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Abstract

Motivation: Multispectral biological fluorescence microscopy has enabled the identification of multiple targets
in complex samples. The accuracy in the unmixing result degrades (i) as the number of fluorophores used in any
experiment increases and (ii) as the signal-to-noise ratio in the recorded images decreases. Further, the availability
of prior knowledge regarding the expected spatial distributions of fluorophores in images of labeled cells provides
an opportunity to improve the accuracy of fluorophore identification and abundance.

Results: We propose a regularized sparse and low-rank Poisson regression unmixing approach (SL-PRU) to decon-
volve spectral images labeled with highly overlapping fluorophores which are recorded in low signal-to-noise
regimes. First, SL-PRU implements multipenalty terms when pursuing sparseness and spatial correlation of the
resulting abundances in small neighborhoods simultaneously. Second, SL-PRU makes use of Poisson regression for
unmixing instead of least squares regression to better estimate photon abundance. Third, we propose a method to
tune the SL-PRU parameters involved in the unmixing procedure in the absence of knowledge of the ground truth
abundance information in a recorded image. By validating on simulated and real-world images, we show that our
proposed method leads to improved accuracy in unmixing fluorophores with highly overlapping spectra.

Availability and implementation: The source code used for this article was written in MATLAB and is available with
the test data at https://github.com/WANGRUOGU/SL-PRU.

1 Introduction and motivation

Many biological systems are composed of multiple interacting sub-
components, any of which may be labeled with fluorescent reporters
to map their spatial location within cells and tissues. While some pro-
gress has been achieved in developing fluorescent dyes with narrow
emission spectra, e.g. semiconductor nanocrystals or quantum dots,
the most widely used organic fluorophores, including fluorescent pro-
teins, have broad excitation and emission spectra (Zimmermann
2005; Barroso 2011). For example, widely used rhodamine-, cyanine-
, and coumarin-derived fluorescent dyes have nonsymmetric emission
spectra and spectral full width at half maxima of tens of nanometers
(Lichtman and Conchello 2005). The inherent wide emission spectra
of different fluorophores used in a single experiment lead to unavoid-
able overlap in spectral emission profiles and cross-talk between the

recorded channels when samples are imaged with conventional band-
pass filters. To overcome this limitation, fluorescence spectral imag-
ing instrumentation and image analysis tools have been developed
and applied to biological imaging. Spectral imaging microscopes col-
lect fluorescence intensity information at every pixel in an image to
construct a 3D data cube with spatial and spectral information from
the sample as shown in Fig. 1.

Among existing biological spectral imaging analysis methods,
spectral unmixing, which aims at extracting the spectral signature of
each fluorophore from recorded images and gaining knowledge of
each fluorophore’s abundance in every pixel, has been widely uti-
lized. In particular, linear unmixing approaches, especially utilizing
the least squares framework, have been widely applied since these
approaches make no underlying assumptions about the image data
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except that the signal recorded in the same pixel from multiple fluoro-
phores adds linearly, i.e. no a priori knowledge about the sample is
required. Linear unmixing separates each pixel linearly into the spec-
tral signatures of the contributing fluorophores, called ‘endmembers’,
and their contributions, called ‘abundances’. Due to physical consider-
ations, both endmembers and abundances should satisfy the non-
negativity constraint. Given a spectral image matrix Y 2 R

C�N
þ with C

channels and N pixels, denoting M? 2 R
C�R
þ as the endmember matrix

of the associated R fluorophores and A? 2 R
R�N
þ the corresponding

abundance matrix, such a linear relationship can be expressed as

Y ¼M?A? þ E;

where E 2 R
C�N denotes an unknown noise matrix.

Least squares (linear) unmixing procedures are implemented by
decomposing a spectral image matrix into an endmember matrix and
an abundance matrix simultaneously while minimizing the data fidel-
ity error measured by the squared error criterion, e.g. the sum of the
squared residuals. Mathematically, it can be formulated as follows:

min
M�0;A�0

jjY�MAjj2F;

where jj � jjF denotes the Frobenius norm of a matrix, and M � 0
and A � 0 denote element-wise non-negativity of the endmember
matrix M and the abundance matrix A. In biological spectral imag-
ing, it is frequently the case that reference spectral images that con-
sist of only one fluorophore—and so only one endmember—in each
image are available, which is also the scenario considered in this
study. In such a case, least squares unmixing procedures can be car-
ried out in a two-step way: first, each reference spectral image ma-
trix is decomposed into the outer product of two vectors, i.e. the
endmember and its abundances; then, with the extracted end-
member information from the first step, the abundance matrix is
estimated for the mixed image. Such a two-step approach is also
considered in this study.

While least squares unmixing has been extensively studied and
widely used in the spectral unmixing literature, its limitations are
also well-recognized in the community. For instance, due to the in-
volvement of matrix multiplication, least squares unmixing may not
admit a unique solution, which leads to imprecise estimates of the
abundances. In the literature, this problem is frequently addressed
by imposing a certain penalty on A, which leads to

min
A�0
jjY�MAjj2F þ kXðAÞ;

where k > 0 is a tuning parameter, XðAÞ denotes the penalty imposed
on A, and M is assumed to be known from reference images. The pen-
alty term kXðAÞ controls the complexity of the matrix space within
which A is searched and thus may lead to a unique solution.

Another limitation of the least squares unmixing approach lies in
the use of the least squares error criterion, which originates from the
maximum likelihood estimation when assuming Gaussian noise. As

a result, it may not lead to optimal estimates when the underlying
distribution drifts away from Gaussianity. In fact, the presence of
purely Gaussian noise is rarely the case in biological spectral
images. This is because the spectrum at each pixel of a biological
fluorescence image corresponds to the photon counts recorded at
every spectral channel and the uncertainties in these measurements
can be better approximated by Poisson distributions rather than
normal distributions (the so-called, photon shot noise) (see e.g.
Coates 1972). Following this observation, Poisson regression
approaches to spectral unmixing have been proposed in the litera-
ture (see e.g. Neher and Neher 2004; Zimmermann 2005). To
date, existing applications of Poisson regression approaches to bio-
logical spectral unmixing comprise an active area of research, and
the strengths and weaknesses of such approaches, when being com-
pared with well-established least squares approaches, are yet to be
fully elucidated.

Least squares approaches to spectral unmixing are implemented
in a pixel-wise fashion, which requires no assumption regarding
fluorophore distribution in the image. In biological spectral
images, neighboring pixels are frequently similar in their fluoro-
phore identities and abundances. This spatial correlation can be
reflected as linear dependence between the corresponding abun-
dances. As a result, the rank of the matrix formed by these abun-
dance vectors may be limited, especially if we consider neighboring
pixels in a small region. In addition, for a real biological spectral
image, it is frequently the case that the recorded signal from any
given pixel may only comprise one or a small number of endmem-
bers, though, for the whole image, the number of involved end-
members may be far larger. However, least squares unmixing tends
to treat all pixels and endmembers equally without taking such
sparseness information into account, which may lead to imprecise
abundance estimation when the number of contributing endmem-
bers in any pixel is much smaller than that of the candidate pool
across the entire image.

Here, we address these gaps in knowledge and further take ad-
vantage of the prior information available regarding spectral images
of fluorescently labeled cells by exploring a Poisson regression ap-
proach and by simultaneously seeking endmember-wise sparseness
and low-rankness when estimating the abundances in a localized
pattern. We propose in this paper a regularized sparse and low-rank
Poisson regression approach (SL-PRU) to accurately estimate abun-
dances in multiplex labeled images of cells. The proposed approach
takes into account the non-Gaussian nature of the noise in the data
and neighboring information, which are physically meaningful con-
siderations in biological spectral imaging. To implement the low-
rankness assumption of neighboring pixels, we make use of a sliding
window technique, which allows us to consider the spectral signa-
tures of adjacent pixels lying in the window. To make SL-PRU com-
putationally tractable and to pursue further robustness, we consider
convex relaxations of the penalty terms on the sparsity and the rank
of the abundance matrix.

It is noticed from our empirical studies that unregularized
Poisson regression may lead to satisfying endmember extraction
results. We thus suspend the penalty terms when implementing
SL-PRU to extract endmembers in the first step from images with
known fluorophore identities. In the second step, where SL-PRU is
applied to unmix real biological images, we propose a constructive
approach for tuning the parameters involved in the estimation with-
out resorting to the unknown abundance matrix. We validate the
proposed method on simulated spectral images and on real images
of a microbial biofilm. The experimental results show that our pro-
posed method can outperform existing approaches in biological
imaging both quantitatively and qualitatively.

2 Materials and methods

2.1 Sample preparation
Escherichia coli K12 (ATCC 10798) cells were grown to the mid-log
phase in Luria-Bertani LB Broth (Difco Laboratories, Inc.).
Escherichia coli cultures and dental plaque smears were fixed in 2%

Figure 1. A hyperspectral data cube and spectral intensity information at each pixel

with a generalized biological image, in which most foreground pixels record fluores-

cent signal from only one cell but some pixels record overlapped signals from two

or more cells
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paraformaldehyde (EMS Diasum) for 1.5 h at room temperature,
then stored in 50% ethanol for 24 h before FISH labeling.
Escherichia coli cells were labeled with the general bacteria probe,
EUB338 (GCTGCCTCCCGTAGGAGT) conjugated to a fluores-
cent dye at the 50 end (Thermofisher). Plaque smear samples were
obtained through self-flossing from healthy volunteers after giving
informed consent. The use of human subjects for this study was
approved by the University at Albany Institutional Review Board
(IRB). Plaque samples were labeled with previously validated taxon-
specific FISH probes (see Supplementary Table S1) and acquired as
multiplane z-stack images.

2.2 Imaging and preprocessing
Images were acquired on Zeiss LSM 710 or LSM 880 confocal
microscopes with 32 anode spectral detectors. Images were acquired
with 488, 561, and 633 nm laser excitation and collected on the
32-anode spectral detector with 9.8 nm width spectral resolution in
each channel. Escherichia coli images were acquired as a single
plane with a 63� 1.4 NA objective. Plaque smear images and refer-
ence E.coli images were acquired as multi-plane Z-stack images
with a 20� 0.8 NA objective.

2.3 SL-PRU: the proposed unmixing approach
Since the signal from multiple fluorophores adds linearly in a pixel,
we can express the true photon counts as the sum of the endmem-
bers weighted by their abundances. Considering that the recorded
photon counts follow the Poisson distribution, a biological spectral
image Y 2 R

C�N
þ with C channels and N pixels can be written as

Neher et al. (2009), Novo et al. (2013), and Xu et al. (2020)

Yij ¼ PoisððMAÞijÞ;

where R
k
þ denotes a non-negative orthant in a k-dimensional

Euclidean space, M 2 R
C�R
þ represents the endmember matrix which

consists of reference spectra of R fluorophores used for labeling, and
A 2 R

R�N
þ denotes the abundance matrix.

To extract the endmember m 2 R
C
þ from a reference image

Ym 2 R
C�N
þ , we maximize the likelihood of observing Ym 2 R

C�N
þ

given m and the corresponding abundances a 2 R
N
þ , which leads to

the following Poisson Non-negative Matrix Factorization (PNMF):

min
m2RC

þ ;a2RN
þ

1>C ½ma> � Ym � log ðma>Þ�1N ; (1)

where 1C and 1N are vectors of length C and N whose entries are all
1 and � denotes element-wise multiplication.

With endmembers extracted through reference images via
PNMF (1), the abundance estimation of a spectral image that shares
the same morphologies can be viewed as a non-negative Poisson
regression problem. As both endmember-wise sparsity and spatial
correlation properties rely on the homogeneity of a small area, we
utilize a sliding 3�3 window (Giampouras et al. 2016) that con-
tains the spectra of the target pixel and spectra of its surrounding
pixels for unmixing as shown in Fig. 2. In each window, we assume
the contribution of only a few fluorophores which can be reflected
as a limited number of endmembers with nonzero abundances. In
the literature, such a sparseness property is usually pursued via an ‘1
norm regularization that reduces the number of nonzero entries
(Iordache et al. 2011; Rossetti et al. 2020). To impose endmember-
wise sparsity on the abundance matrix A in a window, we apply the
constraint among the rows of A which turns out to be the ‘2;1 norm

jjAjj2;1 ¼
PR

r¼1 jjarjj2 where ar denotes the r-th row of A and jj � jj2
denotes the ‘2 norm (Iordache et al. 2013). The other property, spatial
similarity of neighboring pixels, has also been widely exploited for
hyperspectral unmixing (see e.g. Iordache et al. 2012; Giampouras et al.
2016; Zhang et al. 2018). In this work, the spatial correlation is incorpo-
rated by imposing the low-rankness constraint on A. As a convex surro-
gate of the matrix rank, the nuclear norm jjAjj� defined as the sum of its

singular values, friðAÞgrankðAÞ
i¼1 , is used.

With a slight abuse of notation, we denote in the following Y 2
R

C�N
þ as a spectral window. The abundance matrix A can be esti-

mated through the following sparse low-rank Poisson regression:

min
A2RR�N

þ

1>C ½MA� Y � log ðMAÞ�1N þ k1jjAjj� þ k2jjAjj2;1;

where k1 and k2 are non-negative parameters that balance the fidel-
ity term, the penalty term on sparsity, and the penalty term on low-
rankness.

As convex relaxations of the ‘0 norm, i.e. the number of nonzero
entries of a vector, and the rank function of a matrix, the ‘1 norm
and the nuclear norm suffer from the influence of the magnitude
(Candes et al. 2008; Lu et al. 2014). We thus use weighted formula-
tions of nuclear norm and ‘2;1 norm to democratically penalize the
nonzero entries:

jjAjjwp ;� ¼
XrankðAÞ

i¼1

wp;iriðAÞ;

and

jjWqAjj2;1 ¼
XR

r¼1

wq;rjjarjj2;

where

wp ¼

wp;1

wp;2

..

.

wp;rankðAÞ

2
66664

3
77775;Wq ¼

wq;1 0 . . . 0
0 wq;2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . wq;R

2
66664

3
77775;

and fwp;igrankðAÞ
i¼1 ; fwq;rgR

r¼1 are non-negative weighting coefficients
that will be determined later. As a result, we arrive at the following
variant of the above regularized sparse and low-rank Poisson regres-
sion method:

min
A2RR�N

þ

1>C ½MA�Y� log ðMAÞ�1N þ k1jjAjjwp ;� þ k2jjWqAjj2;1: (2)

The proposed algorithms for solving PNMF (1) and SL-PRU (2)
and their pseudo codes are provided in Supplementary Material.

Figure 2. A 3�3 window unmixed into the product of its endmember and abun-

dance matrices
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3 Experiments and results

The performance of our proposed approach, SL-PRU, is compared
with the commonly used linear unmixing methods: non-negative
least squares approach (NLS) (Zimmermann 2005), sparse NLS
(S-NLS) (Bioucas-Dias and Figueiredo 2010; Rossetti et al. 2020),
and sparse and low-rank NLS (SL-NLS) (Giampouras et al. 2016).

We carry out three different sets of experiments in which different
types of spectral image data are used. In the first set of experiments,
we unmix reference images of E.coli cells, in which every cell in the
image contains a single endmember of known identity. Therefore, the
performance of the different approaches in unmixing this dataset can
be compared by evaluating the proportion of the correct endmember
assigned to each foreground pixel in the images while assuming all
endmembers are also involved in each image. In our second set of
experiments, we consider simulated spectral images, which are gener-
ated by using simulated abundance matrices and uncorrelated and cor-
related endmembers and by adding Poisson noise with different signal-
to-noise ratios (SNRs). The root mean square errors (RMSEs) of the
unmixing solutions from the different methods are evaluated for com-
parison. As a third set of experiments, we also evaluate the effective-
ness of our proposed approach on real biological spectral images of
labeled microbial biofilms and compare the results with NLS.

For all three experiments, the endmember spectra used for abun-
dance estimation are extracted through PNMF (1) from known ref-
erence images. The tuning parameters k1 and k2 in (2) are chosen
from the set f0;10�3;10�2;10�1;1; 10g, and l in Algorithm for
solving SL-PRU (see Supplementary Algorithm S2) is fixed to 0.01.

3.1 Reference images: endmember extraction and

unmixing
We first extract endmembers using PNMF (1) on 13 reference
images of labeled E.coli cells and apply SL-PRU to unmix them to
estimate abundances. The standardized fluorometer measured spec-
tra of 13 endmembers against wavelength and the standardized end-
member matrices extracted by the arithmetic mean method (Rossetti
et al. 2020) and PNMF are displayed in Supplementary Fig. S1 for
comparison. See Supplementary Table S2 for the full names of all
fluorophores and their abbreviations used here.

Given an estimated abundance vector a ¼ ða1; a2; . . . ; aRÞ>,
where ar, r ¼ 1; . . . ;R, denotes the estimated abundance of the r-th
endmember of a pixel from a reference image being unmixed. Then,
the proportion of the involved endmember in this pixel is defined as

Propr0
ðaÞ ¼ ar0PR

r¼1 ar

;

where ar0
denotes the abundance of this endmember in the pixel.

For a reference image, the average proportion (of the involved end-
member) is defined as the average of such proportions across all pix-
els in this reference image. Note that for each reference image, only
one endmember is involved. Therefore, the closer the average pro-
portion is to 1, the better the estimated abundance vector.

With each tuning parameter for S-NLS or each pair of tuning
parameters for SL-NLS or SL-PRU, we can obtain 13 average propor-
tions for all 13 reference images. We choose the minimum of the 13
average proportions for comparisons, since this represents the most
conservative measure of unmixing accuracy. The tuning parameter
values that reach the highest minimum of the 13 average proportions
obtained through each method are regarded as the optimal values.

The average proportions of 13 reference images obtained through
each method: NLS, S-NLS, SL-NLS, and our proposed model SL-
PRU with the optimal parameters are reported in Table 1. As shown
in Table 1, our proposed method provides the highest average propor-
tions among all the methods for all 13 reference images.

3.2 Unmixing simulated spectral images
Using the endmembers extracted from the same reference images as
in the first set of experiments above, we simulate spectral images of
size 3�3 pixels with two uncorrelated endmembers AF514 and
RRX and two correlated ones, AF555 and RRX, respectively. The
root mean square error criterion is used to compare the performance
of different methods, where

RMSEAðÂÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjA� Âjj2F

NR

s
;

where A is the simulated abundance matrix that serves as the under-
lying truth and Â the estimated abundance matrix.

3.2.1 Simulation 1: uncorrelated endmembers

The abundances of AF514 and RRX are generated from the uniform
distribution U½0; 1� and the abundances of other endmembers are set
to zero. Then the simulated spectral image is the multiplication of
the generated abundance matrix and the endmember matrix.
Poisson noise with nine SNRs ranging from 2 to 10 is added to the
simulated data, and 1000 realizations of such simulated images are
generated for each SNR.

With the optimal parameter(s) being selected for the cases with
different SNRs, the averaged RMSEs in 1000 repetitions of all the
unmixing methods under comparison are plotted in Fig. 4. In par-
ticular, when SNR is set to 5, the optimal average RMSE is obtained
from SL-PRU with k1 ¼ 0:1 and k2 ¼ 1. Moreover, the average of
the estimated abundance matrices for this scenario is plotted in the
top row of Fig. 3.

From the reported experimental results in Fig. 4 and the top row
of Fig. 3, it is observed that our proposed method can outperform
other unmixing approaches under comparison here. For instance, as
shown in Fig. 4, our proposed method gives the lowest RMSEs with
different SNRs. And as illustrated in Fig. 3, the estimated average
abundance matrix is more close to the true abundance matrix.

3.2.2 Simulation 2: correlated endmembers

We next apply SL-PRU to unmix simulated spectral images with cor-
related endmembers AF555 and RRX under the same experimental
setup as in Simulation I. Similarly, the averaged RMSEs from 1000
repetitions of all the unmixing methods are plotted in Fig. 5, and
when SNR is set to 5, the average of the estimated abundance matri-
ces for this scenario is plotted in the bottom row of Fig. 3.

As shown in Fig. 5 and the bottom row of Fig. 3, SL-PRU also
outperforms other unmixing approaches under comparison here. It is
noted that the correlation between endmembers does have an impact
on the performance of SL-PRU as well as other unmixing approaches,
which coincides with our intuitive understanding of linear unmixing
problems. However, the experiments carried out in our study also
suggest that SL-PRU may outperform other unmixing approaches in
unmixing spectral images with correlated endmembers, which could
be an appealing feature of SL-PRU in some practical scenarios.

Table 1. Optimal average proportions of endmembers estimated by NLS, NLS with sparsity constraint (S-NLS), NLS with sparsity and low-

rank constraints (SL-NLS), and Poisson regression with sparsity and low-rank constraints (SL-PRU).

AF488 AF514 TET AF532 AF546 AF555 RRX AF568 AF594 AF647 AF660 AF680 AF700

NLS 93.1% 60.2% 70.6% 43.6% 79.0% 44.5% 68.8% 61.9% 77.0% 93.9% 64.5% 54.2% 74.4%

S-NLS 97.3% 86.9% 90.0% 62.6% 92.8% 69.7% 82.9% 78.3% 84.9% 98.1% 79.6% 77.3% 81.1%

SL-NLS 98.7% 96.4% 93.2% 72.1% 96.8% 76.8% 91.2% 89.2% 91.3% 99.0% 86.7% 85.4% 87.7%

SL-PRU 99:5% 99:5% 94:5% 93:6% 98:6% 84:1% 97:8% 95:0% 93:7% 99:2% 95:7% 94:4% 89:4%

Bold represents the best-result for the 4 methods used. The best result was always achieved with SL-PRU.
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3.3 Unmixing real mixed biological images
We next apply SL-PRU to unmix a real biological image with known flu-
orophore labels, but unknown spatial distributions and abundances. A
dental plaque smear hedgehog structure was obtained from a healthy
volunteer via dental flossing and labeled in a FISH experiment with
taxon-specific probes for eight different genera or families of bacteria,
with each probe conjugated to a different fluorescent reporter.

Reference spectra were obtained from images of separate populations
of E.coli cells labeled with FISH probes conjugated to the eight fluo-
rophores used in the plaque smear experiment and imaged under
identical acquisition settings. Reference spectra were extracted using
our Poisson endmember extraction procedure. The values for sparse-
ness and low-rank tuning parameters were selected using a heuristic
approach. Visual inspection of the unmixed plaque smear images was
performed over the range of tuning parameters described above and val-
ues that maximized expected cell morphologies and minimized salt and
pepper noise in the image were chosen for the final unmixing result
(Fig. 6 and Supplementary Movie). To evaluate the performance of our
SL-PRU on this real image, we performed a comparative, quantitative
cellular morphological analysis against the unmixing result we obtained
for the same image using the commercial microscope vendor’s linear
unmixing algorithm. One plaque smear image set was used for quanti-
tative comparison. The full z-stack image was unmixed in Zeiss Zen
software, with endmember reference spectra extracted from single
E.coli cells in images acquired with the same settings as the plaque
smear image. The same spectral image dataset was then unmixed using
our SL-PRU approach. One central z-plane from both images was
extracted and used for quantitative comparison. Unmixed images were
imported into ImageJ. The Streptococcus and Veillonella channels were
segmented using an intensity threshold determined algorithmically using
the same algorithm, either “Otsu” or “Triangle” for the Streptococcus
channels and Veillonella channels respectively. Circularity analysis was
performed on each segmented image, defined as

Circ ¼ 4p
area

perimeter2
:

Streptococcus and Veillonella cells in the sample have character-
istic, near-perfect spherical shapes. With this a priori information
about the morphologies of these two labeled cells, we measured the
circularity of these two-cell populations in one central plane of the
plaque smear image and found that SL-PRU improved the circularity
measure by 16% for Streptococcus and 18.4% for Veillonella
(Fig. 7). Lastly, we performed a line scan analysis on the same region
of interest in the Streptococcus channel in both unmixed images and
found that the SL-PRU approach generated an image with less noise
and more identifiable cell boundaries than the commercial vendor
least squares unmixing (Supplementary Fig. S2).

4 Discussion

Multispectral imaging has allowed the visualization and quantifica-
tion of large numbers of targets simultaneously within biological
specimens. The linear model assumption behind spectral unmixing
holds for most biological images acquired from specimens that are thin
and therefore have minimal scattering effects and in which fluorescent

Figure 4. Averages of RMSEs of the abundances estimated by each of the unmixing

methods that we considered from simulated images that contain colocalized AF514

and RRX with Poisson noise and SNR of 2 to 10

Figure 3. Graphical representation of simulated image pixels that contain two colocalized endmembers, either AF514 and RRX [highly uncorrelated endmembers (top row)]

or AF555 and RRX [highly correlated endmembers (bottom row)]. In each row, the “Truth” matrix represents the ground truth starting the simulation. Subsequent matrices

represent the results of estimated abundances obtained from each of the unmixing methods that we considered. For each matrix, the 13 rows represent the 13 different end-

members used in the simulation and each column represents an independent pixel with varying intensity, scaled from 0 to 1. The color represents the mean abundance measure

for each fluorophore from 1000 simulations of the same ground truth model after applying Poisson noise with SNR ¼ 5 to each pixel

Figure 5. Averages of RMSEs of the abundances estimated by each of the unmixing

methods that we considered from simulated images that contain colocalized AF555

and RRX with Poisson noise and SNR of 2 to 10
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tags label components, e.g. cells or macromolecules that are well sepa-
rated in space, beyond the minimal Förster Resonance Energy Transfer
distance. The least squares approach to unmixing is essentially a multi-
output regression problem, which assumes a Gaussian noise distribu-
tion in the recorded signals; while it is known that the dominant noise
source in fluorescence images follows a Poisson distribution. To better
accommodate such a Poisson distribution, and to improve fidelity in
fluorophore abundance estimation in the unmixing process by using
prior information about our labeled samples, we have developed in this
paper a sparse and low-rank Poisson regression unmixing (SL-PRU) ap-
proach to multispectral unmixing. Specifically, we considered a two-
step approach where we first extract endmember information through
reference images using unregularized Poisson regression and then learn
the abundance information via the proposed regularized Poisson ap-
proach. In the case of multiplex labeled cells such as the microbial bio-
film samples used here, we assume that while many dozens of
fluorophores might be present in the sample, for any individual pixel,
the number of fluorophores present approaches one. We demonstrated
the effectiveness of the proposed approach through experimental
results on model images and real biological samples reported above.

We believe that our SL-PRU unmixing approach will be generally
applicable to a wide variety of image datasets of multiplex, fluores-
cently labeled cells. As microscope detector technologies improve,
and the need for extracting information from ever lower numbers of
photons increases, the dominant noise source in fluorescence images
of cells is expected to shift ever more toward the Poisson-distributed,
physically unavoidable photon shot noise. Even as the number of
labeled targets increases, the physical constraints of these targets,
whether they be cells or macromolecules, limits their simultaneous oc-
currence in pixels in digitally recorded images, although we recognize
that the finite resolution of the light microscope and the labeling of
target molecules that are sufficiently small and diffusible together put
limitations on the sparsity assumption in some situations. In imple-
menting our low-rank penalty term, we used a sliding window ap-
proach and restricted our neighborhood size to 3 � 3 pixels. In
general, the size of the sliding window should be dictated by the prior
information available about the sample, e.g. the relative size of the
labeled targets versus pixel dimensions in the image.

Finally, the effectiveness of the proposed sparse and low-rank
Poisson approach has justified the importance of the low-rankness
constraint in abundance estimation, which indicates the similarity of
abundances of neighboring pixels. Note that such similarities, which
agree with our intuitive understanding of spectral images, can be used
to account for the spatial information among neighboring pixels.
Recall that spectral images are three-way tensors and we unfold these
tensor data into matrices before unmixing them. Therefore, further
improved results may be obtained if the spatial information of the ori-
ginal tensor spectral data is taken into account in unmixing.

5 Conclusion

The existence of photon shot noise in biological fluorescence spec-
tral images motivates us to address the unmixing problem through a
Poisson approach instead of NLS. We also incorporate the spatial

Figure 6. Qualitative comparison of least squares and SL-PRU unmixing on a real biological sample. (A–F) Multi-spectral image of a dental plaque smear hedgehog structure

after (A–C) least squares unmixing and (D–F) SL-PRU unmixing. Dashed boxes in (A) and (B) and in (C) and (D) indicate zoom area in C and D, and E and F, respectively.

Scale bars equal 100mm (D), 25 mm, (E), and 10mm (F)

Figure 7. Quantitative comparison of mean circularity measurement per cell for two

coccoid-shaped cells in the plaque structure: Streptococcus (A) and Veillonella (B).

Light grey bars ¼ results from least squares unmixing, dark grey bars ¼ results from

SL-PU. Error bars represent 95% confidence intervals. ****P < .001 Welch’s t-test
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information by imposing sparsity and low-rankness constraints in a
localized pattern. The unmixing results from both simulated data
and real-world biological images demonstrate that our proposed ap-

proach SL-PRU can identify endmembers and estimate the corre-
sponding abundances with increased accuracy over existing

unmixing approaches.
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