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Abstract

Single subject, or ‘N-of-1,’ studies are receiving a great deal of attention from both theoretical and 

applied researchers. This is consistent with the growing acceptance of ‘personalized’ approaches 

to health care and the need to prove that personalized interventions tailored to an individual’s 

likely unique physiological profile and other characteristics work as they should. In fact, the 

preferred way of referring to N-of-1 studies in contemporary settings is as ‘personalized studies.’ 

Designing efficient personalized studies and analyzing data from them in ways that ensure 

statistically valid inferences are not trivial, however. I briefly discuss some of the more complex 

issues surrounding the design and analysis of personalized studies, such as the use of washout 

periods, the frequency with which measures associated with the efficacy of an intervention are 

collected during a study, and the serious effect that serial correlation can have on the analysis 

and interpretation of personalized study data and results if not accounted for explicitly. I point 

out that more efficient sequential designs for personalized and aggregated personalized studies can 

be developed, and I explore the properties of sequential personalized studies in a few settings via 

simulation studies. Finally, I comment on contexts within which personalized studies will likely be 

pursued in the future.

Media Summary

The introduction of new therapies or disease prevention interventions must come with a 

commitment to determine if they actually provide benefit. To achieve this, relevant studies 

typically focus on the effects that a therapy or intervention might have on a randomly chosen 

individual with certain characteristics (like a disease or frequently observed disease-risk profile). 

As a result, such studies often provide insight into the average or population-level effects that 

the therapy or intervention has, addressing questions such as: ‘Do many people benefit based on 

some predefined criteria of benefit?’ ‘How many people exhibit side effects?’ and ‘Does the new 

therapy or intervention benefit more people than another therapy or intervention?’ Such studies 

rarely collect enough information on any one individual to unequivocally characterize the nature of 
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that individual’s response and therefore do not address questions such as: ‘Does the therapy affect 

that individual to a quantifiably greater or lesser degree than other individuals?’ ‘Are there factors 

unique to that individual, for example, aspects of their diet or other medications they are on, that 

affect their response at any given time?’ and ‘Does the therapy affect other aspects of the health 

of that individual, for example, their sleep, in deterministic ways?’ Studies designed to explore 

individual responses to a therapy or intervention are referred to, unsurprisingly, as single subject, 

‘N-of-1’ or, preferentially, as ‘personalized’ studies. Personalized studies can be complicated 

and expensive to pursue, especially if a goal is to aggregate the results of many personalized 

studies to, for example, determine how many people exhibit similar overall responses. In addition, 

personalized studies must be designed and analyzed in ways that are sensitive to the use of 

washout periods, serial correlation among the measurements made during the study, and other 

phenomena. I describe some of the challenges in the design and conduct of personalized studies 

and propose making them more efficient in certain contexts by analyzing the data collected during 

their execution sequentially; that is, making decisions about the effects of an intervention on an 

individual in real time, stopping the study at any point in which sufficient data have been collected 

to make compelling claims about the efficacy (or lack thereof) of the intervention. I use simulation 

studies to explore the properties of personalized studies, including sequential personalized studies. 

I also briefly mention a few future directions for N-of-1 studies that build off the proposed study 

designs and issues discussed.

Keywords

precision medicine; serial correlation; sequential analysis; drug development

1. Introduction: Traditional vs. N-of-1 Studies of Interventions

1.1. Population-Based Randomized Controlled Trials (RCTs)

Most researchers developing interventions, whether therapeutic, palliative, or preventive, 

want to know if their interventions benefit people and have the effects that they were 

designed to have. Since a typical motivation to develop an intervention is a need in the 

population at large, and many people might benefit from the intervention as a result, 

most studies focus on the benefits of the intervention in the population at large. Relevant 

studies might focus on the average effect of an intervention over a large number of people, 

seeking to show that it is likely to positively benefit more people than, say, a comparator 

intervention, which could be a placebo. The design of such studies has received a great deal 

of attention over the years, with emphasis on variations of traditional population-based 

randomized controlled trials, or RCTs (Friedman, Furberg, and DeMets 2010)(Meeker-

O’Connell et al. 2016)(Pawlik and Sosa 2020). Traditional population-based RCTs can 

be quite complex, but the basic strategy behind them involves assigning some number of 

enrollees in a trial the intervention whose efficacy is in question, while others are assigned 

to a placebo or comparator intervention. The effects of the drug are measured in both 

groups and compared to determine the merits of the experimental intervention relative to 

the comparator intervention. The assignments as to which enrollees in the trial receive the 

experimental intervention or the comparator are done randomly so that those receiving the 

experimental intervention have a high probability of having the same characteristics as those 
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receiving the comparator intervention to ensure that any observed effect of the experimental 

intervention is likely to be causal (Collins et al. 2020)(Deaton and Cartwright 2018).

RCTs are often required, justifiably, by regulatory agencies to make sure new interventions 

have the positive benefit they are claimed to have. I will not cover all the challenges and 

methods used in the conduct of traditional RCTs, but suffice it to say that there is a rather 

voluminous literature on the subject, with some of it questioning the fundamental tenets 

behind population-based RCTs, such as the belief that randomization in the assignment 

of experimental and comparator interventions to enrollees in a trial can achieve what it is 

intended to do, or the belief that RCTs could be supplanted by other study designs (Deaton 

and Cartwright 2018)(Nicholas J. Schork 2018)(Subramanian, Kim, and Christakis 2018). 

An important and very consequential point of emphasis about traditional population-based 

RCTs is that it is an open question as to what constitutes sufficient population-level benefit 

to motivate the use of an intervention based on the results of a population-based RCT, as 

many interventions have been unequivocally shown not to work on all the individuals who 

take them based on a variety of different population-based metrics exploring intervention 

responses (Nicholas J. Schork 2015)(Senn 2018)(Subramanian, Kim, and Christakis 2018). 

This suggests that either standard population RCTs and metrics used to assess the utility of 

an intervention in the population at large are flawed, or the biomedical science community 

needs to broadly rethink current health care practices and ways in which new interventions 

and health care technologies are vetted and adopted.

1.2. The Emergence of Precision Medicine

The fact that interventions do not work for everyone raises the question as to why. There 

is overwhelming evidence that the often very nuanced or even unique characteristics that 

an individual possesses, such as their genetic, physiologic, dietary, and behavioral profile, 

as well their history of exposures to various substances and access to health care, can 

all influence their response to an intervention. In fact, the evidence is so pronounced that 

very large-scale efforts promoting ‘precision,’ ‘individualized,’ or ‘personalized’ approaches 

to health care—in which individual characteristics are used to tailor interventions to an 

individual—have been promoted and even adopted in contemporary medical and public 

health text books (n.d.a)(n.d.b)(n.d.c)(n.d.d). Proving that a particular individual responds 

to an intervention, or that the individual’s response to an intervention is shaped by very 

nuanced features they have is not trivial, and requires study designs that go beyond 

and complement those adopted in traditional population-based RCTs. There is a growing 

literature on single subject, ‘N-of-1,’ or what are now more preferentially referred to as 

‘personalized’ study designs that are meant to probe individual response to interventions 

(Chapple and Blackston 2019)(n.d.e)(Kravitz, Schmid, and Sim 2019)(Lillie et al. 2011)

(McDonald, McGree, and Bazzano 2019)(Nicholas J. Schork and Goetz 2017). The use 

of the term ‘N-of-1’ reflects the fact that the sample size in terms of the number of 

units of observation or individuals in such studies is 1. However, the term ‘personalized’ 

in such contexts is more intuitive for many. Personalized studies can be pursued for a 

variety of reasons, however. For example, it may be the case that the condition for which 

an intervention has been designed is very rare (N. J. Schork and Nazor 2017) and hence 

must be tailored to profiles of the few people with the condition, or, as discussed later, the 
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interventions being tested are truly personalized, like CAR-T cells for cancer, and hence 

not likely to work in anyone but the specific individual they were designed for (Nicholas 

J. Schork et al. 2020). As a last example, there may be a need to focus on very detailed 

evaluations of an individual receiving an intervention because the intervention has a small 

therapeutic window (i.e., range of dosages for which a positive effect is expected and for 

which no side effects are likely to occur) and thus requires a very careful administration and 

monitoring of its affects (Cremers, Guha, and Shine 2016). Note that methods for exploring 

population-level heterogeneity in patient responses to interventions based on data generated 

from general or traditional RCTs have been explored by many researchers, and the results 

of these studies have revealed evidence motivating personalized medicine strategies in many 

instances (n.d.f)(Schandelmaier et al. 2020).

1.3. Aggregating Personalized Studies and Choosing a Design for Their Execution

The results of personalized studies can be aggregated to explore more population-level 

phenomena, like the fraction of individuals likely to have unique responses based on 

characteristics they have (Blackston et al. 2019)(Punja et al. 2016). Note that in this context 

it is very important to define some measure of the clinical impact of an intervention, in 

terms of an effect size, and use this to determine what fraction of individuals might be 

responding to the intervention, or very unfortunate and erroneous claims about biological 

variability and the clinical utility of the intervention could be made. Consider, for example, 

a situation in which individuals vary appreciably in their response to an intervention to treat 

a disease they all have, but none of their responses is large enough to actually impact their 

disease course in meaningful ways. In this situation, biologically meaningful variability may 

exist in the responses to intervention, but this variation will not lead to the identification 

of individuals who will ultimately benefit from the intervention. In the following, I will 

not address what may be a clinically meaningful effect size, but rather discuss the basic 

design of personalized studies and some statistical challenges they face. It is also important 

to point out that, depending on the context, personalized studies can be expensive and 

logistically challenging (e.g., using a sophisticated continuous monitoring device on an 

individual to record their response to an intervention over the course of a lengthy study). 

In this light, one could ask, about a particular intervention, if there are enough resources 

to collect 1,000 response measurements through a device capable of use in the field (e.g., 

a portable blood pressure measurement monitoring device) to explore the benefits of an 

emerging intervention for hypertension; would it be best to get 1 measurement on 500 

individuals provided the intervention and 1 measurement on 500 individuals provided a 

comparator intervention, or 500 measurements on a single individual while provided the 

intervention, and 500 measurements on that same individual while provided a comparator 

intervention? Obviously, it depends on the question, but this is an important trade-off 

in terms of resource utilization for making population-level benefit claims vs. individual 

benefit claims about an intervention. This trade-off can be complicated, as there are unique 

challenges in designing and executing both large-scale traditional RCTS and personalized 

trials, although there are many emerging and cost-effective health monitoring technologies 

that can lead to efficient and cost-effective population-level RCTs, as well as personalized 

studies, in different contexts (Anderson et al. 2020)(Cha et al. 2019)(Chung, Fortunato, and 
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Radacsi 2019)(Herrington, Goldsack, and Landray 2018)(Marra et al. 2020)(n.d.g)(Topol, 

Steinhubl, and Torkamani 2015).

2. Challenges in the Design and Analysis of N-of-1 Trials

2.1. The Basic N-of-1 Design and Its Challenges

Most N-of-1 studies exploit some kind of variant of a basic crossover design (Lillie et al. 

2011)(Wang and Schork 2019). Basically, an individual is provided a particular intervention 

(call it ‘intervention A’) and measures of their response to that intervention are recorded. 

The individual is then provided a comparator or placebo intervention (‘intervention B’) 

and measures of their response are also recorded. The response measures collected during 

the administration of each intervention are compared to make claims about the relative 

benefits of interventions A and B. Many phenomena can impact the power of a personalized 

study; for example, the length of time an individual is provided each intervention given, for 

example, the time it takes for the initiation of the activity of the intervention and its half-life 

in the body; the number of response measurements collected during each intervention 

period; the number of periods in which an individual is provided intervention A or B; the 

use of randomization to determine the order in which the interventions are provided; the use 

of initial baseline evaluation and washout periods (i.e., times when the individual is taken 

off an intervention to remove any lingering, or ‘carryover,’ effects of the intervention—note 

that the use of washouts can be controversial if an individual is being treated for a life-

threatening condition and cannot afford to be off an intervention); whether response data are 

collected during washout periods and these data are considered in the analysis; the nature of 

the comparator intervention or interventions being studied (i.e., there is no reason multiple 

interventions cannot be evaluated); the collection and analysis of covariables (e.g., diet 

and activity) during the study to reduce confounding of intervention/response relationships; 

and the use of multiple response variables. These are all important considerations and 

impact the practicality, statistical power, and overall rigor of the study. Note also that since 

measures are made on an individual, there may be a time or learning effect when the 

measures are collected that masks as an intervention effect. For example, if an intervention 

is being explored to enhance cognitive ability as measured through an online reaction time 

or memory test, then the individual in the trial may simply get better at the task over 

time. Time and learning effects can be accommodated and controlled for, however, to some 

degree, through the use of covariates in the analysis model that reflect the times at which 

the measures have been made. There are a number of resources that can be used to design 

personalized trials. For example, Dudley and colleagues have developed smartphone apps 

for executing personalized trials (Badgeley et al. 2016)(Percha et al. 2019); (Senn 2019) has 

considered the sample sizes necessary to test certain hypotheses in personalized trials; and 

(n.d.h) provide a comprehensive review of general design and analytic considerations for 

personalized trials. In addition, there are a growing number of internet resources devoted 

to personalized and N-of-1 trials, for example, the website maintained by the International 

Collaborative Network for N-of-1 Clinical Trials and Single-Case Designs (Nikles et al. 

2021).
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2.2. Adaptive Designs vs. N-of-1 Trials

Adaptive or dynamic study designs for characterizing and optimizing the choice of an 

intervention for an individual are receiving a great deal of attention since they share 

some motivation and design concepts associated with traditional population-based RCTs 

and personalized studies (Kosorok and Moodie 2015)(Tsiatis et al. 2019). These designs 

consider, for example, randomizing individuals to one of a set of interventions of interest 

initially and then, as the data accrue on the individuals’ responses to those interventions, 

each individual is steered toward the intervention that the data suggest should work best for 

them. It is not without reason that these designs have elements in them of study designs 

that have been referred to as ‘play the winner’ designs (Rosenberger 1999). Adaptive 

designs can lead to dynamic treatment regimes (DTRs) in which interventions (‘treatments’) 

are potentially changed on the basis of information collected on an individual patient. 

Adaptive designs should continue to receive attention since it is complicated ethically to 

keep providing an individual an intervention that may not be benefitting them simply 

to ensure that statistical power for testing an intervention’s efficacy or inefficacy can be 

obtained (Cheung, Chakraborty, and Davidson 2015). In this light, minimizing the amount 

of time an individual is receiving what is likely to turn out to be an inferior intervention 

relative to others is appropriate ethically. Adaptive designs therefore have a place in 

biomedical research, but are not necessarily a substitute for personalized or N-of-1 studies, 

or even aggregated personalized studies, which have a dual focus on ‘within’ and ‘between’ 

individual variation in intervention response. Personalized studies, as noted, should therefore 

be designed to have enough statistical power to detect factors influencing within-individual 

variation in response to the intervention. Adaptive designs exploit population variation in 

a way that could inform studies of factors responsible for within-individual variation, but 

focus on between-individual variation in response to a set of interventions.

2.3. The Effects of Serial Correlation

Since N-of-1 studies focus on measurements obtained on a single individual over time while 

the individual is provided different interventions, the measurements are likely to exhibit 

serial (or auto-) correlation. Accommodating, measuring, exploiting, and avoiding serial 

correlation in time-series data are the subjects of a great deal of research among statisticians 

and data analysts, so I will not go into detail about the topic here (n.d.i), but rather focus 

on the consequences of serial correlation in personalized studies. An excellent source on 

the subject is provided in a book chapter by (n.d.j); although others have introduced 

the subject as well (n.d.k)(n.d.l)(Tang and Landes 2020)(Wang and Schork 2019). Serial 

correlation will likely arise if the response measures are collected with very short time 

intervals between them. For example, if a continuous monitor, say for electrodermal activity 

(EDA) stress response evaluation is used, then time-adjacent measures are likely to exhibit 

strong correlations. If the response measures are obtained with longer between-measurement 

time intervals, for example, once a week, they are not likely to exhibit as strong a serial 

correlation. In addition, the use of washout periods can influence the impact that serial 

correlation will have on type I and type II statistical error rates in drawing inferences about 

an intervention effect. This was pointed out by (Wang and Schork 2019) but, unfortunately, 

they did not consider the full range of phenomena that might be at play in evaluating the 

effects of serial correlation on personalized studies with and without washout periods. In 
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addition, there are many forms of serial correlation that could affect a personalized trial. 

(Wang and Schork 2019) and (Rochon 1990) considered simple autoregressive order 1 

(AR-1) models of serial correlation, which I also consider here, but clearly more work in this 

area should be pursued.

To expose the issues with serial correlation that can be exacerbated with the use of washout 

periods, consider the fact that serial correlation in a random variate in a time series not 

subjected to any perturbations can create ‘local’ mean differences in that variate during 

reasonably long segments of time, especially if strong serial correlation is present. Thus, 

two long stretches of time that are not adjacent may exhibit average value differences in the 

variate purely by chance if not accounted for properly. The probability that this will occur 

if the two stretches of time are adjacent (e.g., at time points 1–100 and 101–200 instead of, 

e.g., at time points 1–100 and 201–300) is lower since the ‘carryover’ of the correlations 

from the first segment to the adjacent second segment will reduce the chance of average 

differences between those two segments. Thus, if during a personalized study the outcome 

variable exhibits significant serial correlation, then the response observations obtained while 

the individual is provided, for example, intervention A may exhibit an average of that 

response variable that is different than the average of the response variable while the 

individual is provided intervention B purely by chance, if those periods are separated by a 

washout period and the serial correlation is not accounted for statistically.

Consider, Figure 1 (also compare with Figure 7.4 of (n.d.m)), which depicts the time series 

of a simulated random variate (in gray) generated under the assumption of different AR-1 

serial correlation strengths using the R module ‘arima, sim’ (n.d.n). Note that R code for 

conducting these simulations and others described here are available upon request. Also 

depicted in Figure 1 are the 25-time-point rolling average of each series (as solid black 

lines) using the R module ‘roll,’ as well as twice the estimated standard error above and 

below the mean (as solid red lines) (n.d.o). It is clear from Figure 1 that the stronger the 

positive serial correlation, the more likely two randomly chosen segments will differ in their 

means in such a way that those means are not within the other segment’s local confidence 

limits about the mean, potentially leading to what would appear to be an intervention 

effect if certain analyses were pursued that did not account for the serial correlation. For 

example, consider the dip in the variate values with AR-1 serial correlation strength of 0.75 

occurring between times ~200–225 and contrast that with the rise in the variate between 

times ~350–375. Variation in the local mean of the variable this pronounced is not observed 

in the variates with AR-1 serial correlation strengths of −0.75, 0.00 or even 0.50. If the 25 

measures collected during times ~200–225 were obtained while an individual was provided 

intervention A and the measures collected during times ~350–375 were collected while 

that individual was provided intervention B, then one could falsely conclude that there is 

a difference in the measures that is attributable to the intervention if the serial correlation 

was not taken into account in the analysis of the data. We consider this phenomenon and its 

implications for personalized trials in more detail in the next section.
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2.4. Simulation Studies Exploring Serial Correlation in Personalized Studies

In order to explore the effect of serial correlation on personalized studies, I simulated data 

in a couple of settings, starting with a more basic analysis setting and then considered 

more realistic analysis settings. Note that my simulation studies are in no way exhaustive 

or do justice to the myriad ways in which certain phenomena, like serial correlation, can 

impact the design and analysis of personalized trials. Rather, my goal is to expose the 

reader to various issues involving serial correlation effects. I assumed the basic N-of-1 

design and linear regression analysis model with variance components described by (Rochon 

1990) and (Wang and Schork 2019) to simulate the analysis of relevant personalized 

studies. However, in pointing out the untoward effects of serial correlation, I did not 

account for serial correlation in all the simulations and assumed the serial correlation 

was effectively 0.0 to determine the effect of this assumption on test statistics meant 

to capture an intervention effect. There are a number of features in personalized studies 

that could impact and be impacted by serial correlation if not accommodated for in any 

analysis (see Section 2.1). I consider a few of these features, including the use of washout 

periods and the length of washout periods, fixed vs. random order of the interventions, 

the number of crossover periods, and the number of measurements made in while the 

individual is on each of two interventions (A or B). The washout periods considered in 

the simulation studies were assumed to last as long as, or longer than, the intervention 

periods, but for which no response measurements were made so they were not included in 

the analysis. In this context, and in simulations in which the order of the treatments was 

randomized, a simulated intervention sequence could have constant, repeated alternations 

between treatments with washout periods, for example: ‘AWBWAWBWAWBWAWB’ where 

‘W’ stands for a washout period, or could have a sequence with random alternations such 

as ‘AWAWBWAWBWBWBWA.’ The basic response measurement variable was assumed 

to follow a standard normal distribution with variance 1.0 and different degrees of serial 

correlation from 0.0 to 1.0. Random variates were generated using the R module ‘arima.sim’ 

as in Section 2.3.

2.4.1. Basic Simulations—I first simulated simple designs in which 40 measures were 

made while an individual was on each of the two interventions (80 measures total). I 

considered four different designs: 1. A design where the 40 measures for each intervention 

were made consecutively (a simple 2 intervention × 1 period × 40 measures design) with 

or without washouts between the interventions (AB vs. AWB) where the washout lasted 

a time equivalent to 40 measures; 2. A 2 × 2 × 20 design with and without washouts 

(ABAB vs. AWBWAWB); 3. A 2 × 4 × 10 design with and without washouts (ABABABAB 

vs. AWBWAWBWAWBWAWB); and 4. A 2 × 8 × 5 design with and without washouts 

(ABABABABABABABAB vs. AWBWAWBWAWBWAWBWAWBWAWBWAWBWAWB). 

I also simulated settings in which 2 × 2 × 20 and 2 × 4 × 10 designs were used with 

washout periods that lasted 100 measures and 50 measures, respectively. For each setting, I 

simulated series of 1,000 measures for serial correlation strengths between −0.99 and 0.99 

increments of 0.01, randomly chose a point in each series as the start of a personalized 

trial, then assigned a dummy variable =0 to the 40 measures collected per intervention A 

and a dummy variable =1 to the 40 measures collected per intervention B. I then fit a 

simple linear regression model where the measures during intervention periods A and B 
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were regressed on the 0/1 dummy variable. I did this 10,000 times for each assumed serial 

correlation strength and tallied the number of regression analyses in which the coefficient 

for the dummy variable was significantly different from 0.0 using a t test on the regression 

coefficient (based on the ‘lm’ module in R) at a type I of error level of 0.05. The results 

are depicted in Figure 2, which plots the fraction of times out of 10,000 that the tests of 

the dummy variable resulted in a p-value < .05 (the ‘False Positive Rate’ given that no real 

intervention effect was generated but rather one continuous series with serial correlation) 

against the serial correlation strength.

It can be seen from Figure 2 that the false positive rate of a regression-based test of an 

intervention that ignores serial correlation generally increases with increasing positive serial 

correlation, but decreases if the serial correlation is strongly negative. Note that the trend 

for the false positive rate goes to 0.0 for serial correlation strengths <−0.5 that approach 

0.0, but the figure was purposely capped at −0.5 to highlight the influence of positive serial 

correlation. Note that for very large positive serial correlations, there is a dip in the false 

positive rate for designs in which the measurements for each intervention are collected in 

multiple shorter time segments (e.g., black lines = 2 × 1 × 40 measures vs. red lines = 2 × 

8 × 5 measures). In addition, the use of washout periods exacerbates the false positive rate, 

as reflected in the solid lines (no washout times between intervention periods) vs. the dashed 

lines (washout periods) but in a manner that is dependent on the serial correlation strength.

There are some intuitive interpretations about the results of the simulation studies reflected 

in Figure 2: If a continuously monitored variable with zero mean and finite variance exhibits 

serial correlation, then there will likely be more ‘runs’ in which consecutive values of the 

variable are greater than, or lesser than, 0.0. This will be reflected in the mean during 

such a ‘stretch’ being greater than or lesser than 0.0 despite the fact that throughout the 

entire series (i.e., over all possible stretches within the series) the global mean is 0.0. Thus, 

randomly choosing two stretches of adjacent variable values separated by some number of 

measures (or time) could lead to differences in the mean of those numbers if attention is 

only confined to those stretches of adjacent values, certainly more so than when there is 

no serial correlation. When there is no interval between the two stretches of consecutive 

values of the variable (i.e., no washouts), this difference in the average segments has less 

of a chance of occurring, since any run of positive or negative numbers could bridge the 

two stretches or sequences of values and hence contribute to the average values during 

each of the two stretches. If the serial correlation is really pronounced, however, then any 

two stretches might still have values that are similar despite the washout period between 

them—note the dip in false positive rate for the green (2 × 2 × 20) and red (2 × 4 × 10) 

dashed line settings in Figure 2. However, if the washout periods are long relative to the 

times during which measures are collected during the intervention periods, then the values 

collected during those different intervention periods will not be as strongly correlated and 

hence likely differ by chance, increasing the false positive rate (as reflected in the blue and 

green dotted line settings).

2.4.2. More Realistic Settings—In order to gain further insight into the effect of serial 

correlation on personalized trials and how it affects the power to detect a real effect of an 

intervention, as well as the false positive rate, of regression-based tests of an intervention 
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effect, and how this effect might be remedied, I performed additional simulation studies. 

Here, I simulated 1,000 personalized N-of-1 trials with 400 total measurements assuming 

different correlation strengths as in section 2.4.1. Note that fewer simulation studies were 

done in each setting (1,000) relative to those pursued in section 2.4.1 (10,000) given the 

extra computational burden with the increased sample used and analytical methods used. As 

in section 2.4.1, a simulated intervention ‘A’ was compared to a comparator intervention 

‘B’ with 50 response measures made during each of four intervention periods (i.e., 2 

interventions × 4 periods × 50 measurements = 400 total observations). Studies for which 

the four periods for each intervention were randomized over the eight total intervention 

periods were also pursued, unlike the studies in section 2.4.1. An effect size of either 0.0 

(no effect) or 0.3 (moderate effect) standard deviation units was assumed for intervention 

A relative to intervention B. Washout periods assuming a time equivalent to the collection 

of 50 measurement were also assumed in some simulations. Here, standard generalized 

least squares (GLS) regression analysis was used to relate measurements made during 

intervention period (coded as 0 for intervention A and 1 for intervention B) to the coded 

0/1 intervention periods using the ‘gls’ module in the R package ‘nlme’ (n.d.p). Note that 

the gls model accommodates serial correlation by estimating it from the data along with 

regression coefficient parameters, although how it estimates this serial correlation when 

washout periods are used can raise questions, as we point out below. The power to detect an 

intervention effect assuming a type I error of 0.05 was determined by tallying the number 

of simulations out of the 1,000 resulting in a regression-based test of the intervention effect 

coefficient producing a p-value < .05. No carryover or other effects were simulated.

The results are depicted in Figure 3. The different colored lines correspond to different 

assumptions about the use of washout periods and randomization of the order of the 

interventions, with the solid lines assuming an effect size of 0.3 and the dotted lines an 

effect size of 0.0. The black lines assume no washout periods and no randomization; the 

blue lines assume no washout periods but randomization; the red lines assume washouts 

but no randomization; and the green lines assume both washouts and randomization. The 

two long dashed gray lines provide theoretical 95% confidence limits for an estimate of a 

type I error rate of 0.05 given 1,000 simulations. It can be seen generally that the power 

of the gls regression coefficient-based test of an intervention effect is reduced when serial 

correlation increases. This is due to the fact that serial correlation essentially reduces the 

‘effective’ number of measurements (or observations) because of their lack of independence, 

leading to a less powerful test relative to a test in which all the observations are independent 

(i.e., not serially correlated) (Bayley and Hammersley 1946)(Tang and Landes 2020)(n.d.q). 

For the settings involving washout periods and no assumed intervention effect (the dashed 

green and red lines in Figure 3), the ‘power’ (essentially the false positive rate) displays a 

sudden jump at a serial correlation strength of ~0.7 (contrast the red and green with the blue 

and black lines). This increase in false positive rates also manifests itself in the settings in 

which there is an assumed intervention effect (the solid red and green lines in Figure 3). 

Randomization mitigates this increase in false positives results (e.g., contrast the green and 

red lines). This jump in false positives when washouts are used likely arises because of the 

phenomena described in Section 2.4.1 and Figure 2, in which runs of correlated values of 

consecutive measurements are broken up, leading to random local differences in the average 
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values in different time segments. This phenomenon raises questions about how to estimate 

serial correlation strength and account for it in personalized studies if the measurements are 

not collected in one continuous series but are rather broken up into smaller units, or, perhaps, 

if there are changes in serial correlation strength when interventions are rotated (e.g., some 

blood pressure medications may reduce variability in blood pressure over time, possibly 

affecting serial correlation between observations)—topics I do not consider further here.

2.4.3. Accounting for Serial Correlation—To explore how one can accommodate 

and control for serial correlation in the regression-based testing framework I have described, 

I considered tests of regression coefficients capturing intervention effects in linear models 

using the Newey-West serial correlation-robust estimator of regression coefficient standard 

errors (Whitney K. Newey and West 1987)(W. K. Newey and West 1994). The Newey-West 

test was carried out in these simulation studies using the module ‘coeftest’ in the R 

package ‘sandwich’ (Zeileis, Köll, and Graham 2020). Again, I simulated 1,000 settings 

in which a 2 × 4 × 50–measurement personalized trial was assumed with and without 

50 measurement–long washout periods, for different assumed serial correlation strengths, 

and tallied the fraction of tests of regression coefficients associated with the intervention 

effect with p-values < .05. Figure 4 depicts the results of these simulations. Note that 

although the colors used in Figure 4 are also used in Figure 3, the lines are not necessarily 

capturing the same settings given that Figure 4 focuses on the use of the Newey-West–

based tests, which are not considered in Figure 3. The different lines again correspond 

to different assumptions about the use of washout periods and randomization of the order 

of the interventions, with the solid lines assuming an effect size of 0.3 and the dotted 

lines an effect size of 0.0: the black lines assume washout periods and randomization 

using a standard, uncorrected for serial correlation, generalized least squares (GLS)-based 

test of the regression coefficient capturing the intervention effect; the green lines assume 

washout periods and no randomization using a standard GLS-based test; the red lines 

assume washouts and randomization but use of the Newey-West serial correlation-robust 

estimator of the intervention effect regression coefficient’s standard error in a test of the 

intervention effect and the blue lines assume washouts but no randomization and use of the 

Newey-West estimator. The use of the Newey-West estimator (red and blue lines) can clearly 

lead to more robust and appropriate inferences when serial correlation is present, although 

the power loss associated with reduced effective sample size due to serial correlation cannot 

be overcome. Greater attention to how to identify and accommodate serial correlation and its 

effects on personalized designs, especially those taking advantage of continuous monitoring 

devices, is needed.

3. Sequential N-of-1 Studies

3.1. Why Sequential Designs?

Many studies are designed with a fixed sample size determined prior to the initiation of 

the study based on available evidence about, for example, a possible effect size for the 

phenomenon of interest, potential confounding factors that need to be accommodated in 

various analyses, the statistical analysis model to be used, and so on. The use of a fixed 

sample size can be costly and inefficient if the phenomenon of interest—for example, the 
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effect of an intervention on an individual in an personalized study—is more pronounced 

than thought and could have been detected with a smaller sample size. Alternatives to 

fixed sample size-based studies and test statistics involve sequential methods and tests, 

which evaluate a hypothesis (e.g., intervention effect vs. no intervention effect) after 

each measurement is made in real time. If the evidence for or against the hypothesis 

is overwhelming and statistically significant, the study is terminated. If there is not 

enough evidence to accept or reject a relevant hypothesis at any point, the sampling and 

measurements are continued. There are a number of approaches to sequential hypothesis 

testing (n.d.r)(Schnuerch and Erdfelder 2020)(n.d.s), but I focus on sequential probability 

ratio tests (SPRTs) here, which have been a mainstay in the field (Wald 1945)(Wald 

and Wolfowitz 1948). Most sequential analysis approaches, like SPRTs, posit boundaries 

informed by a priori specified fixed type I and type II error rates that, if crossed by the 

computed test statistic, will lead to termination of the study.

We note that there are modifications of SPRTs that are worth consideration from very 

practical perspectives. For example, to avoid continued sampling and measurement for very 

long periods of time if evidence for or against a hypothesis has not been obtained despite 

the accumulating data, one could modify the test to work with a maximum number of 

measurements which, if reached, would lead to the termination of the study while preserving 

the assumed type I and type II error rates for drawing inferences about the hypothesis of 

interest (Pramanik, Johnson, and Bhattacharya 2021). We also emphasize that if interest is 

not in making a decision about the efficacy of an intervention in the earliest time possible, 

but rather in exploring patterns and trends in a number of aggregated, independently 

pursued, personalized trials focusing on the same intervention or with the same overall 

design, there are many different methods for this (Blackston et al. 2019)(Punja et al. 2016), 

including those based on Bayesian meta-analyses in the present issue of HDSR.

In the following, I describe two examples of SPRTs in N-of-1 study contexts to showcase 

their potential. The first involves an evaluation of the population-level response rate to 

an intervention via sequentially aggregated N-of-1 study results with a limit imposed on 

the maximum number of personalized studies pursued over time. The second involves 

regression-based tests to detect an effect of an intervention in the shortest time possible. 

As with the results provided in the Section 2, I emphasize that they are not exhaustive, but 

rather meant to point out the potential for, for example, sequential analyses, and motivate 

further, more in-depth, studies.

3.2. Sequential Aggregated N-of-1 Studies for Overall Efficacy Claims

Consider a study in which interest is in determining both if an intervention benefits at 

least, for example, 20% of all individuals who it is provided to and, further, if there might 

be within-individual factors that influence responses to the intervention. Aggregated fixed–

sample size personalized studies could be used for this purpose: one could simply tally 

the number of personalized studies, out of say 100 total that are pursued, in which the 

individuals studied exhibit a statistically significant response to the intervention and then see 

if this number is greater than or equal to 20%. Obviously, a definition of response would 

need to be provided, but that aside, such a study could also be pursued sequentially, where 
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after each personalized trial, the count of how many individuals exhibited a significant 

response is tested to see if it is consistent with a 20% overall response rate. If it is, then the 

pursuit of the personalized trials is stopped. In the context of an SPRT, one could posit two 

hypotheses, H1: the response rate is, for example, 10% or less, and H2: the response rate is 

20% or greater, and then determine if the evidence based on an SPRT test of the response 

rate at any point in time is: 1. consistent with H1 and the study should be stopped as a result; 

2. consistent with H2 and the study should be stopped as a result; or 3. whether measurement 

and sampling should continue because there is not enough evidence in favor of either H1 or 

H2. We note that in such a study it is crucial to balance the type I and type II error rates 

posited for detecting the effect of the intervention on an individual studied in a personalized 

study with the type I and type II error rates posited for determining if the response rate 

across the personalized studies is consistent with the overall rates of response, H1 or H2.

I explored some of the properties and behavior of a modified SPRT to evaluate a response 

rate to an intervention via sequentially aggregated personalized studies. The modification 

assumed a maximum number of personalized studies used to evaluate, estimate, and test 

the overall response rate, which we set at 100 (Pramanik, Johnson, and Bhattacharya 2021). 

I simulated personalized trials involving 400 total measurements with four intervention 

periods for two interventions, as considered in Sections 2.4.2–2.4.4. I did not consider 

the use of washout periods, randomization of the order in which the interventions were 

provided, carryover effects, or serial correlation, but these phenomena should clearly be 

explored. I assumed that some fraction of individuals participating in each trial would 

exhibit an effect of intervention A, which would amount to a 0.3 standard deviation–unit 

increase in the response measure relative to intervention B, as in Sections 2.4.2–2.4.4. The 

test of the hypothesis that intervention A would induce an effect was performed with a 

standard generalized least squares regression test, as also considered in Section 2. Either a 

type I error rate of 0.001 or 0.05 was assumed for these tests. Hypotheses were posited for 

the overall response rate, H1: response rate = 0.01 vs. H2: response rate = 0.05. We also 

considered H1: response rate = 0.05 vs. H2: response rate = 0.1 as well as H1: response 

rate = 0.1 vs H2: response rate = 0.2. The simulations assumed that the actual response rate 

was between 0 and 1.0 in steps of 0.01. Only 100 simulations for each setting were pursued 

due to the computational burden and the number of times H2 was accepted was taken as an 

estimate of the power of the modified SPRT of the response rate. Assumed overall error rates 

for the modified SPRT of the response rate were set to 0.05.

The left panel of Figure 5 depicts the relationship between simulation-based estimates of the 

power of the modified SPRT to accept H2 as a function of the true proportion of responders. 

The solid green line assumed H1: response rate = 0.01 and H2: response rate = 0.05 and 

a type I error rate for a test of an individual’s response to an intervention in a single 

personalized study of 0.05. The dashed green line assumed H1: response rate = 0.01 and 

H2: response rate = 0.05 and a type I error rate for a test of an individual’s response to 

an intervention in a single personalized study of 0.001. The solid blue line assumed H1: 

response rate = 0.05 and H2: response rate = 0.1 and a type I error rate for a test of an 

individual’s response to an intervention in a single personalized study of 0.05. The red line 

assumed H1: response rate = 0.1 and H2: response rate = 0.2 and a type I error rate for a test 

of an individual’s response to an intervention in a single personalized study of 0.05. The left 
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panel of Figure 5 clearly shows that the power to detect a response rate consistent with H2 

increases with the true response rate, as expected. In addition, comparison of the solid and 

dashed green lines suggests that if the type I error rate for detecting an intervention response 

is not well below the assumed H1 and H2 response rates, then an increase in false positive 

H2 acceptances will occur, again as expected. The right panel of Figure 5 depicts the average 

sample sizes (i.e., total number of personalized trials pursued sequentially) for each setting 

depicted in the left panel of Figure 2, with the same color coding. It is clear from the right 

panel of Figure 5 that a substantial savings, in terms of the number of personalized studies 

that need to be pursued, can result from sequential testing of the response rate. The red 

vertical lines indicate the H1 and H2 response rates for the setting with them set at 0.1 and 

0.2 and suggests that the largest required sample sizes occur when the actual response rate 

is intermediate between H1 and H2 which is intuitive, since this rate is hardest to distinguish 

between the two hypotheses and is associated with a power of roughly 0.5, which reflects a 

balance between accepting H1 and accepting H2.

3.3. Quickest Single-Subject Outcome Determination Studies

Consider studies in which one wants to determine if there is any evidence of an effect of 

a single intervention on an individual in the shortest amount of time possible. This setting 

departs from traditional personalized or traditional N-of-1 studies in that it may not involve 

a comparator intervention. However, this setting is appropriate when there is urgency in 

decision-making or it is problematic to cross-over an individual to a different intervention 

merely for statistical expediency. As an example, consider treating an individual cancer 

patient and wanting to know if an intervention is actually shrinking that patient’s tumor. 

In this setting, knowing that an intervention is not working in the shortest amount of time 

possible is crucial for the patient’s life and testing a new intervention simply for statistical 

considerations would likely be unethical if the initial intervention looks as though it is 

working. As another example, consider testing food-based cognitive enhancer (Onaolapo, 

Obelawo, and Onaolapo 2019) on cognitive abilities, where every so often an individual 

takes, for example, a reaction time test, after consuming the cognitive enhancer of interest. 

In this situation, the likely implementation of the study is fairly simple and not ethically 

complicated, and yet a participant and researcher might want to know if something positive 

is occurring in a relatively short period of time so as to not waste time with the study. If, 

after a certain period of time, there is ample evidence of, for example, tumor shrinkage or 

cognitive enhancement, one could infer that the intervention has an effect and terminate the 

study at that point and ultimately save costs associated with the continued measurement 

of tumor size or evaluating reaction time. Obviously, one would need to be sensitive to 

covariate effects and other likely confounders in interpreting the results of such a study, 

however.

Developing an appropriate test statistic to detect an effect of an intervention soon after its 

administration is not entirely trivial, but can be framed as a regression problem. If the belief 

is that the intervention will affect an outcome measure like blood pressure, weight, tumor 

size based on imaging protocols, mood, sleep quality, or reaction time to a greater degree as 

time goes on since the administration of the intervention until a point of maximal effect is 

reached, then one would expect to see a relationship between time since the administration 
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of the intervention and the response measure. This relationship may be negative (e.g., if the 

intervention was designed to lower blood pressure or weight) and could be tested for its 

statistical significance via regression methods by determining if the slope of the regression 

of the outcome measure on time since initiation of the intervention is greater than or equal 

to a specific value. Note that in the setting, time or ‘learning’ effects of the type briefly 

mentioned Section 2.1 could confound valid inference and should be acknowledged and 

minimized if possible. Pursuing tests of slopes in regression models sequentially via SPRTs 

is complicated by the fact that fitting a regression model to estimate a single slope requires 

estimation of a y-intercept term, any covariate regression coefficients, and/or residual error 

terms. Appropriate implementation of SPRTs requires an understanding of the behavior of 

the SPRT statistic so its variance under null conditions can be used to inform the creation 

of thresholds which, if the SPRT statistic crosses, can in turn be used to determine if 

H1: slope for the response variable/time relationship = 0.0 vs. H2: slope > some value of 

interest should be accepted. Naively using an SPRT that does not consider the noise in the 

behavior of the SPRT statistic attributed to the estimation of the nontarget-slope ‘nuisance 

parameters’ would lead to tests resulting in false positive and false negative findings (n.d.t)

(Gölz, Fauss, and Zoubir 2017).

Working out the thresholds used to determine if H1 or H2 should be accepted analytically 

can be complicated (Gölz, Fauss, and Zoubir 2017). However, bootstrap methods can be 

used to characterize the behavior of the SPRT statistic and create approximate thresholds 

for an SPRT, including an SPRT for testing a single regression coefficient as considered 

here. This strategy simply estimates confidence limits of the SPRT statistic using bootstrap 

sampling at each time a measurement is made in the study (Gölz, Fauss, and Zoubir 

2017). Basically, after an evaluation of the SPRT statistic under an assumed pair of H1 

and H2 values for the slope (e.g., H1: slope=0.0 and H2: slope=0.05), bootstrap samples 

are drawn with replacement from the current accumulated set of measurements and 

measurement times. The SPRT is calculated with these bootstrapped samples using the 

estimated regression coefficient parameters evaluated under H1 and H2 obtained from the 

actual data; that is, not those reestimated with the bootstrap samples. Fixed upper and lower 

percentiles of the estimated SPRT statistic distribution from the bootstrapped SPRT statistics 

are then obtained (e.g., the 5th and 95th percentiles) depending on desired type I and type II 

error rates for the SPRT. If the threshold for accepting H1 (positing a value lower than H2), 

as determined in a standard nonbootstrapped SPRT (n.d.u)(Gölz, Fauss, and Zoubir 2017), is 

crossed by the upper confidence limit of the estimated SPRT distribution, or if the threshold 

for accepting H2 (positing a value higher than H1) is crossed by the lower confidence limit 

of the estimated SPRT distribution, the SPRT is terminated. The upper right panel of Figure 

6 depicts this phenomenon. Use of these bootstrap confidence limits instead of the actual 

SPRT statistic should preserve the assumed type I and type II error rates of the SPRT (Gölz, 

Fauss, and Zoubir 2017). The strategy of using the parameter estimates obtained with the 

actual data to compute relevant likelihood or probability ratio test statistics from bootstrap 

samples in order to evaluate the distribution of that test statistic is not necessarily the norm, 

but has been used in other contexts; for example, I used it some time ago (~33 years ago) 

in the development of bootstrap-based tests of separate families of hypotheses in genetic 

analysis settings (n.d.v).
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To explore the properties of a bootstrapped-based SPRT (referred to here as the ‘bSPRT’) 

of a regression coefficient for personalized studies to determine the effect of an intervention 

in the shortest time possible, I conducted a few simulation studies. Figure 6 provides an 

example of a single simulated bSPRT. The upper left panel of Figure 6 provides a scatterplot 

of the simulated outcome variable against the time since the initiation of the intervention. 

It was assumed that the slope of the regression of the outcome on time was 0.05. The solid 

black line is the true regression line, with slope of 0.05 and y-intercept 0.0. The residual 

values of the regression of outcome on time were assumed to follow a standard normal 

distribution. The red dashed vertical line gives the time (measurement time 31) at which 

the bSPRT terminated when evaluating the slope under H1: slope=0.01 and H2: slope=0.05. 

The dashed black line is the regression line estimated from the data at the time 31. The 

upper right panel provides the bSPRT statistic applied to the data reflected in the upper 

left panel computed with the data available at each timepoint as well as its estimated upper 

95% and lower 5% confidence intervals from 100 bootstrap samples. The red lines given the 

thresholds for accepting H1 (lower threshold) and H2 (upper threshold). It can be seen from 

the upper left panel of Figure 6 that although the nonbootstrapped SPRT statistic crossed 

the upper threshold at around time 28 or 29, the lower confidence interval of the bSPRT 

estimated from the bootstrap samples did not cross this threshold until time 31. The lower 

left panel provides the estimated slopes of the regression of the outcome variable on time at 

each time point and shows that the slope estimates were approaching, if not surpassing, the 

H2: slope=0.05 value over time. The lower right panel provides a histogram of the bSPRT 

statistics obtained from the bootstrap samples at time 31.

I explored the power and type I error rates of a bSPRT for a regression coefficient as well 

through simulation studies. I simulated 100 bSPRTs using 100 bootstrap samples to estimate 

upper (95%) and lower (5%) confidence limits of the SPRT at each time point for each 

of the simulated bSPRTs. I did this assuming the effect size of the intervention (i.e., the 

slope of the regression of outcome on time since initiation of the intervention) was 0.0 

(the null case), 0.01, 0.025, 0.04, 0.05, and 0.075. I also assumed serial correlation levels 

of 0.0 and 0.5. Table 1 provides the results of these simulation studies and includes the 

assumed effects sizes (‘Effect Size’), serial correlation (‘Serial Correlation), average number 

of measurements at the time of termination of the bSPRT (‘Average SS), the standard 

deviation of the number of measurements at the time of termination of the bSPRT (SD SS), 

the number of simulated SPRTs for which H1 was accepted (‘Accept H1’) and H2 (‘Accept 

H2’) for both an SPRT that did not use bootstrapped estimated confidence limits (‘Standard 

SPRT’) and that did (‘Bootstrap SPRT’). I also included the average and standard deviation 

of the estimates of the serial correlation at the time of the termination of the SPRTs over 

the simulations (‘AveSerCor’ and ‘SDSerCor’). It can be seen from Table 1 that the bSPRT 

has better control over false positive rates (i.e., the number of times H1 was accepted when 

the true slope was 0.0) than the standard nonnuisance parameter-corrected SPRT in that its 

rate is closer to the assumed type I error rate value 0.05. In addition, the bSPRT has better 

power than the standard SPRT, due to early and erroneous terminations of the standard SPRT 

attributable to noise in the standard SPRT statistic due to estimating nuisance parameters. 

Serial correlation does have an effect, but it is much less pronounced for the bSPRT. The 

results of the simulation studies suggest potential for the bSPRT in the context described, 
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but clearly more simulations involving more bootstrap samples to estimate SPRT statistic 

confidence limits, a broader range of effect sizes and serial correlation levels, as well as the 

use of tests of a regression coefficient that might be robust to serial correlation, are in order.

4. Future Directions in N-of-1 Studies

There is an excellent case to be made that if personalized (i.e., individualized and/or 

precision) medicine is to advance—whether focusing on individuals with rare diseases or the 

health improvement of individuals with all sorts of health concerns in the real world through 

tailored dietary, activity, and stress reduction interventions—personalized or N-of-1 studies 

will have a prominent role to play. However, there is a need to address some important 

and potentially confounding phenomena in such trials, such as serial correlation among 

the response observations (Section 2), as well as the efficiency and cost-effectiveness of 

such studies (Section 3). More reliable and efficient personalized trials will be needed to 

assess the utility of many emerging interventions such as those mentioned in Section 3.2 

that require tailoring of the intervention to an individual’s possibly unique profile, such 

as antisense oligonucleotide (ASO)-based therapies, CAR-T cell therapies, gene therapies, 

and general personalized health optimization strategies (Nicholas J. Schork et al. 2020). 

The use of personalized interventions will also force the community to consider if the 

effort for achieving personalization is worth it in any given context (e.g., treating diabetes, 

cancer, depression). This question about the degree to which an intervention that requires 

personalization works could be addressed by pursuing a series of aggregated personalized 

studies and then pursuing a meta- or mega-analysis of the data and results of the aggregated 

studies. In this way, the number of individuals that benefit from the tailored approach 

could be assessed, and this could possibly be pursued sequentially, as described in Section 

3.2. In addition, given the growing availability of wireless health monitoring devices and 

internet-of-things (IoT)–based infrastructure for collecting health status information (Cha 

et al. 2019)(Chung, Fortunato, and Radacsi 2019)(Marra et al. 2020), one could envision 

very large initiatives in which personalized studies are pursued remotely on individuals 

(e.g., evaluating the effects of cognitive enhancers on cognitive decline using apps and 

internet-based cognitive tests as discussed in Section 3.3), with no face-to-face contact of 

an enrollee in the trial with the team conducting the studies. One could further imagine that 

the results of those trials, as they are completed, being monitored in real-time with online 

false discovery rate (FDR) strategies to ensure that inferences drawn from them about, for 

example, population-level benefits of the interventions, are robust and not resulting in false 

positive and negative claims (Robertson et al. 2019). It may even be possible to pursue each 

individual personalized study meant to be aggregated with others in a sequential manner, so 

that the time involved in the study for any one individual is also minimized, as discussed in 

Section 3.3.
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Figure 1. Four simulated random variates with varying degrees of AR-1 serial correlation.
Time is on the x-axis and the value of the variate on the y-axis of each panel. The gray lines 

depict the variates, the black lines are the 25-measure rolling average of the variates over 

time, and the red lines give the upper and lower two times the standard error of the mean 

limits based on the 25-measure windows used to construct the rolling average.
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Figure 2. Graphical depiction of the simulation-based False Positive Rate of personalized 
studies with and without washout periods as a function of serial correlation strength between 
measurements.
The long-dashed horizontal gray line is the assumed false positive rate of 0.05. The black 

lines represent the 2 × 1 × 40 designs with (dashed) and without (solid) washouts that take 

as much time as it does to collect 40 measurements; the blue lines represent the 2 × 2 × 

20 designs with (dashed) and without (solid) washouts that are 20 measurements long and a 

setting with washouts 100 measurements long (dotted); the green lines represent the 2 × 4 × 

10 designs with (dashed) and without (solid) washouts that are 10 measurements long and a 

setting with washouts of 50 measurements long (dotted); and the red lines represent the 2 × 

4 × 5 designs with (dashed) and without (solid) washouts that are five measurements long.
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Figure 3. Graphical depiction of the results of simulation studies exploring the effect of serial 
correlation on N-of-1 studies with 400 total measurements for two interventions collected during 
four 50-measurement periods and without washout periods.
The long-dashed horizontal gray lines reflect the theoretical 95% confidence bands 

surrounding an assumed false positive rate of 0.05. Irrespective of the color, the solid lines 

assume an effect size of 0.3 and the dotted lines an effect size of 0.0. The black lines 

assume no washout periods and no randomization of the order of the interventions; the blue 

lines assume no washout periods but intervention order randomization; the red lines assume 

washouts but no randomization; and the green lines assume both washouts and intervention 

order randomization.
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Figure 4. Graphical depiction of the results of simulation studies exploring the effect of serial 
correlation on Newey-West tests of intervention effects in personalized studies with 400 total 
measurements for two interventions collected during four 50-measurement periods and without 
washout periods.
The long-dashed horizontal gray lines reflect the theoretical 95% confidence bands 

surrounding an assumed false positive rate of 0.05. The solid lines assume an effect size 

of 0.3 and the dotted lines an effect size of 0.0 with the black lines assuming washout 

periods and randomization using a standard, uncorrected for serial correlation, generalized 

least squares (GLS)-based test of the regression coefficient capturing the intervention effect; 

the green lines assume washout periods and no randomization using a standard GLS-based 

test; the red lines assume washouts and randomization but use of the Newey-West serial 

correlation-robust estimator of the intervention effect regression coefficient’s standard error 

in a test of the intervention effect, and the blue lines assume washouts but no randomization 

and use of the Newey-West estimator.
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Figure 5. Graphical depiction of the results of simulation studies exploring the power of 
sequential tests of intervention response rates obtained from consecutive personalized studies 
as a function of the true response rate.
The solid green line assumed H1: response rate = 0.01 and H2: response rate = 0.05 and 

a type I error rate for a test of an individual’s response to an intervention in a single 

personalized study of 0.05. The dashed green line assumed H1: 0.01 and H2: 0.05 and a 

type I error rate for a of 0.001. The solid blue line assumed H1: 0.05 and H2: 0.1 and a 

type I error rate of 0.05. The red line assumed H1: 0.1 and H2: 0.2 and a type I error rate 

of 0.05. The right panel of Figure 2 depicts the average sample sizes (i.e., total number of 

personalized trials pursued sequentially) for each setting depicted in the left panel of Figure 

5, with the same color coding.
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Figure 6. Results of a single simulation of a bootstrapped-based sequential probability ratio test 
(bSPRT) of a regression coefficient.
Upper left panel: 100 simulated measurement values plotted against time of collection. 

The solid black line is the known regression relationship between the values and time. 

The dashed black line is the estimated regression relationship for the first 31 observations. 

The vertical red dashed line is the time at which evidence for the slope of the regression 

between the values and time reached statistical significance (i.e., time 31). Upper right 

panel: the behavior of the SPRT statistic evaluating the hypothesis that the slope computed 

from a regression analysis of the numbers in the upper left panel is not equal to zero (black 

line) and its 95% confidence limits (dashed black lines). The red lines give the crossing 

boundaries for significance at a type I error rate of 0.05. Lower left panel: estimate of the 

slope after each successive measurement until time 31. Lower right panel: distribution of the 

SPRT statistic based on 100 bootstrap samples at time 31.
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Table 1.

Results of simulation studies of a bootstrapped-based sequential probability ratio test (bSPRT) for a regression 

coefficient.

Standard SPRT Bootstrap 
SPRT

Effect 
Size

Serial 
Correlation

Average 
SS

SD SS Accept 
H1

Accept 
H2

Average 
SS

SD SS Accept 
H1

Accept 
H2

AveSerCor SD 
SerCor

0.000 0.000 24.800 11.081 0.830 0.170 35.710 8.262 0.990 0.010 0.052 0.073

0.010 0.000 25.480 12.634 0.757 0.2433 40.707 11.152 0.927 0.073 0.046 0.067

0.025 0.000 31.460 16.937 0.570 0.430 50.930 14.377 0.490 0.510 0.037 0.047

0.040 0.000 26.270 12.761 0.210 0.790 40.040 10.357 0.070 0.930 0.042 0.056

0.050 0.000 23.110 11.460 0.090 0.910 34.930 9.160 0.000 1.000 0.048 0.078

0.075 0.000 18.810 7.507 0.070 0.930 28.380 5.674 0.000 1.000 0.038 0.059

0.000 0.500 14.138 9.074 0.710 0.290 33.508 13.398 0.898 0.103 0.299 0.191

0.010 0.500 14.100 9.952 0.550 0.450 38.700 17.072 0.780 0.220 0.311 0.163

0.025 0.500 14.630 10.020 0.520 0.480 43.830 21.811 0.530 0.470 0.339 0.195

0.040 0.500 15.820 11.780 0.340 0.660 39.870 16.019 0.250 0.750 0.311 0.181

0.050 0.500 14.700 9.375 0.310 0.690 35.150 12.726 0.130 0.870 0.301 0.186

0.075 0.500 13.060 8.803 0.250 0.750 31.780 11.842 0.030 0.970 0.304 0.198

Note. ‘Effect Size’ is the assumed effect size; ‘Serial Correlation’ is the assumed serial correlation; ‘Average SS’ is average number of 
measurements at the time of termination of the bSPRT; ‘SD SS’ is standard deviation of the number of measurements at the time of termination of 
the bSPRT; ‘Accept H1’ is the fraction of simulated SPRTs for which H1 was accepted; ‘Accept H2’ is the fraction of simulated SPRTs for which 
H2 was accepted. ‘Standard SPRT’s did not use bootstrapped estimated confidence limits and ‘Bootstrap SPRT’s did. ‘AveSerCor’ and ‘SDSerCor’ 
are the average and standard deviation of the estimates of the serial correlation at the time of the termination of the SPRTs over the simulations.

Harv Data Sci Rev. Author manuscript; available in PMC 2023 April 07.


	Abstract
	Media Summary
	Introduction: Traditional vs. N-of-1 Studies of Interventions
	Population-Based Randomized Controlled Trials RCTs
	The Emergence of Precision Medicine
	Aggregating Personalized Studies and Choosing a Design for Their Execution

	Challenges in the Design and Analysis of N-of-1 Trials
	The Basic N-of-1 Design and Its Challenges
	Adaptive Designs vs. N-of-1 Trials
	The Effects of Serial Correlation
	Simulation Studies Exploring Serial Correlation in Personalized Studies
	Basic Simulations
	More Realistic Settings
	Accounting for Serial Correlation


	Sequential N-of-1 Studies
	Why Sequential Designs?
	Sequential Aggregated N-of-1 Studies for Overall Efficacy Claims

	Quickest Single-Subject Outcome Determination Studies
	Future Directions in N-of-1 Studies
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Table 1.

