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Abstract

The roles of Rho GTPases in various types of cancer have been extensively studied, but the

research of Rho guanine nucleotide exchange factors (GEFs) in cancer is not comprehen-

sive. Rho guanine nucleotide exchange factor 6 (ARHGEF6) is an important member of the

Rho GEFs family involved in cytoskeletal rearrangement, and it has not been investigated in

acute myeloid leukemia (AML). Our research showed that the expression of ARHGEF6 was

mainly higher in AML cell lines, meanwhile, was highest in the samples from patients with

AML compared to other cancer types. High ARHGEF6 expression in AML was associated

with a good prognosis. ARHGEF6low cases showed significantly higher overall survival (OS)

after autologous or allogeneic HSCT (auto/allo-HSCT). High expression of ARHGEF6

downregulates the negative regulation of myeloid differentiation process and upregulates G

protein-coupled receptor signaling pathway-related processes, among which HOXA9,

HOXB6, and TRH have significant differential expression and prognostic impact in AML.

Therefore, ARHGEF6 can become a prognostic marker in AML; ARHGEF6low patients can

gain from auto/allo-HSCT.

Introduction

AML is characterized by accumulation of immature cells resulting from uncontrolled prolifer-

ation of myeloid progenitor cells, thus impairing myeloid differentiation and ultimately

decrease the percentage of normal blood cells. In the United States, 75% of AML patients are

over 65 years old, elder patients are refractory and prone to relapse, the recurrence rate can

reach 10%-40% even in younger patients [1, 2]. Recently, several studies have shown that AML

patients with some genes (such as ARHGAP9 and BCL2) abnormal expression can benefit

from auto/allo-HSCT [3, 4]. Therefore, optimal therapeutic strategy based on validated prog-

nostic markers is important for AML patients.

Rho GTPases belong to the Ras GTPase family, and are activated at cellular membranes by

Rho GEFs [5, 6]. Activated Rho GTPases participate in various biological processes, for

instance, vesicle transport and cytoskeletal rearrangement [7, 8]. In cancer, Rho GTPases are
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thought to be correlated with tumor development and poor prognoses [9]. And in hematopoi-

esis, Rho GTPases are concerned with various processes such as cell proliferation, differentia-

tion, migration, and self-renewal [10–14]. Rho GTPases have significant impacts on both

cancer and the hematopoietic system.

Rho GEFs are considered as prospective targets for cancer treatment, because of their func-

tions to promote the GTP-bound state formation of Rho GTPases [15]. Although some Rho

GEFs are overexpressed in cancer tissues and exhibit poor prognoses [16–18], the functional

and clinical significance of most Rho GEFs remain undefined. ARHGEF6 (αPIX/Cool2) is

identified as a GEF of Rac1/Cdc42, binds with PARVB and CAPNS1, participates in the regu-

lation of cytoskeletal rearrangement, including cell adhesion and migration [19, 20]. In glio-

mas, ARHGEF6 overexpression correlates with tumor grading [21]. However, ARHGEF6

signaling has an essential role in apoptosis induction in chlorambucil-resistant ovarian carci-

noma [22]. These instances demonstrate that the function of ARHGEF6 is distinctively accord-

ing to the specific type of cancer.

Although ARHGEF6 expression has been confirmed in platelets [23], there have been no

research about the expression and function of ARHGEF6 in AML. Our research showed the

ARHGEF6 expression and its correlation with clinicopathological characteristics in AML. We

further assessed the prognostic significance of ARHGEF6 and discussed its impact on the

choice of AML treatment.

Materials and methods

ARHGEF6 expression analysis in cell lines

ARHGEF6 expression, on the mRNA level, was analyzed in the Human Protein Atlas (HPA)

database (https://www.proteinatlas.org) [24]. On the entry of ARHGEF6, the "Cell Line" sec-

tion based on genome-wide RNA expression was chosen, and transcriptomic data were sorted

using the "Organ" parameter. ARHGEF6 expression, on the protein level, was analyzed in the

Cancer Cell Line Encyclopedia (CCLE) database (https://portals.broadinstitute.org/ccle) [25].

On the entry of ARHGEF6 in the "CCLE data" section, proteomics was selected, and protein

data were downloaded followed by plotting with the ggplot2 package in R 3.3.5.

Pan-cancer analysis of ARHGEF6 expression

ARHGEF6 expression pattern in pan-cancer was conducted using the UALCAN database

(http://ualcan.path.uab.edu/) [26]. Briefly, “Pan-cancer view” was chosen on the entry of ARH-

GEF6 and the expression of ARHGEF6 across TCGA tumors was exhibited. Pan-cancer analy-

sis of ARHGEF6 expression pattern was also conducted by employing the Gene Expression

Profiling Interactive Analysis (GEPIA) database (http://gepia.cancer-pku.cn) [27], showing

the expression profile of ARHGEF6 across various tumors with paired normal tissues. The

expression results in the AML are also obtained in the GEPIA database through the “Expres-

sion DIY” tool.

ARHGEF6 expression in AML with different karyotypes

The Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo) was used

to get ARHGEF6 expression patterns in AML with different karyotypes. ARHGEF6 expression

data in GSE14468 were retrieved from the GEO2R online software based on ARHGEF6 ID

“209539_at”. GSE14468 has 526 AML patients in total. The raw counts were used to generate

the data in GraphPad Prism 8.0.
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AML clinical data analysis

LinkedOmics database (http://www.linkedomics.orglogin.php) was used to analyze the rela-

tionship between ARHGEF6 expression and OS in AML patients [28]. Briefly, “TCGA-LAML”

cancer type, “RNA-seq” data type, “ARHGEF6” gene name, and “clinical” target data type

were chosen.

This study comprised a cohort of 173 AML patients having ARHGEF6 expression data

from TCGA (https://cancergenome.nih.gov/ and http://www.cbioportal.org/) [29]. For consol-

idation treatment, 73 patients received auto/allo-HSCT, while the remaining 100 patients got

just chemotherapy. Based on the mRNA level of ARHGEF6, these patients were separated into

two groups (ARHGEF6low and ARHGEF6high) (S1 File). Table 1 summarizes the key clinical

and laboratory characteristics of cases with different ARHGEF6 expressions.

Transcriptome analysis and functional annotation

RNA-seq data of AML patients were downloaded from TCGA database and normalized using

the quantile normalization procedure. Differential expressed genes (DEGs) between ARH-

GEF6high and ARHGEF6low groups were identified by t-test in the limma package. And if the

adjust P value < 0.05 and log(FoldChange) (logFC) > 1, we considered the RNAs to be differ-

entially expressed.

Enrichment analysis of Gene ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) were performed by ClusterProfiler package in R software and we consid-

ered the terms with P value less than 0.05 to be significant.

Prognostic validation of DEGs

We validated the prognosis of DEGs between the ARHGEF6 high and low expression groups

by using the survival analysis panel in GEPIA database. Briefly, we selected the "survival plot"

under survival analysis, entered the gene name, selected the "LAML" dataset.

Statistical analysis

IBM SPSS 26 was used to do statistical analyses of the data. Categorical variables were com-

pared by chi-square test and Fisher’s exact tests. Because the number of samples in each group

was fewer than 5000, the Shapiro–Wilk test was employed to determine if the values in each

group were normally distributed for the comparison of continuous variables. A two-sample t-

test or the Mann–Whitney U test was employed, depending on the values were normal/abnor-

mal distributed, respectively. Except for the LinkedOmics database, the Log-rank in GraphPad

Prism 8.0 was used to examine the prognostic impact of ARHGEF6 expression and different

treatments on Disease-free survival (DFS) and OS.

Results

ARHGEF6 overexpressed in AML

To determine ARHGEF6 expression in AML cells, we analyzed RNA-seq and proteomics data

in the HPA and CCLE databases, respectively. In the HPA database, ARHGEF6 mRNA expres-

sion levels in myeloid cell lines such as HEL, HL60, HMC-1, and U937 were higher than in

lymphoid cell lines. Meanwhile, ARHGEF6 mRNA was almost non-existent in the lung, repro-

ductive system, skin, and other tissues (S1A Fig). Furthermore, in the CELL database, ARH-

GEF6 had the highest protein level in AML cell lines (S1B Fig).

We next examined the mRNA expression of ARHGEF6 in various human tumor samples

using the UALCAN and GEPIA databases. ARHGEF6 mRNA expression level was the highest
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across all kinds of cancers (Fig 1A and 1B). Moreover, in the GEPIA database, a significantly

higher ARHGEF6 expression level was found in AML compared to normal tissues (Fig 1C).

Then microarray data (GSE14468) was utilized to find out whether ARHGEF6 expression was

associated with major recurrent chromosomal translocations in the GEO database. The result

showed that AML patients with t(8;21) had the highest ARHGEF6 expression compared with

other karyotypes (Fig 1D).

The association of ARHGEF6 with clinicopathological characteristics of

AML patients

Table 1 summed up the clinical characteristics of patients according to the clinical data from

the TCGA database. The WHO classification and risk stratification were significantly different

Table 1. Correlations between ARHGEF6 expression and clinicopathological characteristics in AML from the TCGA cohort.

Patient characteristics ARHGEF6 expression

Low (n = 87) High (n = 86) p

Sex, male/female 47/40 45/41 0.823

Median age, years (range) 61 (18–88) 55.5 (21–77) 0.103

Median BM blasts, % (range) 73 (30–99) 72 (32–100) 0.709

Median WBC,(range) × 109/L 14.9 (0.7–297.4) 19.15 (0.4–223.8) 0.773

Median PB blasts, % (range) 29 (0–98) 41 (0–97) 0.162

WHO classifications AML with certain genetic abnormalities 12 26 0.009

RUNX1-RUNX1T1 1 6 0.064

CBFB-MYH11 3 7 0.211

PML-RARA 5 11 0.110

MLLT3-KMT2A 1 0 1

RBM15-MKL1 1 0 1

BCR-ABL1 1 2 0.621

AML-MRC 30 26 0.55

t-AML NA NA NA

NOS 45 33 0.078

M0 0 3 0.121

M1 17 8 0.056

M2 9 12 0.467

M4 9 6 0.431

M5 9 3 0.132

M6 0 0 0

M7 1 0 1

No data 0 1 0.497

Risk level Good 9 23 0.005

Intermediate 55 46 0.194

Poor 22 15 0.208

NA 1 2 0.621

n number of patients, WHO World Health Organization

AML-MRC AML with myelodysplasia-related changes

t-AML Therapy-related AML, NOS not otherwise specified

BM-blast bone marrow blast

WBC white blood cell

PB-blast peripheral blood blast

https://doi.org/10.1371/journal.pone.0283934.t001
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in patients with different ARHGEF6 expressions. In the WHO classification distribution, high

ARHGEF6 expression was significantly associated with genetic abnormalities. In addition,

patients with high ARHGEF6 expression tended to have good prognoses. Meanwhile, there

was no significant difference in age, sex, BM blasts, WBC, or PB cells between the ARHGE-

F6low and ARHGEF6high cases (Table 1).

Prognostic values of ARHGEF6 in AML

To investigate the relations between ARHGEF6 expression and prognosis in AML patients, we

assessed the effect of ARHGEF6 expression on OS by employing the LinkedOmics database.

The result indicated that low ARHGEF6 expression in AML was associated with poor OS (Fig

2A). Meanwhile, the survival data from the TCGA database was analyzed, as a result, ARH-

GEF6 overexpression was significantly associated with higher OS (Fig 2B). The DFS was higher

in the ARHGEF6high cases compared with the ARHGEF6low cases, although it did not reach

statistical significance (Fig 2C).

In cytogenetically normal AML (CN-AML), patients with different ARHGEF6 expressions

had no significant difference in OS or DFS (Fig 2D and 2E). Furthermore, no significant differ-

ences in OS or DFS was detected between the ARHGEF6low and ARHGEF6high groups with

either chemotherapy or chemotherapy plus auto/allo-HSCT treatment (Fig 2F–2I). Overall,

low ARHGEF6 expression in AML exhibited a poor prognosis. However, neither chemother-

apy alone nor chemotherapy combined with auto/allo-HSCT improved the prognosis of ARH-

GEF6low patients. Finally, in ARHGEF6low groups, patient survival with or without (WOW)

auto/allo-HSCT were analyzed. The result showed that ARHGEF6low patients who received

auto/allo-HSCT had significantly improved OS, but not DFS, than patients undergoing only

chemotherapy (Fig 2J and 2K).

Functional annotation of DEGs between ARHEGF6low and ARHGEF6high group

To find the function of ARHGEF6 in AML, we analyzed the RNA-seq data of the ARHGEF6

low and high expression groups. We obtained a total of 504 DEGs, of which 163 genes were

Fig 1. ARHGEF6 expression in AML. (A) ARHGEF6 expression in pan-cancer, result from UALCAN. (B) The

expression of ARHGEF6 in different cancerous and normal tissues using the GEPIA. Bar height refers to the value of

the median expression. (C) ARHGEF6 expression between AML and normal samples, result was obtained by GEPIA

analysis. *, p< 0.05. (D) ARHGEF6 expression in AML among various karyotypes, according to GSE14468 in the

GEO database. ****, p< 0.0001.

https://doi.org/10.1371/journal.pone.0283934.g001
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significantly up-regulated and 341 genes were significantly down-regulated (S2 File), and we

marked the top 9 significantly highly expressed and top 10 significantly lowly expressed genes,

respectively (Fig 3A).

GO analysis annotated Molecular Function (MF), Cellular Component (CC), and Biologi-

cal Process (BP) that were significantly up- and down-regulated with increasing ARHGEF6

expression levels, respectively (Fig 3B and 3C, S3 File). The results showed that the signifi-

cantly up-regulated genes were mainly involved in the classical regulatory pathways of GEFs,

such as G protein-coupled receptor signaling pathway, synapse assembly, and vesicle trans-

port. The significantly down-regulated genes were mainly involved in the differentiation and

development of the embryonic skeletal system and the negative regulation of myeloid

differentiation.

KEGG pathway annotation showed that the significantly up-regulated pathways mainly

involved circadian entrainment, renin secretion, vascular smooth muscle contraction, tran-

scriptional misregulation in cancer, etc.; the significantly down-regulated pathways included

osteoclast differentiation, B cell receptor signaling pathway, cytokine receptor interaction, sig-

naling pathways regulating pluripotency of stem cells, hippo and wnt signaling pathway, etc

(Fig 3D, S4 File).

Prognosis validation of DEGs

We validated the prognostic profile of AML for the top 10 genes that were significantly up-

and down-regulated, and the results showed that high expression of the top 10 genes that were

significantly up-regulated in patients were all associated with higher OS, among which, TRH
significantly high expressed in AML samples compared to normal samples (Fig 3E), and high

Fig 2. Correlation between AML patient survival and ARHGEF6 expression with different factors. (A) The

prognostic value between ARHGEF6low and ARHGEF6high group using the LinkedOmics database. (B) OS and (C)

DFS in AML patients with different ARHGEF6 expressions. (D) OS and (E) DFS in CN-AML patients with different

ARHGEF6 expressions. (F) OS and (G) DFS of ARHGEF6low and ARHGEF6high patients treated with chemotherapy.

(H) OS and (I) DFS of ARHGEF6low and ARHGEF6high patients undergoing chemotherapy + auto/allo-HSCT. (J) OS

and (K) DFS of patients treated WOW auto/allo-HSCT in the ARHGEF6low group.

https://doi.org/10.1371/journal.pone.0283934.g002

PLOS ONE Role of ARHGEF6 in acute myeloid leukemia

PLOS ONE | https://doi.org/10.1371/journal.pone.0283934 April 7, 2023 6 / 11

https://doi.org/10.1371/journal.pone.0283934.g002
https://doi.org/10.1371/journal.pone.0283934


expression of TRH in AML patients was a good prognostic factor that was significantly associ-

ated with higher OS (Fig 3F); High expression of the significantly down-regulated genes were

shown to be associated with lower OS in AML patients, among which, HOXA9 and HOXB6
having significantly different expression profiles in AML samples compared to normal samples

(Fig 3G and 3I, respectively), and high expression in AML were poor prognostic factors (Fig

3H and 3J).

Discussion

Rho GEFs activate Rho GTPases by exchanging bound GDP with GTP [30]. Numerous studies

have pointed out that abnormal expression of Rho GEFs has been found in human cancers

[31, 32]. Rho GEFs expression is distinct in different cancer types. For example, DOCK2 is

upregulated in follicular lymphoma and downregulated in NSCLC (non-small cell lung can-

cer) [33, 34]. Tiam1 is downregulated in colorectal cancer and highly expressed in various can-

cers such as gastric, laryngeal squamous cell carcinoma, and ovarian cancers [35–37]. In the

current study, ARHGEF6 was highly expressed among AML tissues and cell lines, especially in

t(8;21) AML patients with relatively good prognoses.

Some studies on Rho GEFs have shown that a large part of Rho GEFs are correlated with

poor prognosis in various tumors [38–40]. For example, ABR, PREX1, DOCK2, and DOCK4

showed poor prognosis in NSCLC [31]. But, in AML, the high expression group of ARHGEF6

Fig 3. Functional annotation and prognosis validation of differentially expressed genes between ARHEGF6low and

ARHGEF6high group. (A) Volcano plot of DEGs between the ARHGEF6low and ARHGEF6high groups. (B) GO

analysis of significantly upregulated genes. (C) GO analysis of significantly downregulated genes. (D) KEGG analysis of

DEGs. (E) and (F) TRH expression levels in AML and normal tissues, and the effect on OS in AML patients, result

from GEPIA. *, p< 0.05. (G) and (H) HOXA9 expression levels in AML and normal tissues, and the effect on OS in

AML patients, result from GEPIA. *, p< 0.05. (I) and (J) HOXB6 expression levels in AML and normal tissues, and

the effect on OS in AML patients, result from GEPIA. *, p< 0.05.

https://doi.org/10.1371/journal.pone.0283934.g003
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had a good prognosis. Thus, Rho GEFs play different roles in different cancers. On the other

hand, ARHGAP9, which belongs to the Rho GAP family, inactivates GTPases and oppositely

function to that of Rho GEFs. ARHGAP9 is an adverse prognostic factor for AML OS [3].

Thus, Rho GEFs and Rho GAPs may play other roles in cancers.

Despite the significantly lower expression of ARHGEF6 in CN-AML, no relationship

between ARHGEF6 expression and CN-AML prognosis has been found. Furthermore, several

researchers found that some genes, for example, ARHGAP9 and BCL2 were correlated with

the prognosis of auto/allo-HSCT and/or chemotherapy in AML patients [3, 4]. Our findings

showed that auto/allo-HSCT significantly improves prognosis in patients with low ARHGEF6

expression. However, in the high ARHGEF6 expression group, patients treated with chemo-

therapy + auto/allo-HSCT had a significant decrease in DFS, although there was no significant

change in OS. These results suggest that patients with low ARHGEF6 expression could benefit

from autologous/allogeneic HSCT, but autologous/allogeneic HSCT is not recommended for

patients with high ARHGEF6 expression because of the significantly higher tendency to

relapse and progression.

Interestingly, after analysis of patient RNA-seq data, we found that high expression of

ARHGEF6 was associated with the downregulation of several HOX gene family members. the

HOX gene family plays a crucial regulatory role in animal development [41], and in hemato-

poiesis, the HOX gene family is involved in regulating the differentiation and developmental

process of hematopoietic stem cells to different cell types [42], and the disturbances in their

expression levels are associated with the development of AML [43]. Previous studies have iden-

tified that HOXA9 overexpressed in AML and is a poor prognostic factor [44], consistent with

our results. In vivo, HOXB6 promotes the development of AML by promoting the prolifera-

tion of hematopoietic stem cells and myeloid precursor cells while inhibiting the production of

erythroid and lymphocytes [45]. On the other hand, the significantly upregulated gene TRH

was found to be associated with a good prognosis in a study of t(8;21) acute myeloid leukemia

[46]. However, there are no studies about the role of TRH in AML.

Overall, we first reported that ARHGEF6 overexpressed in AML cell lines, tissues, and the t

(8; 21) patients. Elevated ARHGEF6 expression was significantly correlated with a favorable

prognosis in AML. A combination of auto/allo-HSCT and chemotherapy, instead of only che-

motherapy, can improve poor prognosis related to low ARHGEF6 expression. High expression

of ARHGEF6 downregulated the expression level of the poor-prognosis HOXA9 and HOXB6,

while increasing the expression of the good-prognosis TRH, thus improving the OS of

patients.

Supporting information

S1 Fig. ARHGEF6 expression in cell lines. (A) The mRNA levels of ARHGEF6 in human cell

lines using the HPA. (B) The relative protein levels of ARHGEF6 in human cell lines using the

CCLE. Labels of x-axis were sorted from large to small according to the median expression of

protein.

(TIF)

S1 File. ARHGEF6low and ARHGEF6high group information. Patients were divided into

ARHGEF6low group (n = 87) and ARHGEF6high group (n = 86) according to the mRNA

expression level of ARHGEF6.

(TXT)

S2 File. DEGs list. DEGs between ARHGEF6low and ARHGEF6high groups.

(XLSX)
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S3 File. DEGs GO. GO analysis of the DEGs in S2 File.

(XLSX)

S4 File. DEGs KEGG. KEGG analysis of the DEGs in S2 File.

(XLSX)
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