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Abstract

One of the most common cell shape changes driving morphogenesis in diverse animals

is the constriction of the apical cell surface. Apical constriction depends on contraction of

an actomyosin network in the apical cell cortex, but such actomyosin networks have

been shown to undergo continual, conveyor belt-like contractions before the shrinking of

an apical surface begins. This finding suggests that apical constriction is not necessarily

triggered by the contraction of actomyosin networks, but rather can be triggered by

unidentified, temporally-regulated mechanical links between actomyosin and junctions.

Here, we used C. elegans gastrulation as a model to seek genes that contribute to such

dynamic linkage. We found that α-catenin and β-catenin initially failed to move centripe-

tally with contracting cortical actomyosin networks, suggesting that linkage is regulated

between intact cadherin-catenin complexes and actomyosin. We used proteomic and

transcriptomic approaches to identify new players, including the candidate linkers AFD-

1/afadin and ZYX-1/zyxin, as contributing to C. elegans gastrulation. We found that ZYX-

1/zyxin is among a family of LIM domain proteins that have transcripts that become

enriched in multiple cells just before they undergo apical constriction. We developed a

semi-automated image analysis tool and used it to find that ZYX-1/zyxin contributes to

cell-cell junctions’ centripetal movement in concert with contracting actomyosin net-

works. These results identify several new genes that contribute to C. elegans gastrula-

tion, and they identify zyxin as a key protein important for actomyosin networks to

effectively pull cell-cell junctions inward during apical constriction. The transcriptional

upregulation of ZYX-1/zyxin in specific cells in C. elegans points to one way that develop-

mental patterning spatiotemporally regulates cell biological mechanisms in vivo.

Because zyxin and related proteins contribute to membrane-cytoskeleton linkage in
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other systems, we anticipate that its roles in regulating apical constriction in this manner

may be conserved.

Author summary

Animals take shape during development in large part by the bending of tissues. Failures in

this process are common causes of human birth defects. Such tissue bending is driven pri-

marily by individual cells changing shape: in many examples, one side of a cell shrinks,

pulling on junctions that connect the cell to neighboring cells. But the networks that drive

one side of a cell to shrink are not always connected to junctions. As a result, focus has

turned to understanding how connections between such networks and junctions are

dynamically regulated to trigger cell shape change. We sought to identify genes that con-

tribute to these dynamic connections. Here, we describe proteomic and transcriptomic

methods that we used to identify proteins that contribute to cell shape change. We devel-

oped a new image analysis tool and used it to reveal that loss of one of these genes results

in networks moving without efficiently pulling in junctions. Our results identify new

molecular players, and they pinpoint a key gene whose products might contribute to

dynamically connecting networks to junctions to trigger tissue shape changes in C. elegans
and other organisms.

Introduction

During embryogenesis, molecular forces drive the tissue shape changes that give form to the

developing organism [1]. Among the mechanisms that drive such tissue shape changes, apical

constriction is one of the most commonly used [2]. For example, the neural tube of vertebrate

embryos forms as some cells of the neural plate constrict apically, bending the neural plate into

a tube and internalizing from the embryo’s surface [3]. Neural tube formation fails frequently

in human development [4]. Understanding the mechanisms that control changes to cell shape

is essential to understanding disease states as well as the fundamental mechanisms by which

embryos develop.

The force-producing mechanisms that drive apical constriction are well conserved, relying

on cortical networks of actin filaments and non-muscle myosin II motors, which drive con-

traction of the apical cell cortex [5]. The forces that contract the apical cell cortex are transmit-

ted to neighboring cells through apical cell junctions. As a result, the contraction of a cortical

network can shrink the exposed apical surface of the cell [6,7]. How this mechanism is devel-

opmentally regulated, driving specific cells to constrict only their apical surfaces and at specific

times, remains incompletely understood in most model systems [2,8].

The nematode Caenorhabditis elegans has been a valuable model for studying mechanisms

of morphogenesis [9]. Gastrulation in C. elegans begins at the 26-cell stage when a non-muscle

myosin II becomes enriched in the apical cortex of two endodermal precursor cells (EPCs)

[10], which then internalize by apical constriction [11,12].

A previous study investigated actomyosin dynamics in the EPCs during gastrulation and

found, unexpectedly, that contractions of the actomyosin cortex initially occurred in a con-

veyer belt-like fashion without pulling junctions centripetally, i.e., with junctions apparently

uncoupled to the inward movement of actomyosin components toward the center of the apical

cell surface [13]. It was only after several minutes of seemingly unproductive actomyosin
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contraction that cell-cell junctions began to move increasingly in concert with the contracting

networks. This phenomenon was also observed in Drosophila melanogaster shortly before ven-

tral furrow formation, where myosin accumulated and coalesced periodically in weak contrac-

tions that preceded the shrinking of apical cell profiles [13]. These observations suggest that in

these model systems, and potentially more generally, apical constriction is not triggered by

myosin activation; rather, it is likely to be triggered by gradually connecting an already-con-

tracting apical actomyosin cytoskeleton to cell-cell junctions, via unknown links.

Although many proteins have been identified at sites of cadherin-based adhesion that could

feasibly serve as such temporally regulated links [14], the specific, temporally-regulated links

relevant to triggering apical constriction are not yet known in any system. Identifying such

temporally-regulated links from among candidate linkers or unknown players is an important

step toward understanding how developmental mechanisms orchestrate the cytoskeletal mech-

anisms of apical constriction with spatial and temporal precision.

Here, we sought to identify proteins that could contribute to such temporally-regulated link-

age either directly or indirectly. We anticipated that identifying key proteins would require

integrating diverse methodologies including generating new image analysis resources, as well

as screening for defects in a complex process involving cellular and subcellular dynamics. First,

we hypothesized that temporal regulation of apical constriction could feasibly result from either

the transcriptional regulation or posttranscriptional regulation of key linking proteins, or both.

We found that members of the C. elegans cadherin-catenin complex (CCC) remained at apical

cell-cell contacts as cortical actomyosin contractions began, suggesting that disassembly of

these complexes cannot explain junctions’ initial failure to move. We then used both proteomic

and transcriptomic approaches to find proteins that might interact physically with the C. ele-
gans CCC as well as genes whose expression is upregulated specifically in the EPCs prior to cell

internalization. Screening through the resulting list identified several new contributors to C.

elegans gastrulation, including two genes, afd-1/afadin and zyx-1/zyxin, that encode candidate

linkers and that we found were required for timely internalization of the EPCs. We found that

AFD-1/afadin is localized broadly to cell junctions with patterns consistent with members of

the CCC. Single-cell RNA-seq on multiple internalizing cells identified zyx-1/zyxin and other

LIM domain-encoding genes as upregulated in multiple internalizing C. elegans cell lineages.

To determine whether zyx-1/zyxin and afd-1/afadin contribute to linking contracting actomyo-

sin networks to junctions in vivo, we developed a new, semi-automated image analysis work-

flow for quantifying actomyosin network and junctional movements. The results identified

zyxin as a contributor to triggering apical constriction through regulating directly or indirectly

the dynamic, temporally-regulated coupling of actomyosin contractions to cell-cell junctions.

Results

Cortical actomyosin initially contracts away from stably positioned

cadherin and catenins

We considered that the failure of initial contractions of actomyosin networks to pull cell-cell

junctions inward in C. elegans gastrulation [13] might be explained by an initial failure of α-

catenin and/or β-catenin to remain stably at cell-cell junctions with cadherin. To test this

hypothesis, we filmed embryos expressing fluorescent tags inserted into the native locus of

each protein without disrupting each protein’s function [15]. As expected, mKate2-tagged

HMR-1/cadherin localized at apical cell-cell boundaries, as did GFP::HMP-2/β-catenin and

HMP-1/α-catenin::GFP (Fig 1A and 1B). We visualized the movements of actomyosin along

with the CCC components during the early stage, when there are uncoupled contractions (2–8

minutes after the initiation of cytokinetic furrow formation in MSa and MSp cells [13]) using
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strains co-expressing a red fluorescently tagged non-muscle myosin II heavy chain (NMY-2::

mKate) along with a GFP-tagged CCC component. We mounted these embryos ventrally to

visualize en face centripetal actomyosin dynamics in the apical cortices of endoderm precursor

cells (EPCs). During this early stage, we observed robust centripetal movement of myosin par-

ticles, but the bulk of the α-catenin-GFP and GFP-β-catenin remained stably at apical cell-cell

boundaries, and failed to move centripetally (Fig 1B). We conclude that the initial inability of

contracting actomyosin networks to efficiently pull cell-cell junctions centripetally cannot be

explained by α-catenin and/or β-catenin being pulled away from cell-cell junctions. Although

F-actin can associate with α-catenin various organisms including C. elegans [16,17], and this

connection can be strengthened under force in some systems [18], these results imply that a

strong connection between the contracting apical actomyosin network and junctional α-cate-

nin is initially missing in this system (Fig 1B). We next sought to identify proteins that might

contribute to this connection.

Identification of candidate proteins that might contribute to coupling of

contracting actomyosin networks and junctions

We used two screening approaches to identify proteins that could feasibly contribute to

connecting actomyosin to junctions in EPCs: We screened for proteins from early-stage

Fig 1. All three CCC components remain associated with apical membrane borders during early stage actomyosin contractions. (A) Two-color

spinning disk confocal fluorescence images of HMR-1::mKate2 (cadherin) with GFP::HMP-2 (β-catenin), left, and HMP-1::GFP (α-catenin) with

NMY-2::mKate2 (myosin), right. Apically constricting cells are labeled (asterisks) (B) Representative line scans of the fluorescence intensities across the

cell cortex from anterior (left) to posterior (right) with corresponding images of these junctions over time. As indicated by arrowheads, β-catenin

(n = 3) and α-catenin (n = 7) remained at apical membrane borders while myosin particles moved centripetally. (A) Scale Bar = 5 μm (B) inset scale

bar = 1 μm, kymograph frames represent 3 second intervals.

https://doi.org/10.1371/journal.pgen.1010319.g001
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embryos that co-immunoprecipitate (co-IP) with α-catenin, and proteins whose mRNAs

became enriched in EPCs just prior to the onset of apical constriction. To identify proteins

that co-IP with α-catenin, we used a strain expressing endogenously-tagged HMP-1::GFP/

α-catenin. We performed co-IP using anti-GFP antibodies to pull down the CCC and any

associated proteins. Because we were interested in proteins present during gastrulation in

early embryogenesis, we enriched our samples for early stage (<50 cell) embryos (see

Materials and methods). We used a strain expressing soluble GFP alone as a control from

which to subtract contaminating proteins that co-purify with GFP. Our initial list of co-

IP’d proteins contained each of the other CCC proteins at high peptide counts as expected,

confirming that we pulled down intact CCCs from early stage embryos (S3 Table). Our list

also contained more than 200 other proteins with at least one detectable peptide. We

expect that this list includes proteins that interact with α-catenin in one or more cells as

well as false positives. We view the possibility that the list may be enriched for gene prod-

ucts of interest as sufficient for our purpose of further screening. We further narrowed this

list to only candidates whose genes were predicted to be expressed before or during the

24-cell stage of development using published single-cell mRNA sequencing data [19], and

we removed common housekeeping genes (see Materials and methods). This resulted in 11

candidates with the potential to physically interact with the CCC for further screening

(Table 1).

Gastrulation in C. elegans relies on embryonic transcription [20]. Therefore it is possible

that some proteins that contribute to the dynamically regulated linkage between actomyosin

and junctions are encoded by genes that become transcribed in EPCs near the time that these

cells are born. To identify a second set of candidates from genes expressed specifically in EPCs,

we examined our previously-generated single-cell RNA-seq data of the first several cell cycles

of development [19]. We considered genes whose mRNAs were enriched in EPCs compared

to the rest of the embryo just prior to apical constriction (i.e. in the endodermal precursor cell

E at the 8-cell stage, or its daughter cells Ea and Ep at the 24-cell stage) and enriched compared

to cells of earlier stages. From this list, we selected 21 genes whose mRNAs were enriched at

least 8-fold in EPCs vs the rest of the embryo at the 8-cell stage (16 genes) or the 24-cell stage

(5 genes).

To identify genes from both lists above that contribute to gastrulation in vivo, we then

screened candidates by RNA interference (RNAi). Rather than feeding bacteria expressing

double-stranded RNAs (dsRNAs), we used the more laborious method of injecting dsRNAs

targeting each gene in order to maximize the likelihood of strongly disrupting gene functions

[21]. We filmed embryos released from injected mothers and examined them for a gastrula-

tion-defective (Gad) phenotype, defined as the two EPCs failing to fully internalize (i.e. with

part of at least one of the cells not covered by any other cells) before dividing. Our RNAi

screening identified 21 candidate genes with at least a low frequency Gad phenotype. These

results define a set of genes that will be of interest for future studies of gastrulation mechanisms

(Table 1).

Among the genes we identified were two we chose to focus on because they encode proteins

that associate directly or indirectly with junctional proteins and/or actin networks in C. elegans
or other organisms: afd-1/afadin and zyx-1/zyxin [14,22–25]. The Drosophila afadin homolog

Canoe is required along with β-catenin for medioapical actomyosin to remain connected to

adherens junctions during apical constriction [26,27], although it has not been implicated in

the kind of temporally-regulated linkage during normal development that we sought here. We

first pursued afd-1/afadin’s roles in C. elegans apical constriction. zyx-1/zyxin is discussed fur-

ther below.
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afd-1/afadin contributes to gastrulation and co-localizes with the CCC

Afadin is an actin-binding protein and a broadly-conserved component of adherens junctions

that localizes to sites under tension [22,27,29–33]. C. elegans afd-1/afadin genetically interacts

with sax-7/L1CAM, which has functional redundancy with the CCC during gastrulation

[30,34], and AFD-1/afadin had been found previously to co-IP with CCC components in C.

elegans [35]. We found that afd-1 RNAi resulted in Gad phenotypes in 25% of embryos (Fig

2A), and in all cases these defects were subtle: Only a small portion of the apically constricting

EPC surface remained exposed to the exterior at the time of the next cell division (Fig 2A and

2B), suggesting that AFD-1/afadin has a partially redundant role in C. elegans gastrulation.

Table 1. Genes Identified from a Combined Proteomic and Transcriptomic Screen for candidates. Gene names, α-catenin co-IP peptide counts, and EPC mRNA

enrichment for each candidate are presented. Enrichment data are shown for genes with EPC enrichment over the whole embryo at that stage if EPC(s) also had higher

RPKM than cells at earlier stages. Primers were designed to amplify each target gene sequence from cDNA (S2 Table). Each dsRNA was injected into young adults of the

wild-type N2 strain of C. elegans. Embryos laid by injected worms were scored 24 hours after injection, filmed by DIC microscopy, and examined for Gad phenotypes. gdi-
1 RNAi resulted in 100% sterility, failing to produce embryos for analysis, as seen previously [28].

Screen dsRNA target Peptide Counts Stage Enriched (Cell #) Enrichment (Mean RPKM in EPC over Embryo) % Gad (#/N)

N/A Negative Control N/A N/A - - 0 (0/20)

co-IP C01H6.2 / mlt-2 5 24 40 / 7 21.4 (3/14)

co-IP afd-1 1 N/A Not Enriched 25 (5/20)

co-IP F44E5.1 3 N/A Not Enriched 5.8 (1/17)

co-IP gdi-1 3 N/A Not Enriched 100% sterile

co-IP gei-4 1 N/A Not Enriched 41.6 (5/12)

co-IP inx-3 1 N/A Not Enriched 0 (0/12)

co-IP lin-66 2 N/A Not Enriched 0 (0/9)

co-IP noah-1 2 24 71 / 9 30.8 (4/13)

co-IP sym-1 2 24 6 / 2 0 (0/17)

co-IP T19B10.2 2 24 416 / 46 0 (0/11)

co-IP Y38H6C.14 1 8; 24 15 / 3; 21 / 4 29.4 (5/17)

EPC Enrichment acp-2 0 24 1084 / 121 12.5 (2/16)

EPC Enrichment add-1 0 8 11 / 0 7.7 (1/13)

EPC Enrichment C26F1.1 0 24 879 / 98 0 (0/9)

EPC Enrichment C29F7.2 0 24 1231 / 137 27.3 (3/11)

EPC Enrichment C46E10.8 0 8 146 / 20 50.0 (6/12)

EPC Enrichment ctn-1 0 8 65 / 14 20.0 (2/10)

EPC Enrichment dve-1 0 24 1124 / 126 0 (0/16)

EPC Enrichment F25D7.5 0 8 52 / 7 0 (0/15)

EPC Enrichment F49E10.4 0 8 171 / 22 0 (0/13)

EPC Enrichment grdn-1 0 8 13 / 3 33.3 (3/9)

EPC Enrichment H24G06.1 0 8 64 / 9 14.3 (2/14)

EPC Enrichment hum-8 0 24 33 / 4 66.7 (6/9)

EPC Enrichment let-4 0 8 34 / 4 0 (0/17)

EPC Enrichment pssy-1 0 8 179 / 38 7.1 (1/14)

EPC Enrichment R06B10.2 0 8 8 / 1 71.4 (5/7)

EPC Enrichment T14E8.1 0 8 18 / 3 18.2 (2/12)

EPC Enrichment tnc-2 0 8 68 / 9 0 (0/9)

EPC Enrichment Y53C10A.10 0 8 3 / 0 8.3 (2/12)

EPC Enrichment Y57G11C.6 0 8 41 / 5 30 (3/10)

EPC Enrichment zig-5 0 8 34 / 5 31.3 (5/16)

EPC Enrichment zyx-1 0 8 96 / 12 25 (5/20)

https://doi.org/10.1371/journal.pgen.1010319.t001
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Fig 2. Afadin contributes to gastrulation and localizes along with members of the CCC at cell junctions. (A) DIC imaging of a near-lateral surface

of C. elegans embryos around the start of gastrulation, from uninjected control mothers or those injected with dsRNA targeting afd-1. The surfaces of

internalizing EPCs that were not covered by other cells in 3 dimensions are outlined (identified in multiplane videos; a single plane is shown), and the

arrowhead points to these exposed EPC cell surfaces at the time of cell division, indicating a gastrulation defect that was not seen in the control

embryos. (B) Single spinning-disk confocal section near the surface of a ventrally-mounted embryo showing junctional localization of endogenously

expressed mKate2::AFD-1 protein. Apically constricting cells are labeled with yellow asterisks. (C) Max-intensity projection of a 8-cell stage embryo
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To gain more insight into AFD-1/afadin’s role at junctions, we examined its localization

by using CRISPR to endogenously tag the N-terminus of afd-1 with the red fluorophore

mKate2. mKate2::AFD-1 was present at cell-cell boundaries in general, including apical cell-

cell boundaries, and it was apically enriched near the border between the two apically con-

stricting EPCs, where CCC components are known to be enriched as well [15] (Fig 2B–2F). To

determine if junctional mKate2:AFD-1 colocalized with members of the CCC, we generated a

dual-labeled strain containing both mKate2::AFD-1 and a functional, endogenously-tagged

HMR-1/cadherin::GFP [15]. In early embryos we found that the two proteins colocalized at

cell junctions (Fig 2C) throughout the early and late stages of EPC internalization (Fig 2D,

arrowheads).

Previously, interactions have been found between afadin and α-catenin in mammalian sys-

tems [36,37]. To determine if any CCC components influence mKate2::AFD-1’s ability to

localize to junctions, we targeted other CCC components by RNAi (Fig 3A and 3B). Interest-

ingly, we saw a marked reduction of junctional levels of mKate2::AFD-1 in embryos injected

with hmr-1/cadherin dsRNA but not hmp-1/α-catenin dsRNA, suggesting that in C. elegans,
afadin requires HMR-1/cadherin but not HMP-1/α-catenin for recruitment to junctions (Fig

3C–3E). We similarly investigated a potential role for SAX-7/L1CAM in recruiting AFD-1 to

junctions but did not see a reduction in mKate2::AFD-1 junctional levels in sax-7 RNAi

embryos (Fig 3C–3E). Taken together, we conclude that during gastrulation AFD-1/afadin

localizes to adherens junctions, where it is recruited directly or indirectly by HMR-1/cadherin.

RNA-seq of internalizing cell types to search for transcripts enriched in

apically constricting cells of multiple cell lineages

Multiple cell lineages of the early C. elegans embryo internalize by apical constriction [10,38].

Our identification of 21 genes with enriched expression in just one of these lineages, the EPCs,

made us wonder if there exist any C. elegans genes with expression enriched in multiple inde-

pendently internalizing cell types. No such gene might exist, but we considered this issue

worth investigating because if such a gene existed, we would view it as a candidate for orches-

trating apical constriction, akin to snail family genes that orchestrate another cell shape

change–epithelial-to-mesenchymal transitions–in multiple animal models [39–42]. Alterna-

tively, finding that no such gene exists by exhaustive RNAseq analysis could also inform future

models of apical constriction mechanisms by suggesting that apical constriction may be

orchestrated by different regulators in different cells.

We collected cells from multiple internalizing cell lineages for RNA-seq (S1 Fig). We

selected four groups of internalizing cells–MS descendants, E descendants, D descendants, and

descendants of Cap and Cpp, hereafter referred to together as Cxp descendants (Fig 4A, red

circles). We selected two non-internalizing groups as negative controls–ABp descendants

(because only 2 out of 32 great-great granddaughter cells of ABp internalize) and Cxa descen-

dants (none of which internalize) [38]. For each of the internalizing cell types, we sought tran-

scripts whose abundance increased during the cell cycles leading up to internalization. To do

with endogenously tagged HMR-1::GFP and mKate2::AFD-1 showing colocalization at junctions. (D) Representative max-intensity projections of

HMR-1::GFP and mKate2::AFD-1 at both early and late time points of gastrulation. AFD-1 is present at junctions and colocalizes with HMR-1 at Ea/

MSxx border (green arrowhead), Ea/Ep border (magenta arrowhead), and the Ep/P4 border (white arrowhead). (E) Single plane from a laterally

mounted embryo showing that the border between apically constricting cells (arrowhead) has apically enriched mKate2::AFD-1 (magenta box), and

enrichment that is less apically-biased at both the Ea/MSxx (green box) and AB control border (yellow box), quantified in (F). (F) Plot showing the ratio

of Apical:Basal fluorescence intensities at the Ea/Ep border and control border. Mean values and 95% confidence intervals are shown, with dotted lines

connecting pairs of measurements from each embryo (n = 6, p = 0.0002).

https://doi.org/10.1371/journal.pgen.1010319.g002
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Fig 3. AFD-1/afadin localization depends on hmr-1 but not hmp-1. (A) Embryos were mounted adjacent to one

another oriented so that embryos from control and experimental dsRNA injected worms could be differentiated. (B)

Embryos were paired by developmental stage, hmr-1 RNAi vs. control RNAi shown here, and like junctions were analyzed

between each pair of embryos (yellow, cyan, and magenta boxes indicate like junctions; yellow is an ABpl-ABal cell

junction, magenta is an ABpl-MS cell junction, and blue is an ABal-ABar cell junction). (C) Plot of normalized
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this, we collected two transcriptomes from each internalizing cell lineage–one before internali-

zation (2–3 cell cycles before cell internalization), and one at the start of internalization. The

two non-internalizing cell types were used to exclude transcripts that became broadly enriched

in all cell types at the relevant stages (Fig 4A, black circles). All transcriptomes from the 1- to

15-cell stages were previously published [19], and in this study we expanded the previous

resource with transcriptomes from internalizing lineages. We present the results of the cumu-

lative transcript dataset as a resource in an interactive online form, to facilitate querying the

dataset, using the Differential Expression Gene Explorer, at http://dredge.bio.unc.edu/c-

elegans-transcriptional-lineage-with-late-gastrulation/ (Permalink: https://n2t.net/ark:/84478/

d/2bbpmsq3) [43].

To identify any transcripts that became enriched in internalizing cell types, we filtered the

7,998 transcripts that we detected (see Materials and methods) for those that became enriched

at least two-fold over time in at least two of the four internalizing cell types, and that did not

become enriched by more than two-fold in the two negative control, non-internalizing cell

types. This analysis yielded 839 genes. Of the four internalizing cell types sampled, all but the E

lineage generate some muscle cells (all D descendants, all Cxp descendants, and 17/52 MS

descendants will become body muscle) [44]. To avoid genes that are exclusively associated

with muscle fate, we filtered the 839 transcripts for those that became enriched over time in

the E lineage and at least one other internalizing lineage, and then for only genes whose tran-

scripts are enriched by at least two-fold in the internalizing C descendants (Cxp) compared to

the non-internalizing C descendants (Cxa). This reduced our filtered list to 150 genes. From

this list we removed genes whose maximum transcript abundance in any non-internalizing

cell types exceeded by more than two-fold the transcript abundance in the internalizing cell

types where enrichment had been found. Of 99 genes that remained (Fig 4B), 55 transcripts

were enriched in two of the four internalizing cell types, 33 were enriched in three of the four,

and 11 were enriched in all four (as in the complete internalization-correlated pattern shown

in Fig 4C). We found that all 11 were either only weakly expressed in some of the internalizing

cells or exhibited relatively high expression in some non-internalizing cells as well (S3 Fig).

We conclude that no single gene can be found by this kind of RNA-seq analysis that satisfies

our expectations for a C. elegans orchestrator of apical constriction in multiple cell lineages.

Therefore, we considered next the possibility that multiple members of a gene family might

together fulfill this expected pattern.

Transcripts encoding a group of LIM domain-containing proteins become

enriched in multiple apically constricting cells

To expand our analysis to include groups of genes that are similar to each other in sequence,

we created groups of genes based on similarity (see Materials and methods), calculating a

cumulative transcript profile for each such homology group by summing the transcript profiles

of all the genes in the group (as shown in the last pictogram in Fig 4C). We evaluated each of

these summed transcript profiles as we had the individual genes above. This analysis yielded

fluorescence intensities for control vs. experimental borders in hmr-1 RNAi (filled circles), hmp-1 RNAi (open circles),

and sax-7 RNAi (gray circles). The dotted line along the diagonal indicates a 1:1 ratio. (D) Data from C plotted as

normalized ratios (experimental/control levels) with individual measurements, means and 95% confidence intervals

shown. hmr-1 RNAi embryos had a lower level of mKate2::AFD-1 at junctions than both hmp-1 RNAi (p = 0.0285) and

sax-7 RNAi (p = 1x10-8). A single outlier data point with a value of 5.21 for the hmp-1 dsRNA condition is not shown but

was included in the statistical analysis. (E) Representative maximum projections of embryos quantified in (C, D) injected

with the indicated dsRNA expressing mKate2::AFD-1.

https://doi.org/10.1371/journal.pgen.1010319.g003
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Fig 4. Transcriptome profiling of multiple divergent, gastrulating cell types reveals internalization-correlated expression pattern of LIM

domain-containing gene family. (A) C. elegans lineage map indicating the four internalizing lineages. All internalizing cells are represented

with red branches. The internalizing MS, E, D, and Cxp lineages were dissected for transcriptome profiling and compared against two negative

control lineages that do not internalize—the ABp and Cxa lineages. (B) Heatmap showing transcript abundance for the 99 internalization-

correlated genes. Open circles indicate samples from a non-internalizing cell while closed circles indicate samples from an internalizing cell.
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51 homology groups: 27 groups that had transcripts that became enriched in two of the four

internalizing cell types, 21 groups in three of the four internalizing cell types, and three groups

enriched in all four internalizing cell types.

Of the three homology groups whose transcripts became enriched in all four internalizing

cell types, two included genes encoding F-box domains (S1 and S2 Files). C. elegans has an

unusually large number of F-box-encoding genes [45]. None of the genes in the two groups we

identified has a known function or known orthologs outside of the Caenorhabditid nematodes.

The third group consisted of three genes encoding proteins that have LIM domains; lim-9 (an

ortholog of LIMPET in Drosophila and FHL2 in vertebrates), pxl-1 (an ortholog of paxillin in

Drosophila and vertebrates), and the zyx-1/zyxin gene that we had identified in a separate set

of experiments above.

Within this homology group, zyx-1 transcripts were enriched in the E lineage as described

above; lim-9 transcripts were enriched in Cxp descendants (i.e., the cells of the C lineage that

internalize) and not their non-internalizing Cxa sister cells; and pxl-1 transcripts were

enriched in MS descendants and D descendants (Fig 4C). These genes encode proteins

whose homologs are involved in actin filament organization in muscle cells [46–49], focal

adhesions and mechanotransduction [50,51], stretch-induced gene expression [52], planar

cell polarity, and asymmetric cell division [53]. LIM domain-containing proteins have been

shown to interact physically with components of the actin cytoskeleton such as vinculin and

α-actinin [46]. We consider members of this homology group as interesting candidates for

regulators of cell behaviors during gastrulation based on the transcript enrichments that we

found, their broad conservation across animals, as well as their known involvement in cyto-

skeletal organization.

Therefore, we attempted to test whether these LIM domain-encoding genes are required

during gastrulation in their respective cell lineages. We targeted each candidate individually by

dsRNA injection, filmed embryos, and assayed for gastrulation defects among the internalizing

cell lineages in which each candidate was found to be upregulated. Besides zyx-1 RNAi (see

Table 1), none of the candidates yielded gastrulation defects in their respective cell lineages

(pxl-1 RNAi, 0% MS or D lineage internalization defects, n = 24; lim-9 RNAi, 0% C lineage

internalization defects, n = 46). C. elegans also has another LIM domain-encoding gene, unc-
97, that is expressed at high levels in internalizing C lineage cells and moderately high levels in

other internalizing lineages (see Differential Expression Gene Explorer link above). Because

complex genetic redundancy among a multi-gene family and/or failure to sufficiently knock

down transcript levels by RNAi might have prevented us from observing phenotypes after pxl-
1 RNAi and lim-9 RNAi, and because we had found that targeting zyx-1/zyxin did result in gas-

trulation defects, we decided to set aside work on the larger set of LIM domain proteins to

focus on characterizing ZYX-1/zyxin’s role in EPCs during gastrulation. Overall, our differen-

tial gene expression results led us to conclude that few genes can be found with expression pat-

terns matching that expected for transcriptionally-regulated genes that might orchestrate

apical constriction in diverse cell types, and it highlighted a possible role for LIM-domain-

encoding genes including zyx-1.

(C) Pictograms of embryos representing relative gene expression levels of LIM domain-containing genes in the different internalizing cell

lineages (key in S3 Fig). A mockup of an idealized gene expression pattern for a hypothesized orchestrator of gastrulation is shown on the left.

The combined gene expression of all three LIM domain-containing genes is shown on the right. (D) DIC imaging of C. elegans embryos

around the start of gastrulation in control (N2) embryos and in zyx-1Δ (LP831) embryos. The surfaces of internalizing EPCs that were not

covered by other cells in 3 dimensions are outlined, and the black arrowhead points to these exposed EPC cell surfaces at the time of cell

division, indicating a gastrulation defect that is not seen in the control.

https://doi.org/10.1371/journal.pgen.1010319.g004
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We confirmed zyx-1/zyxin’s role in gastrulation by generating a CRISPR knockout of zyx-1
(zyx-1Δ, LP831), removing the protein coding region and replacing it with a cassette encoding

a codon-optimized GFP expressed under the control of the myo-2 promoter, driving expres-

sion in the pharynx to allow for easy visual identification of the allele. Consistent with the

phenotype seen by RNAi, we also found gastrulation defects in the knockout strain. This phe-

notype was more penetrant than we had observed in the zyx-1 dsRNA injection (41.3% vs.

25%, 19/46 Gad embryos, Fig 4D). To determine if AFD-1 and ZYX-1 might function redun-

dantly, we performed afd-1 RNAi in the zyx-1 Δ strain and found that afd-1 RNAi did not

increase penetrance (9/36 Gad, 25%).

Before examining whether ZYX-1 is involved in linking junctions to contracting apical acto-

myosin networks, we attempted to characterize its localization. We anticipated that the low

level of zyx-1/zyxin transcripts that we detected in EPCs might make it difficult to visualize pro-

tein localization; indeed ZYX-1 might function specifically at a low level, during a time when

levels are only beginning to rise transiently after initial gene expression. Previous authors have

reported that zyx-1/zyxin produces 2 protein isoforms: a longer, 603 amino acid isoform called

ZYX-1a, and a shorter, 200 amino acid isoform called ZYX-1b [46]. ZYX-1a contains 3 polypro-

line-rich repeats, a predicted nuclear export signal, and 3 tandem LIM domains (S4A Fig). We

created a strain with mNeonGreen (mNG) inserted at the endogenous N-terminus to tag ZYX-

1a, but consistent with its low predicted expression at this stage of development, we were unable

to detect mNG signal in the EPCs, and we were unable to detect ZYX-1 by immunostaining

methods that employed signal amplification (S4B and S4C Fig). In young adults we could see

mNG::ZYX-1a readily in differentiated body wall muscle, neurons, gonads, and spermatheca,

in line with where its expression was previously described [46,54] (S4D Fig). To assess where

ZYX-1 could associate when accumulating in gastrulating cells, we examined where over-

expressed ZYX-1 would localize using single-copy transgenes driven by the sdz-1 promoter

(Psdz-1), which is predicted to drive ~20-fold overexpression compared to zyx-1 expression lev-

els in EMS, E, and MS cell lineages (S5A Fig). We created two mNG-tagged constructs: one

expressing full length ZYX-1a, and another expressing only the LIM domain-containing region

(LCR) of ZYX-1 to examine where the LCR alone could direct localization. For both constructs,

cytoplasmic mNG signal could be detected in E and MS cells as predicted, and small foci could

be detected at the apical surfaces of internalizing EPCs (S5B Fig). Additionally, the predicted

nuclear export signal of ZYX-1a appeared to be functional in full-length mNG::ZYX-1a, because

mNG::ZYX-1a was excluded from the nucleus while mNG::LCRZYX-1 was not (S5C Fig). We

conclude that ZYX-1a is likely expressed normally at too low a level as EPCs internalize to

detect by current methods, and that it and its LCR can be recruited to apical foci in EPCs when

overexpressed. One hypothesis consistent with our expression data and our phenotype data is

that zyxin may be a limiting component required for triggering apical constriction that is

expressed only briefly and at a low level at the onset of cell internalization. We attempted to test

this hypothesis using the Psdz-1 overexpression construct to drive expression in the EMS cell

(which produces both the E and MS lineages) to see if expressing zyxin early and at higher than

normal levels might result in early cell internalization, but we did not see cell internalization

occurring earlier in this strain (S6 Fig). In line with zyx-1’s expression enriched in only EPCs,

Psdz-1-driven overexpression of full length mNG::ZYX-1a was able to rescue most of the defects

seen in the zyx-1Δ background (2/27 Gad, p = 0.0003). Overexpression of mNG::LCRZYX-1 was

not able to rescue similarly (7/22 Gad, p = 0.366). We conclude that ZYX-1 contributes to gas-

trulation, and that domains beyond the LIM-domain-containing region are important for this

function. Next, we investigated whether ZYX-1/zyxin and AFD-1/afadin contribute specifically

to coupling cell junctions to contracting actomyosin networks during gastrulation.
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Development of a semi-automated image analysis workflow to quantify the

degree to which myosin and membrane movements are coupled in vivo
To determine whether ZYX-1/zyxin and AFD-1/afadin are required for coupling actomyosin

to cell junctions in EPCs, we constructed a dual-labeled strain to visualize myosin particles as

well as plasma membranes, to serve as a proxy for cell-cell junctions. We used an existing

strain with endogenously-tagged NMY-2/myosin bearing an N-terminal fusion to an mNeon-

Green (mNG) fluorophore [55] and inserted a single-copy transgene containing the bright red

fluorophore mScarlet-I (mSc) [56] fused to the pleckstrin homology domain from phospholi-

pase C-δ1 (PH domain), which localizes to plasma membranes. We then collected dual-color

4D confocal videos of membrane and myosin dynamics throughout the process of apical con-

striction (Fig 5A).

Previously reported methods for quantifying actomyosin and junction movements used a

manual analysis of a relatively small number of datapoints, with a significant time invest-

ment [13]. To increase throughput and to ensure unbiased analysis, we developed a semi-

automated pipeline to assess membrane and myosin movements. Because this is a new and

potentially widely-applicable pipeline that required new code (freely available; see Materials

and methods), we describe briefly below each of three steps that we used: (1) cell segmenta-

tion, (2) myosin flow computation and (3) analysis of the correlation between membrane

and myosin movement. First, to calculate membrane movement we performed coarse seg-

mentation of the Ea and Ep cells using Labkit [57] to train a random forest classifier to

Fig 5. Semi-automated workflow for analyzing actomyosin-membrane coupling. (A) Z-projection of spinning-disk confocal images of ventrally-

mounted embryos with labeled membrane (mScarlet-I::PH) and myosin (mNG::NMY-2). (B) Cell segmentation using Labkit in Fiji trained with user

defined annotations for background (blue), cell interior (red), and membrane borders (yellow) for 3 time points (beginning, middle, and end) (left).

Labkit outputs (right) were manually corrected as needed (inset, white arrowhead, see methods). (C) Noise2Void was used to clean up the mNG::NMY-

2 images to assist with the automatic flow detection. (D) Image showing membrane segmentation (green and blue outlines), centroid (blue dot) and

centripetal vectors calculated from myosin flows (yellow arrows). The shaded yellow region indicates the 2 μm border region mentioned in the main

text.

https://doi.org/10.1371/journal.pgen.1010319.g005
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recognize (i) cell interior, ie. pixels in the apical cortex’s interior, (ii) cell membrane (bor-

der), and (iii) background, ie. everything else. For each time-lapse, 1–2 minutes were

required to draw a few manual annotations for each pixel class and train the random forest

classifier (Fig 5B, left). Automatic segmentations were then manually reviewed and adjusted

to ensure that the borders of Ea and Ep cells were properly segmented (Fig 5B, right). These

adjustments were especially needed where Ea or Ep had no neighbors visible in the imaged

plane, to prevent incompletely segmented objects from merging into one another (Fig 5B

inset, arrowhead). Total segmentation and curation time was on average about 10–15 min-

utes per film.

Second, we reduced image noise and computed myosin flows. We denoised the movies

with a self-supervised denoising method, Noise2Void [58]. We manually checked several ran-

domly selected time points to ensure that the denoising performed well (Fig 5C). We then gen-

erated a maximum intensity Z-projection and used these for myosin flow quantification. We

computed myosin flows using the Farnebäck Optical Flow [59] implementation in OpenCV

[60], only considering the optical flow for myosin particles that lie along vectors drawn

between the membrane and either the cell centroid or centers of myosin flow (Fig 5D). We

hereafter refer to such vectors as centripetal vectors. Additionally, we considered only the

purely centripetal components of these vectors, since only this component contributes to

movement of the membrane in this direction (Fig 5D, yellow arrows). To limit our analysis to

only actomyosin that might contribute to coupling at cell junctions, we defined a two-micron

window at the outer border of the centripetal vectors near the cell border for each time point

and only considered myosin flows that fell in this region and were moving centripetally (Fig

5D, yellow shaded region).

Third, we analyzed the degree to which myosin and membrane movements were coupled.

For each pair of time points and for each centripetal vector, we calculated the net membrane

movement vector and the net myosin movement vector (average of all centripetal myosin vec-

tors). This calculated difference in the movement of membrane and myosin is defined as the

slippage rate, as described previously [13].

We found that this analysis recapitulated the finding by Roh-Johnson et al. 2012 that there

is slippage between myosin and membrane movements in wild-type embryos, as well as a sig-

nificant decrease in such slippage over time, but with many more data points than possible

previously (Fig 6A and 6B and Table 2). Overall we found lower myosin and slippage rates

than previously; this is not unexpected, because our new workflow enables analysis of optical

flow that considers smaller myosin particles than before, whose movements would be expected

to be more strongly randomized by brownian motion.

Zyxin affects coupling of cell junctions with contracting actomyosin

networks

Having developed a semi-automated method for analyzing myosin and membrane movement

that confirmed previous findings, we sought to determine whether AFD-1/afadin and ZYX-1/

zyxin were required for membrane to move centripetally along with actomyosin contractions.

We used our strain labeled with mNG::NMY-2 and mSc::PH and performed RNAi targeting

afd-1. We performed experiments involving zyx-1 using our CRISPR-generated zyx-1 Δ,

which we crossed into the dual-labeled strain.

We first examined whether afd-1 or zyx-1 had unanticipated effects on myosin dynamics.

The observed rates of myosin movement appeared to be largely unaffected by the loss of either

afd-1 or zyx-1: The mean myosin velocities early (E) and late (L) measured by our image analy-

sis method across all conditions were similar to one another (Fig 6A and Table 2). These
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Fig 6. zyx-1/zyxin is required for proper myosin/membrane movements during apical constriction. Mean data for each replicate shown as a

larger dot. Data were binned into early (E) or late (L) stages with paired-data in (C) indicated by a colored line to highlight the difference between

E and L for paired replicates. (A) Measurements of myosin velocities along centripetal vectors at both E and L stages are similar across all

conditions. No pairwise comparison was significantly different between E and L stages for wild-type (control) embryos or for any of the

experimental treatments. (B) Measurements of junctional membrane movement rates along centripetal vectors at both E and L stages show
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results confirmed to us that afd-1 and zyx-1 are unlikely to affect apical constriction of EPCs

through large, unanticipated effects on myosin velocities.

Next, we examined whether the normal inward movement of junctions that arises gradually

over time depended on afd-1 or zyx-1. Comparison of mean membrane velocities between

early and late stages revealed an acceleration of inward membrane movement in both the con-

trol and afd-1 RNAi embryos that was largely lost in zyx-1Δ or zyx-1Δ+afd-1 RNAi embryos

(Fig 6B and Table 2). As expected given these results and the negligible effect of these genes on

centripetal myosin velocities, afd-1 RNAi did not prevent the normally significant loss of slip-

page over time, but zyx-1Δ or zyx-1Δ+afd-1 RNAi did (Fig 6C and Table 2). zyx-1 Δ + afd-1
RNAi embryos displayed coupling defects in mean slippage rates between early and late stages

that were not significantly different (p = 0.891) than zyx-1 Δ on its own (Fig 6C and Table 2).

Taken together, we conclude from the results that ZYX-1 contributes directly or indirectly to

the degree to which cell-cell junctions move with the contracting actomyosin cytoskeleton.

Discussion

In cells undergoing apical constriction, cortical actomyosin contractions can begin before the

apical sides of cells constrict [13]. This finding suggested that apical constriction may be trig-

gered by regulating connections between already-contracting apical actomyosin networks and

significant differences for control and afd-1 RNAi (p< 0.005) but not in zyx-1 Δ (p = 0.105) and double (p = 0.699). (C) Superplot [88,93] of

calculated slippage rates between myosin and membrane movement with individual centripetal vector measurements displayed as small semi-

transparent points. Mean data for each replicate shown as a larger dot. Slippage rates for all E stage samples except the double were statistically

indistinguishable (p = 0.019). The only samples with a significant difference in slippage between E and L were the control (p< 0.002) and afd-1
RNAi (p< 0.05). Complete data quantification shown in Table 2. For visualization, 18 data points between 4.5 and 6.0 μm/min and 8 data points

between -2 and -3 μm/min were not shown although they were included in the analysis. Means for each condition are indicated by black bars

with error bars representing 95% confidence intervals.

https://doi.org/10.1371/journal.pgen.1010319.g006

Table 2. Summary of data and statistical tests for myosin velocity, membrane movement rate, and slippage differences between early (E) and late (L) stages.

Mean (μm/

min)

Mean Difference 95% C.I. Early vs. Early

Control

Late vs. Late

Control

Early vs. Late N (E / L)

Condition Measurement Early Late Early Late p-value p-value p-value

Control Myosin velocity 1.85 1.77 0.08 0.09 0.13 - - 0.2538 8 / 10

afd-1 (RNAi) Myosin velocity 1.81 1.73 0.08 0.10 0.12 0.5248 0.5998 0.2130 9 / 9

zyx-1 ko Myosin velocity 1.87 1.78 0.09 0.08 0.12 0.6907 0.8758 0.1763 10 / 9

afd-1 (RNAi) + zyx-1
ko

Myosin velocity 1.78 1.75 0.03 0.03 0.06 0.0983 0.6738 0.2498 12 / 11

Control Membrane

movement

0.27 0.99 0.72 0.16 0.46 - - 0.0048 8 / 10

afd-1 (RNAi) Membrane

movement

0.45 0.84 0.39 0.16 0.37 0.0637 0.5492 0.0038 9 / 9

zyx-1 ko Membrane

movement

0.30 0.57 0.27 0.15 0.35 0.7712 0.1055 0.1048 10 / 9

afd-1 (RNAi) + zyx-1
ko

Membrane

movement

0.45 0.51 0.06 0.17 0.30 0.0841 0.0547 0.6991 12 / 11

Control Slippage 1.57 0.82 0.75 0.18 0.41 - - 0.0016 8 / 10

afd-1 (RNAi) Slippage 1.36 0.89 0.47 0.22 0.44 0.0822 0.7865 0.0351 9 / 9

zyx-1 ko Slippage 1.55 1.22 0.33 0.18 0.44 0.8479 0.1204 0.1184 10 / 9

afd-1 (RNAi) + zyx-1
ko

Slippage 1.31 1.20 0.11 0.17 0.21 0.0193 0.0739 0.3510 12 / 11

https://doi.org/10.1371/journal.pgen.1010319.t002
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apical junctions. Here, we sought to identify molecules that could contribute directly or indi-

rectly to such connections. We used proteomic and transcriptomic approaches to identify new

genes that contribute to normal gastrulation in C. elegans. Among the genes we identified were

two genes, afd-1/afadin and zyx-1/zyxin, that encode proteins of families already known to

indirectly connect actin networks and membrane proteins in other contexts, but which had

not been implicated in the kind of temporally-regulated linkage during normal development

that we sought here. We found that zyx-1/zyxin was required for the normal reduction of slip-

page over time between junctions and contracting actomyosin networks. Our work also pro-

duced two new resources available to other researchers: transcriptomes of multiple

gastrulating lineages from C. elegans available in interactive online form to facilitate querying

the dataset, and a semi-automated method for analyzing myosin and membrane movements.

Together, our results identify new genes that contribute to C. elegans gastrulation including

one encoding a key protein that may contribute directly or indirectly to a previously-hypothe-

sized molecular clutch for apical constriction [13].

Our results suggested that AFD-1/afadin makes either minor, redundant, or no contribu-

tions to the dynamic regulation of coupling that we sought. Afadin has known functions in

apical constriction in Drosophila, including connecting membrane proteins to F-actin [27],

supporting junctional integrity [61], and maintaining apical/basal polarity [32]. Afadin was

first identified as an actin-binding protein localized to CCC-based adherens junctions in mice

[22]. Prior to this study in C. elegans, afd-1 had been shown to genetically interact with sax-7/

L1CAM during gastrulation [30]. Although the precise role of sax-7/L1CAM is not well under-

stood during gastrulation in C. elegans, sax-7 is partially redundant with hmr-1/cadherin [34],

and afadin has been found in other systems to interact with both nectin, which is another

immunoglobulin cell-adhesion molecule (IgCAM) not directly related to sax-7, [62] and CCC

adhesion complexes [36,37]. Therefore, it is possible that afadin has conserved interactions

with both CCC-based and IgCAM-based adhesion, and loss of afadin might affect both to

some degree. Our data suggest that AFD-1 localization at junctions in C. elegans depends on

HMR-1/cadherin but not HMP-1/α-catenin or SAX-7/L1CAM, which is surprising given pre-

vious literature in other systems that suggests an interaction between afadin and α-catenin

[36,37]. It is possible that multivalent interactions between multiple junctional proteins [63,64]

contribute to recruiting AFD-1 to junctions.

Because gastrulation in C. elegans relies on embryonic transcription [20], we hypothesized

that some regulators of C. elegans gastrulation might be identified by analyzing cell-specific

changes in transcriptomes. Our single-cell transcriptome analysis identified a group of LIM

domain-containing proteins as specifically upregulated in internalizing cells. LIM domains are

composed of tandem zinc fingers and share a few conserved residues required for the coordi-

nation of zinc ions [47,65]. Proteins containing LIM domains play evolutionarily conserved

structural roles supporting actin networks under stress [66,67]. Some LIM proteins like LMO7

might directly regulate apical myosin activity [68]. Smallish is an LMO7 homolog in flies that

localizes to the zonula adherens, binds to PAR polarity complex proteins as well as canoe/afa-

din, and regulates morphogenesis and actomyosin contractility [69]. Because our LIM

domain-containing candidate proteins were specifically enriched just before the onset of cell

internalization, we hypothesized that apically constricting cells may rely on different LIM

domain-containing proteins to successfully internalize. Although we found that RNAi of only

one LIM domain-containing candidate had an effect on cell internalization, we cannot rule

out the possibility that genetic redundancy or incomplete RNAi penetrance contributed to the

lack of an observable phenotype after targeting two other LIM domain genes that we identi-

fied. Genetic redundancy is common among morphogenesis mechanisms in various systems

[70–72].
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The LIM domain-containing protein that had a measurable effect on cell internalization

was zyx-1/zyxin, which is expressed in EPCs. Zyxin is a tension-sensitive protein that can

bind actin filaments under stress and contribute to repair of actin stress fibers [25,51]. In

humans, the zyxin-family of LIM proteins contains several members, including Ajuba,

WTIP, TRIP-6, and others. There is substantial precedent for zyxin-like proteins contribut-

ing to apical constriction in other systems, by incompletely defined mechanisms. WTIP is

important for apical constriction in Xenopus [73], where it localizes to junctions. In human

keratocytes, Ajuba localizes to junctions via an interaction with α-catenin [74] and is

required for Rac activation and E-cadherin-dependent adhesion [75]. In Drosophila melano-
gaster, Ajuba has also been shown to localize to junctions via interaction with α-catenin

that is dependent on myosin-induced tension [76,77]. ZYX/zyxin is the sole zyxin family

member in C. elegans; it can contribute to the repair of junctional actin networks, and it is

required for proper muscle function [46,78]. Endogenous tags of zyx-1 were too dim to be

visualized, and immunostaining experiments failed to detect signal as well, likely because

expression in the EPCs is too low. Therefore, we do not know if ZYX-1 normally localizes to

junctions and/or to actin networks in EPCs, leaving the mechanism by which it affects gas-

trulation and apical constriction an open question. We speculate that ZYX-1 might normally

localize to junctions and indirectly strengthen mechanical connections between junctions

and contracting actomyosin networks. Alternatively, ZYX-1 might function throughout

the apical actin cortex and contribute to coupling by enabling rapid repair of stressed actin

filaments.

Our study reveals new genes that contribute to C. elegans gastrulation. Given the nature

and penetrance of the phenotypes we observed after loss of afd-1/afadin and zyx-1/zyxin, we

suspect that multiple partially redundant mechanisms ensure successful cell internalization.

Our single-cell transcriptome data should provide a wealth of data for comparing internalizing

cell lineages to their non-internalizing neighbors and yield future insights into mechanisms.

Numerous links between CCC, actin, and zyxin/LIM domain-containing proteins have been

demonstrated in a variety of systems. Our study suggests that these same proteins might be

working together in C. elegans specifically to link the forces generated by actomyosin contrac-

tion to cell-cell junctions during apical constriction.

Materials and methods

C. elegans maintenance and strains

Nematodes were cultured and handled as previously described [79]. Strains used in this study

are indicated in S1 Table.

Co-immunoprecipitation and mass spectrometry

C. elegans expressing either soluble GFP alone as a control or HMP-1::GFP were used for

affinity purification of GFP from isolated embryos. Liquid culture and affinity purification of

protein complexes from C. elegans extracts were performed following previously described

methods [80]. Briefly, we isolated embryos from unsynchronized liquid cultures by bleaching

and incubated them overnight in M9 media to obtain synchronized L1 larvae, which were

then used to start new liquid cultures. Synchronized cultures were allowed to grow until the

majority of C. elegans were observed to reach adulthood and contain ~5 embryos, to enrich

for embryos with <50 cells. At this point, embryos were again harvested by bleaching,

washed in M9, transferred to lysis buffer adapted from [81] (20 mM Tris-HCl, pH 7.9; 150

mM NaCl; 10% Glycerol; 1.0 mM; 0.5 mM DTT; 0.05% Triton-X 100; 1 Complete EDTA-

free Protease Inhibitor cocktail tablet per 12 mL lysis buffer (Roche Applied Science,
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#1873580)) and drop frozen in liquid nitrogen. Embryonic extracts were prepared using pul-

verization and sonication followed by a single-step immunoprecipitation using anti-GFP

coupled agarose beads (MBL international, D153-8). Purified protein extracts were submit-

ted for LC-MS/MS analysis at the UNC Michael Hooker Proteomics Center on a Thermo

QExactive HF machine (ThermoFisher).

Candidate gene selection

An initial list of 545 candidate proteins from the affinity purification of HMP-1::GFP from

embryos was filtered first by removing 315 proteins that shared peptide hits in the soluble GFP

control. The remaining 230 proteins all had at least 1 peptide hit. Both HMP-2/β-catenin and

HMR-1/cadherin were identified in this pool of candidates with the highest peptide counts,

suggesting that our method worked. The remaining candidates were further filtered by ribo-

somal proteins, elongation factors, and other common housekeeping proteins which reduced

the list to 126 proteins. Finally, because synchronization of C.elegans is not perfect we only

considered candidates with evidence of gene expression in EPCs [19], which reduced our list

to 11 proteins expressed in the early embryo with a potential physical interaction with the

CCC. Candidates from transcriptome data were initially selected if they showed evidence of

transcript enrichment in the EPCs at stages just prior to the onset of apical constriction (at

either the 8-cell or 24-cell stage of development). 21 candidate genes were selected from

among those that have at least an 8-fold (i.e. log2 of 3) enrichment in the EPCs at either of

those two stages. Enrichment for each gene was calculated after removing the EPC(s) contribu-

tion to the whole embryo total.

RNA interference

Primers were designed to amplify ~1000 bp of each target genes’ protein coding sequence (S2

Table). Each primer also included 15 bases of the T7 promoter sequence at the 5’ end to be

used in a 2-step PCR from wild-type genomic DNA sequence. The PCR product was purified

using a Zymo DNA Clean and Concentrator kit (Zymo Research) and used as a template for

another round of PCR using primers containing the full-length T7 promoter sequence. After

a second purification using a Zymo DNA Clean and Concentrator kit the PCR product was

used as a template in a T7 RiboMAX express RNAi System (Promega) following the manufac-

turer’s protocol. Purified dsRNA was injected at a concentration of 500 ng/μL into L4 or

young adult hermaphrodites using a Narishige injection apparatus, a Parker Instruments

Picospritzer II, and a Nikon Eclipse TE300 microscope with DIC optics. Excess dsRNA was

stored at –80˚C. Injected worms were allowed to recover on a seeded NGM plate for 24–36

hours at 20˚C before harvesting embryos for imaging.

Assay for gastrulation defects

Gastrulation assays were performed as previously described [23]. Briefly, C. elegans embryos

were dissected in Egg Buffer from dsRNA injected gravid adults and mounted on poly-L-lysine

coated coverslips, supported by a 2.5% agarose pad. Four-dimensional differential interference

contrast (DIC) microscopy was performed using a Diagnostic Instruments SPOT2 camera

mounted on a Nikon Eclipse 800 microscope. Images were acquired at 1 μm optical sections

every 1 minute during embryogenesis and analyzed using ImageJ [82]. Embryos were consid-

ered gastrulation defective (Gad) if either Ea or Ep divided before it being fully internalized.

Imaging was performed at 20˚C—23˚C for all strains.
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CRISPR editing

Strains were created using previously reported methods [55,83]. Proteins were tagged on either

their N- or C-termini after considering the presence of multiple isoforms or knowledge of

existing tags in other organisms. For afadin, both N- and C- terminally tagged transgenes

have been used previously in other organisms without any reported defects and N-terminally

tagged transgenes can rescue lethal phenotypes in flies [33,84,85]. Repair templates were first

constructed by inserting 500–1000 bp of homologous sequence amplified from genomic worm

DNA into a vector on either side of a fluorescent protein and a selection cassette using Gibson

Assembly or SapTrap methods [86,87]. For the zyx-1 gene deletion, the homologous sequence

was inserted into a vector containing myo-2 promoter driven GFP as a visible marker of the

deletion. Cas9 guide sequences were selected using the CRISPR Design tool (crispr.mit.edu,

no longer available) and cloned into Cas9-sgRNA expression vector DD162 [83] and then co-

injected into adult germlines along with the repair template vector and array markers. Selec-

tion of edited worms was conducted using previously described methods [55].

Fluorescence imaging

Laterally mounted embryos were imaged on 2.5% agarose pads, ventrally mounted embryos

were imaged using clay feet as spacers between the slide and coverslip. Embryos were imaged

using a spinning disk confocal microscope with a Nikon TiE stand and a 60X 1.4NA Plan Apo

immersion oil objective (Nikon), CSUXI spinning disk head (Yokogawa), and an ImagEM

EMCCD (Hamamatsu). For analysis of coupling, images were collected in sets where the

membrane was imaged on the 1st and 7th frames, and myosin was imaged in every frame.

Optical sections of 0.5 μm were collected to a depth of 2 μm from the surface of the embryo. In

doing this, a membrane volume was collected every ~34.3 seconds while myosin volumes were

collected every ~5.7 seconds. Z-projections were analyzed using ImageJ and our automated

analysis pipeline (see Methods below).

Quantification of mKate2:AFD-1 levels at junctions

The analysis of apical enrichment of mKate2::AFD-1 in Ea/p was performed as described pre-

viously for members of the CCC [15]. The analysis of relative mKate2::AFD-1 levels along

junctions was performed on embryos that were isolated from adult worms 24 hours after

being injected with dsRNA. Embryos from worms injected with either hmr-1 or hmp-1 dsRNA

were mounted side-by-side on agar pads with control and oriented such that embryos could

be differentiated on the microscope. mKate2::AFD-1 junctional intensity was collected by tak-

ing stacks of images 12 microns deep into the embryo. Z-projections of embryos were analyzed

using ImageJ to calculate the average intensity along a 50 pixel long, 5 pixel wide line drawn

along identical junctions in both the control and experimental conditions. Average fluores-

cence intensities (fluorescence intensity) were then adjusted by subtracting off-embryo back-

ground levels by drawing the same 50 pixel long, 5 pixel wide line in a space adjacent to the

embryos for each prepared slide. Adjusted average pixel intensities were normalized to the

highest value in each experimental group and plotted to compare Control vs. Experimental

junctional intensities. Ratios from each group were calculated by first taking the ratio of the

average pixel intensities from each embryo pair, and then plotting them along with the group

averages. Statistical analysis of ratios was performed using a Welch’s t-test in the Superplots

webtool (https://huygens.science.uva.nl/SuperPlotsOfData/, [88]). mKate2::AFD-1 embryos

showed a low-penetrance gastrulation defect (1/24 embryos), raising the possibility that our

N-terminally tagged-protein had minor effects on its function; this was significantly weaker

penetrance than the defects seen by RNAi (p = 0.018).
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Worm dissections

Worms were grown and dissected, and RNA was prepared and sequenced, as in Tintori 2016

[19]. Briefly, embryos were selected 10–20 minutes before the desired stage, chemically dis-

rupted using a sodium hypochlorite solution and a chitinase/chymotrypsin solution, then

mechanically disrupted by agitation via mouth pipette. The only exceptions were that in this

study embryos were dissected manually by aspiration on a Yokogawa spinning disk confocal

microscope under brightfield illumination, and cell types were identified by fluorescent mark-

ers, as illustrated (S1 Fig).

Single embryo transcriptomes and analysis

We chose to isolate cells expressing lineage markers from individual embryos of known stages

so that we could be confident of staging and cell identity, and to ensure that we had isolated

fully intact cells (because unlysed cell fragments have been seen on occasion after manual

shearing, suggesting that shearing can sometimes result in bisection of cells) and without

reversing incomplete cytokinesis by isolating cells before cytokinesis was complete [89]. The

transcriptomes already available from our previous study had been generated from single cells

[19]. To keep any amplification artifacts consistent across datasets, we chose to perform RNA-

seq on later time points using material from single embryos rather than bulk-isolated cells. For

the same reason, we used the same kit and protocol that had been used for earlier samples

[19]. Briefly, cDNA was generated using the SMARTer Ultra Low RNA Input for Illumina

Sequencing Kit, and sequencing libraries were prepared using the Nextera XT kit. Sets of

samples from a single embryo were rejected if one or more libraries had an over-representa-

tion of ERCC spike in reads (if ERCC spike in transcripts were more than 1/10th as abundant

as worm transcripts) [90].

With the addition of these new datasets, we have now sequenced transcriptomes for all cell

types of the 1-, 2-, 4-, and 8-cell stage, 9 cell types of the 24-cell stage (ABalx, ABarx, ABplx,

ABprx, MSx, Ex, Cx, D, and P4), and 5 groups of cells from the 100 cell stage embryo (ABp

descendents, "ABp+"; MS descendents, "MS+"; D descendents, "D+"; and internalizing and

non-internalizing C descendents, "C-in" and "C-out"), as well as the partially overlapping

groups of cells that make up the rest of the embryo from each of those 100 cell stage dissections

(e.g. all non-D cells, "D-", to match each set of D cells collected, "D+"). An approximation of

the remainder of the 100 cell stage embryo, referred to here as ABa-E-P4, was generated in sil-

ico based on weighted averages of other samples from that stage using the following approach.

First, a whole embryo average was calculated based on the weighted averages of all dissections

from the gastrulating stage (for example, 0.25 x RPKMs for ABp+ plus 0.75x RPKMs for "ABp-

", with weightings based loosely on mass of each cell cluster). We then subtracted the weighted

values of each of the targeted cell types (subtracting 0.25x"ABp+", 0.0625x"C-in", 0.0625x"C-

out", 0.0625x"D+", and 0.125x"D+") from the whole embryo estimate, leaving an estimate of

just the ABa-E-P4 RPKM values. A previous study generated transcriptomes for many of these

cell types by isolating founder cells starting at the 2- cell stage, and allowing cells to divide in

culture before collecting them for RNA-seq [91]. The method used in that study kept cells

naïve to critical cell-signaling events. We were interested in preserving those fate-determining

signaling events, so we collected cells based on fluorescence within 10 minutes of being dis-

rupted from their native environment in the embryo.

Transcripts were considered “detected” if their RPKM value was above a threshold of 25.

All fold change calculations were done on adjusted RPKM values—raw RPKM values with 25

added to them—to avoid enriching for small differences between samples with low RPKM

values.
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Among 57 replicates of 9 samples from the 100 cell stage, we detected transcripts from

7,998 genes (above a threshold of 25 reads per kilobase of transcript per million mapped

reads, or RPKM). This value roughly matched our expectations based on transcriptomes

generated from earlier cell types—in our previous study we detected 8,575 genes amongst 1-

to 24-cell stage embryos (note that owing to division asynchrony between lineages, there is

no 16-cell stage in C. elegans, but the 16 samples from the 24-cell stage were referred to for

convenience as cells of the 16-cell stage in our previous study). In the previous study we

thoroughly validated our low-input RNA-seq data by (1) comparing them to previously

known gene expression patterns and (2) comparing them to single molecule fluorescent in
situ hybridization assays [19]. The sequencing technology used in this study was virtually

identical, with the main difference being that the samples collected were from groups of

smaller cells later in development, rather than single larger cells earlier in development. To

validate the dataset in the present study, we compared our mRNA sequencing data to pro-

tein level data for the Cxa (C-out) and Cxp (C-in) samples, as previously reported [92]. We

used the EPIC database (https://epic.gs.washington.edu/) from Murray et al. 2012 to identify

proteins that are differentially expressed between Cxa cells and Cxp cells (e.g. elt-1, nhr-171,

and vab-7, S2 Fig), and inspected our transcriptome data for matching trends. We chose

these samples because they were the most technically difficult dissections, due to the cells’

small size and low fluorescence levels, and hence were the samples we had the least confi-

dence in.

Families of proteins were defined by creating groups of genes based on similarity, using a

protein BLAST E-value cutoff of e-15.

Analysis of slippage

Slippage is defined as the difference in velocity between myosin particles and the adjacent

membrane [13]. These rates are measured along the centripetal vectors, which we refer to as

“Spyderlegs” in our code. To reduce noise from brownian motion or other non-myosin move-

ment we used a filter to remove flow vectors moving slower than 1.5 μm/min which is slightly

slower than reported myosin velocities in these cells [13]. This filter is adjustable in the pipe-

line so it can be tailored for use in other systems. The cell centroid (blue dots in Fig 4D) was

initially seeded manually and then automatically determined for each subsequent frame. In

cases where the myosin flow was coalescing on an off-center point, the automatically deter-

mined center was manually overridden. A slippage rate of 0 means that both membrane and

myosin are moving in concert with each other, while a positive slippage rate signifies that the

myosin velocity is higher than the adjacent membrane. The values obtained from this semi-

automated image analysis pipeline were then binned into two categories, early and late, relative

to the birth of the neighboring MSxx cells. Early stages were defined as being between 3 and 7

minutes post MSxx birth, while late stages were 13 minutes post MSxx birth and later. Slippage

rates were then plotted using Superplots (https://huygens.science.uva.nl/SuperPlotsOfData/,

[88]).

The semi-automated analysis pipeline described in the Results determines the slippage rate

over time for each centripetal vector (Spyderleg) as well as individual cell (Ea and Ep) averages

and can be completed in about 30–45 minutes per embryo. While there is still room for further

automation, the presented analysis pipeline is an important step toward making the required

analyses feasible on a large scale, while still offering users the possibility to override erroneous

automated decisions.
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Statistical analysis

Comparative analyses of Gad phenotypes between different groups were performed using Chi-

square goodness of fit test. All other analyses were performed using a Welch’s t-test, or paired

t-test unless otherwise noted.

Supporting information

S1 Fig. Dissection of multiple divergent, gastrulating cell types. Four fluorescent marker

strains that were used to dissect and collect each sample collected from the 100 cell stage.

(TIF)

S2 Fig. Validation of C descendent transcriptomes. Three genes with protein expression in

C descendants were selected from the Waterston Lab’s lineagomics database (epic.gs.washing-

ton.edu) and compared to our transcriptome data. Cell lineages show only the C descendants,

and are color coded by relative fluorescence levels detected from a film of embryonic develop-

ment taken of embryos with multi-copy arrays of promoter fusions of each gene. According to

the Waterston lineages (left), transcripts of elt-1 and nhr-171 are expected to be enriched in

Cxa descendants, and transcripts of vab-7 are expected to be enriched in descendants of Cxp,

which we also see in our transcriptomes (right).

(TIF)

S3 Fig. 11 candidates with close to complete internalization-associated expression pat-

terns. Pictograms showing individual cell heat map expression patterns of the genes indicated

with RPKM values listed. None of these 11 candidates had expression patterns that perfectly

matched with cell internalization, i.e. enrichment was weak in one or more groups of internal-

izing cells, or some non-internalizing cells showed strong expression.

(TIF)

S4 Fig. Attempts to visualize endogenous ZYX-1 protein localization. (A) C. elegans ZYX-

1a consists of a few proline rich regions near the N-terminus (magenta boxes), a predicted

nuclear export sequence (NES, orange box), and 3 tandem LIM domains. (B) zyx-1 is

expressed at the 8 cell stage in EPCs (19). Pictogram key in S4 Fig. (C) Endogenous mNG-

tagged ZYX-1 does not accumulate in EPCs (white arrowhead) appreciably above background,

although the expression levels (B) are predicted to be low at this stage. This image was taken

with settings that amplified even low level fluorescence and background in an attempt to

enhance any apparent signal. We also failed to detect ZYX-1 by immunostaining ZYX-1::GFP

embryos and using TSA amplification. (D) Endogenous mNG-tagged ZYX-1 shows clear

expression in young adults, with localization patterns matching previous reports for zyx-1
transgenes (46), suggesting that our tagged gene is properly expressed.

(TIF)

S5 Fig. Attempts to visualize ZYX-1 protein localization via overexpression in E and MS

lineage cells. (A) An mNG-tagged transgene driven by the sdz-1 promoter, which drives

expression in MS and E cell lineages ~20-fold higher than predicted levels for endogenous zyx-
1 (left). (B) mNG-containing puncta can be seen at the apical surface for both full length zyxin

and the LIM domain-containing region (LCR) of ZYX-1. Apical slices at the depths indicated

show more puncta closer to the apical surface, with fewer punta appearing further away from

the surface. (C) The predicted NES is functional. If viewed from a central section, the LCRZYX-

1 construct, which lacks the NES, is not excluded from the nucleus (yellow arrowheads).

(TIF)

PLOS GENETICS Coupling junctions to actomyosin in apical constriction

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010319 March 28, 2023 24 / 30

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010319.s001
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010319.s002
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010319.s003
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010319.s004
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010319.s005
https://doi.org/10.1371/journal.pgen.1010319


S6 Fig. ZYX-1 is likely not a sole limiting component for triggering cell internalization.

Plot of the time it took between MSxx birth and EPC internalization, in minutes. Psdz-1 driven

overexpression of neither mNG::ZYX-1 nor mNG::LCRZYX-1 affected the timing of cell inter-

nalization as compared to control embryos (ZYX-1, p = 0.34, n = 32; LCRZYX-1, p = 0.65,

n = 14).

(TIF)

S1 Table. Strain List.

(TIF)

S2 Table. RNAi Primers.

(TIF)

S3 Table. Proteomic Data.

(TIF)

S1 File. List of genes enriched in the indicated sets of internalizing cells.

(TXT)

S2 File. List of gene homology groups enriched in indicated sets of internalizing cells.

(TXT)
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