”.25 The general linear mixed model provides more robust estimates than
traditional methods.26

Comparison of MRA Error Rates to Results of Study Using
MRA-QC Framework
Once the average MRA error rate across the literature was determined, we used that value to evaluate the
effectiveness of a standardized MRA-QC framework implemented as part of a retrospective research
study for which MRA was the sole method for data collection. Briefly, the MRA-QC framework was
implemented within the context of the ACT NOW CE Study[a],27 a multicenter clinical research study
sponsored by the National Institute of Health (NIH) through the Environmental Influences on Child Health
Outcomes (ECHO) program.28 Thirty IDeA[b] States Pediatric Clinical Trials Network (ISPCTN)29,30 and
NICHD[c] Neonatal Research Network (NRN)31 sites from across the U.S. participated in the study.
Approximately 1,800 cases were abstracted across all study sites, of which a subset of cases (over 200)
underwent a formalized QC process to identify data quality errors. Additional information on the ACT
NOW CE Study,14 including details on the MRA training32 and QC process,13 has been published
elsewhere.

The overall error rates for the ACT NOW CE Study were compared to error rates from the literature. The
overall error rate for the ACT NOW CE Study13 was calculated using the same methodology used for
calculating MRA error rates from the literature,11 based on the Society for Clinical Data Management’s
(SCDM) Good Clinical Data Management Practices (GCDMP)33 Error Rate Calculation Framework
(Formula 1).

Number of Errors Detected
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We analyzed the data from each site within the ACT NOW CE Study separately to obtain site-specific error
estimates and used meta-analysis to obtain a pooled error estimate.34 Next, we compared the all-field
(optimistic) and populated-field (conservative) error rates from our study with the error estimate derived
from the literature, based on a moderator analysis (subgroup analysis) using a Q-test to detect the
difference between the two groups. The heterogeneity between studies were calculated and considered
using the Higgins and Thompson’s I2 statistic.35

[a] ACT NOW CE Study: Advancing Clinical Trials in Neonatal Opioid Withdrawal Syndrome (ACT NOW)
Current Experience: Infant Exposure and Treatment27 

[b] IDeA: Institutional Development Awards Program. The IDeA program is a National Institutes of Health
(NIH) program that aims to broaden the geographic distribution of NIH funding to support states that
have historically been underfunded by providing resources to further expand research capacity across
IDeA-eligible states29,30 

[c] NICHD: The Eunice Kennedy Shriver National Institute of Child Health and Human Development is part
of the NIH that supports (funds) the efforts of the Neonatal Research Network (NRN)31

Results
The overall error rate from the literature meta-analysis (relying on data only from MRA-centric
manuscripts) was 6.57% (95% CI: 5.51%, 7.72%). In comparison, the overall error rate for the ACT NOW CE
Study was 1.04% (95% CI: 0.77%, 1.19%) based on the all-field calculation, which included all data
elements regardless of case type (Table 1a). A difference of 5.53% (95%CI: 4.39%, 6.67%; p < 0.0001) was
noted between the error rate estimates.

Table 1
a. Error Rate Comparison: MRA Literature vs. ACT NOW CE Study (All-Fields)

Groups Error Rate (%) (95% CI) I2

Medical Record Abstraction (MRA) Literature 6.57 (5.51, 7.72) 0.998

ACT NOW CE Study (All-Fields) 1.04 (0.77, 1.19) 0.889

Difference 5.53 (4.39, 6.67) -

Note. CI = Confidence Interval; I2 = Higgins and Thompson’s I2statistic for measuring the degree of
heterogeneity, where ≤ 25%, indicating low heterogeneity; 25% – 75% indicating moderate
heterogeneity; and > 75%, indicating considerable heterogeneity.35p-value < 0.0001



Page 7/17

The ACT NOW CE Study error rate estimate for the populated-field meta-analysis was 2.57% (95% CI:
1.88%, 3.35%) (Table 1b). Similarly, this error rate was substantially lower than the 6.57% error rate from
the literature (p < 0.0001).

Table 1
b. Error Rate Comparison: MRA Literature vs. ACT NOW CE Study (Populated-Fields)

Groups Error Rate (%) (95% CI) I2

Medical Record Abstraction (MRA) Literature 6.57 (5.51, 7.72) 0.998

ACT NOW CE Study (Populated-Fields) 2.57 (1.88, 3.35) 0.897

Difference 4.00 (2.67, 5.33) -

Note. CI = Confidence Interval; I2 = Higgins and Thompson’s I2statistic for measuring the degree of
heterogeneity, where ≤ 25%, indicating low heterogeneity; 25% – 75% indicating moderate
heterogeneity; and > 75%, indicating considerable heterogeneity.35p-value < 0.0001

Discussion
Through the pooled analysis of data error rates from the literature, we were able to establish an average,
overall MRA error rate – approximately 6.57% (or 657 errors per 10,000 fields). We compared this rate
(resulting from the MRA meta-analysis) to the rates calculated for the ACT NOW CE Study (1.04% –
2.57% or 104 to 257 errors per 10,000 fields)13 and found that the error rates for the ACT NOW CE Study
were substantially lower than those found in the peer reviewed literature – a difference of 553 (95% CI:
439, 667) per 10,000 fields (all-field total) and 400 (95% CI: 267, 533) per 10,000 fields (populated-field
total). As cited in our previous work, we used both all-field and populated-field rates when calculating and
presenting error rates for the ACT NOW CE Study, “to account for the variability in the calculation and
reporting of error rates in the literature.”13,36,37 Based on these results, it appears that the MRA-QC
framework implemented as part of the ACT NOW CE Study was successful in controlling MRA error rates.

Reports of clinical studies in the recent literature routinely lack descriptions of how the quality of the MRA
was measured and controlled as well as the error rate ultimately obtained.12 For clinical studies that did
report an error rate, substantial variability is noted in the way error rates were measured, calculated, and
expressed.12,37 The ACT NOW CE Study was unique in that it implemented and evaluated formalized
MRA training and continuous QC processes in an effort to improve data quality.13,32 To our knowledge,
this was the first time that an MRA-QC framework, such as that published by Zozus and
colleagues,12,13,32 was implemented and evaluated throughout the course of an ongoing clinical research
study. There is a lack of evidence in the literature to suggest that previous clinical studies had
implemented any formalized training or QC process to address error rates. As such, for this comparison,
we made the decision (1) to limit to comparing against an overall error rate for each study rather than
comparing rates across sites or over time; and (2) to provide both conservative (populated-field) and
optimistic (all-field) measurements to account for variability across the literature. Given the variability and
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potential magnitude of the error rates from MRA, researchers should implement a formal data quality
control framework that includes prospective quality assurance, such as abstraction guidelines12 with real-
time error checks,38 abstraction training,32 and quality control during the abstraction process. These
recommendations are echoed in the GCDMP chapter on Form Completion Guidelines.39

Addressing Abstractor-related Variability
The reliance on human performance and associated underlying cognitive processes could be responsible
for some or all of the variability and could be affected by the level of complexity of the data abstracted
for a particular study. For example, the more cumbersome it is to identify, interpret, and collect a specific
value from the EHR, the more likely for human error. The amount of abstractor-related variability in
abstraction and quality control processes are likely residual effects of the traditional, bespoke and
manual data management techniques that existed within the clinical research and clinical data
management professions prior to the last two decades.12,40,41 Fundamentally, we recommend increasing
standardization and QC of processes for capturing and processing data by qualified and trained research
team members. The SCDM’s Certified Clinical Data Management Exam™ (CCDM) assesses a set of
universal evidence-based, professional standards for individuals who manage data from clinical
studies.42 Use of the CCDM exam as a tool for establishing competency could reduce variability
universally. For example, the CCDM exam assesses (in those managing clinical data) the application of
evidence-based practice and use of higher-order cognitive abilities (i.e., evaluation, synthesis,
creation),41,42 potentially reducing variability in processes and human performance that were identified as
potential sources of variability.

Addressing Performance Improvement-related Variability
Empirical studies suggest that there is significant variability in the abstraction and quality control
processes used;43,44 these different methods, process aids, and quality control activities could be
responsible for the amount of variation observed in the error rates obtained from the literature. Several
authors have further explored these underlying reasons for the high variability in abstraction.43–49 Further
exploration on the causes of this variability is an important area for future research. In particular, the
identification of human performance-related sources of variability with training-related root causes versus
those caused by the abstraction tools and processes points to improvement interventions.50–52

A Case for MRA Guidelines and Continuous QC
Although abstraction guidelines constitute a primary mechanism for preventing abstraction errors, they
are not often used in clinical studies, which have traditionally relied on form completion guidelines. Until
recent recommendations,39 clinical study form completion guidelines traditionally specified definition and
format of fields and instructions for documenting exceptions, such as missing values, but usually
stopped short of specifying locations in the patient chart from which to pull information, and acceptable
alternative locations applicable across multiple clinical sites when the preferred source did not contain
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the needed data. The MRA-QC framework implemented as part of the data management activities for the
ACT NOW CE Study addressed this limitation by developing standardized MRA training and abstraction
guidelines with detailed instructions for locating each data point in the patient chart.13,32 Further, to
account for the variability in clinical charting across institutions, secondary and tertiary locations within
the EHR were also provided as alternatives, should the primary location not contain any relevant data.
This approach offered clear and consistent instructions for all sites to follow, ensuring greater
consistency and accuracy of the data collected.

The continuous QC process implemented as part of the MRA-QC framework, also offered an avenue for
further clarification of the abstraction guidelines and periodic check-ins with each site to confirm
consistency in interpretation of those guidelines. For example, the abstraction guidelines were updated
significantly after the training.32 The guidelines were further updated following the routine quality control
(independent re-abstraction) events where the root cause of errors was determined to be ambiguities in
the abstraction guidelines.13

A Case for Quantifying MRA Error Rates
It is unfortunate that the tendency to associate clinical research with rigorous and prospective data
collection further fuels the perception that abstraction or chart review is not a factor in data accuracy
when, in fact, (1) the chart itself and manual abstraction from the chart are the sources of most clinical
research data error, and (2) manual abstraction from the chart (MRA) remains the most commonly used
method for data collection.12,26,47, 53–55 Despite recommendations for measuring and monitoring MRA
data quality,44,48,56 abstraction error usually remains unquantified in even the most rigorous clinical
studies.37,46,56,57 Based on the now considerable evidence, we echo recommendations in the MRA
Framework for abstractor training, tools, conducive environment and ongoing measurement and control
of the MRA error rate12 and add to the calls for reporting data accuracy measures with research results.58

Reporting a data accuracy measure with research results should be expected in the same way that
confidence intervals are expected; it is difficult, and not recommended, to interpret results in their absence.

Limitations
Limitations specific to the analysis of error rates for the ACT NOW CE Study13 and the comprehensive
literature review and meta-analysis11 have been presented separately and are not repeated here. Similar
to the comprehensive literature review, we acknowledge limitations with the identification of MRA-centric
manuscripts. As with any literature review, it is possible we may have missed relevant manuscripts due to
a lack of standard terminology for data processing methods. Also, because our work is a secondary
analysis, it relies on data that were collected for other purposes. Although we used error and field counts
reported in the literature, prior work has shown that even these have significant variability.33,36

Future Direction
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While there is general agreement that the validity of research rests on a foundation of data, data
collection and processing are sometimes perceived as a clerical part of clinical research. In between rote
data entry and scientific validity, however, lie many unanswered questions about effective methods to
ensure data quality, which, if answered, will help investigators and research teams balance cost, time, and
quality while demonstrating that data are capable of supporting the conclusions drawn.

Conclusion
Based on the comparison of the MRA error rate achieved under formalized quality assurance and process
control to those reported in the literature, we conclude that such methods are associated with
significantly lower error rates and that measurement and control of the data error rate is possible within a
clinical study. We believe that the deployment of our MRA-QC framework allowed the ACT NOW CE Study
to maintain error rates significantly lower than the overall MRA error rates identified in the relevant
literature.

Abbreviations
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MRA Medical Record Abstraction

QC Quality Control

ACT NOW
CE

Advancing Clinical Trials for Infants with Neonatal Opioid Withdrawal Syndrome
Current Experience

NIH National Institutes of Health

ECHO Environmental influences on Child Health Outcomes

IDeA Institutional Development Awards Program

ISPCTN IDeA States Pediatric Clinical Trials Network

NICHD National Institute of Child Health and Human Development

NRN Neonatal Research Network

SCDM Society for Clinical Data Management

GCDMP Good Clinical Data Management Practices

CI Confidence Interval

CCDM™ Society of Clinical Data Management’s Certified Clinical Data Management Exam™

EHR Electronic Health Record

NAACCR North American Association of Central Cancer Registries

HEDIS Healthcare Effectiveness Data and Information Set

SDV Source Data Verification
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Figure 1

PRISMA Diagram: Identification of MRA-centric Literature for Meta-Analysis
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