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PURPOSE In patients with diffuse low-grade glioma (LGG), the extent of surgical tumor resection (EOR) has a
controversial role, in part because a randomized clinical trial with different levels of EOR is not feasible.

METHODS In a 20-year retrospective cohort of 392 patients with IDH-mutant grade 2 glioma, we analyzed the
combined effects of volumetric EOR and molecular and clinical factors on overall survival (OS) and progression-
free survival by recursive partitioning analysis. The OS results were validated in two external cohorts (n = 365).
Propensity score analysis of the combined cohorts (n = 757) was used to mimic a randomized clinical trial with
varying levels of EOR.

RESULTS Recursive partitioning analysis identified three survival risk groups. Median OS was shortest in two
subsets of patients with astrocytoma: those with postoperative tumor volume (TV) > 4.6 mL and those with
preoperative TV > 43.1 mL and postoperative TV = 4.6 mL. Intermediate OS was seen in patients with
astrocytoma who had chemotherapy with preoperative TV = 43.1 mL and postoperative TV = 4.6 mL in
addition to oligodendroglioma patients with either preoperative TV > 43.1 mL and residual TV = 4.6 mL or
postoperative residual volume > 4.6 mL. Longest OS was seen in astrocytoma patients with preoperative
TV = 43.1 mL and postoperative TV = 4.6 mL who received no chemotherapy and oligodendroglioma
patients with preoperative TV = 43.1 mL and postoperative TV = 4.6 mL. EOR = 75% improved survival
outcomes, as shown by propensity score analysis.

CONCLUSION Across both subtypes of LGG, EOR beginning at 75% improves OS while beginning at 80%
improves progression-free survival. Nonetheless, maximal resection with preservation of neurological function
remains the treatment goal. Our findings have implications for surgical strategies for LGGs, particularly
oligodendroglioma.

J Clin Oncol 41:2029-2042. © 2023 by American Society of Clinical Oncology

INTRODUCTION this notion for all LGGs.***® However, others propose that

Over the past decade, the WHO has reclassified diffuse
gliomas into separate clinical diagnoses on the basis of
tumor histology and molecular characteristics.'® These
tumors include astrocytoma IDH-mutant (astrocyto-
mas) and oligodendroglioma IDH-mutant 1pl9q
codeleted (oligodendroglioma), both with distinct clin-
ical trajectories.’>*%” Despite their relatively slow
growth, low-grade gliomas (LGGs) are locally invasive
and prone to malignant transformation.°

The notion that more extensive tumor resection is as-
sociated with longer survival was established as the
standard of care before the WHO's reclassification of
gliomas in 2016.1°12 Some studies continue to support

the benefit is limited to certain molecular subgroups.®%!
In particular, complete surgical resection for patients with
oligodendroglioma may not offer a survival advantage
given their relatively favorable prognosis and better re-
sponse to chemoradiation.?®?? These discrepancies
have created controversy and confusion among both
providers and patients. However, a randomized con-
trolled clinical trial of different levels of cytoreduction
would be not feasible because of lack of equipoise by
physicians and patients.

In this study, we tested two hypotheses that overall
survival (OS) is longer after more extensive resection
than after subtotal resection, regardless of tumor
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CONTEXT

Key Objective
The notion that extensive resection of diffuse low-grade gliomas is associated with longer survival has been challenged by

recent molecular subclassification in which certain patient subgroups experience more favorable prognosis and longer
survival. This study examines the interactive effects of molecular and clinical variables on survival in adults with WHO

grade 2 oligodendroglioma and astrocytoma.

Knowledge Generated
A multicenter multinational cohort of 757 patients was used to establish overall, progression-free, and malignant

transformation—free survival risk groups. The protective effects of greater extent of glioma resection and smaller volume of
residual tumor were established. Propensity score analysis was used to mimic a randomized clinical trial to estimate an

extent of resection threshold.

Relevance (I.K. Mellinghoff)
Surgery plays an important role in the initial treatment of gliomas. This study confirms that more complete tumor resection

(= 75%) improves long-term outcomes of patients with IDH-mutant CNS WHO grade 2 tumors and suggests that
resection beyond the imaging-defined tumor margins may improve outcomes in some patients.*

*Relevance section written by JCO Associate Editor Ingo K. Mellinghoff, MD.

subgroup and that resection beyond the imaging-defined
tumor margins influences survival outcomes. Our analysis
focused on adults in whom a WHO grade 2 oligoden-
droglioma or astrocytoma was initially diagnosed between
1998 and 2017. First, we analyzed whether the extent of
resection (EOR) was associated with OS in a large single-
institution cohort and verified the findings in independent
patient cohorts from the United States and Europe. Next,
we examined associations between OS and resection be-
yond imaging-defined tumor margins. We also assessed
oncological and clinical factors associated with malignant
and nonmalignant progression. Last, we used propensity
score analysis across the three cohorts to mimic a ran-
domized clinical trial to estimate the influence of EOR on
0S, progression-free survival (PFS), and malignant trans-
formation—free survival (MTFS).

METHODS

In this retrospective study, we modeled survival risk in a
development cohort of patients with newly diagnosed WHO
grade 2 astrocytoma IDH-mutant and oligodendroglioma
IDH-mutant 1p19q codeleted on the basis of WHO 2021
diagnostic criteria and validated the findings in two external
cohorts.}®* The clinical characteristics of the patients are
summarized in Table 1 and the Data Supplement (online
only; Fig 1A). Additional details on patients, tumor classifi-
cation and imaging, and clinical data collection are given in
the Data Supplement.??* The study was approved by the
University of California, San Francisco, Institutional Review
Board.

Details of analytic methods are summarized in the Methods
in the Data Supplement. In brief, patient demographics and

2030 © 2023 by American Society of Clinical Oncology

tumor characteristics were summarized with descriptive
statistics. Differences in continuous and categorical variables
between cohorts were analyzed by ftest and chi-square test,
respectively. OS was defined as the time from surgery (or
biopsy if before surgery) until death or last contact date.
Median follow-up was estimated with the reverse Kaplan-
Meier method. PFS was defined as the time between surgery
(or biopsy) and tumor progression (or death) on the basis of
Neuro-Oncology assessment and RANO criteria.?®> MTFS
was defined as the time from first surgery (or biopsy) to
malignant transformation to grade 3 or higher (or death).
Patients who did not have progression or malignant trans-
formation were censored at the time of loss to follow-up or
last follow-up date. Cox proportional hazard (Cox-PH)
models were used to evaluate the associations of potential
risk factors with survival. Recursive partitioning analysis
(RPA) with the partDSA algorithm?®?” was performed to
identify survival risk groups in a multivariate setting using all
known prognostic variables. Median survival times and
hazard ratios (HRs) were determined with the Kaplan-Meier
method and Cox-PH models, respectively. The log-rank test
was used to compare curves unless assumptions were vi-
olated; then, the Tarone-Ware test was applied. Assumptions
for Cox-PH models were also verified. The final RPA selected
from the development cohort was validated in the external
validation cohorts. To estimate the effects of EOR and vol-
ume of residual (VOR) on OS, PFS, and MTFS, we used
propensity score matching to mimic a randomized trial and
remove potential confounding effects between survival
outcomes and EOR cutoff values.?® Matching was based on
age at diagnosis, LGG subtype, chemotherapy, radiation,
preoperative tumor volume (TV), and tumor location. For
each EOR cutoff value and corresponding matched data set,
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TABLE 1. Characteristics of the Development Cohort, Stratified by Low-Grade Glioma Subtype

IDH MUT Astrocytoma

IDH MUT 1p/19q Codeleted

Variable (n = 202) Oligodendroglioma (n = 190) Total (n = 392) P
Age at diagnosis, years, median (IQR) 35.1 (29.5-41.6) 42.6 (34.4-49.5) 38.2 (31.1-46.3) < .001@
Age at diagnosis, years, No. (%) < .001°
Younger than 40 143 (70.8) 82 (43.2) 225 (57.4)
40-59 55 (27.2) 96 (50.5) 151 (38.5)
60 or older 4 (2.0) 12 (6.3) 16 (4.1)
Sex, No. (%) .820°P
Male 114 (56.4) 105 (55.3) 219 (55.9)
Female 88 (43.6) 85 (44.7) 173 (44.1)
Tumor hemisphere, No. (%) .990°P
Bilateral 1(0.5) 1(0.5) 2(0.5)
Left 112 (55.4) 104 (54.7) 216 (55.1)
Right 89 (44.1) 85 (44.7) 174 (44.4)
Tumor location, No. (%) .020°
Frontal 100 (49.5) 116 (61.1) 216 (55.1)
Temporal 33 (16.3) 21 (11.1) 54 (13.8)
Parietal 18 (8.9) 25 (13.2) 43 (11.0)
Insular 49 (24.3) 27 (14.2) 76 (19.4)
Other 2 (1.0) 1(0.5) 3 (0.8)
Multifocal v local, No. (%) .950°
Unknown 0 1 1
Local 200 (99.0) 187 (98.9) 387 (99.0)
Multifocal 2 (1.0 2(1.1) 4 (1.0)
KPS score, No. (%) 570°P
Unknown 68 58 126
= 80 29 (21.6) 34 (25.8) 63 (23.7)
100 20 (14.9) 15 (11.4) 35 (13.2)
90 85 (63.4) 83 (62.9) 168 (63.2)
Enhancement, No. (%) .930°
Unknown 0 1 1
No 192 (95.0) 180 (95.2) 372 (95.1)
Yes 10 (56.0) 9 (4.8) 19 (4.9)
Radiographic v clinical progression, No. (%) 720°
Unknown 117 123 240
Clinical 1(1.2) 2 (3.0) 3 (2.0)
Radiographic 81 (95.3) 63 (94.0) 144 (94.7)
Radiographic and clinical 3(3.5) 2 (3.0 B (&3
Preoperative seizures, No. (%) 450P
Unknown 16 9 25
No 42 (22.6) 35 (19.3) 77 (21.0)
Yes 144 (77.4) 146 (80.7) 290 (79.0)
Postoperative seizures, No. (%) .780°
Unknown 199 183 382
No 2 (66.7) 4 (57.1) 6 (60.0)
Yes 1(33.3) 3 (42.9) 4 (40.0)
(continued on following page)
Journal of Clinical Oncology 2031
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TABLE 1. Characteristics of the Development Cohort, Stratified by Low-Grade Glioma Subtype (continued)

IDH MUT Astrocytoma IDH MUT 1p/19q Codeleted
Variable (n = 202) Oligodendroglioma (n = 190) Total (n = 392) P
Chemotherapy treatment, No. (%) .110°
Unknown 5 3 8
No 88 (44.7) 99 (52.9) 187 (48.7)
Yes 109 (55.3) 88 (47.1) 197 (51.3)
Chemotherapy type, No. (%) 210°
Unknown 5 5 8
Other chemotherapy 19 (9.6) 12 (6.4) 31 (8.1)
Temozolomide 90 (45.7) 76 (40.6) 166 (43.2)
None 88 (44.7) 99 (52.9) 187 (48.7)
Radiation treatment, No. (%) .002°
No 70 (34.7) 97 (51.1) 167 (42.6)
Unknown 20 (9.9) 21 (11.1) 41 (10.5)
Yes 112 (55.4) 72 (37.9) 184 (46.9)
IDH mutation status, No. (%) < .0l0P°
Mutant 202 (100.0) 184 (96.8) 386 (98.5)
Unknown 0 (0.0) 6 (3.2) 6 (1.5)
Wildtype 0 (0.0) 0 (0.0) 0 (0.0)
ATRX mutation status, No. (%) < .001°
Mutant 138 (68.3) 0 (0.0 138 (35.2)
Unknown 49 (24.3) 80 (42.1) 129 (32.9)
Wildtype 15 (7.4) 110 (57.9) 125 (31.9)
1p19q, No. (%) < 001°
Codeleted 0 (0.0) 190 (100.0) 190 (48.5)
Intact 98 (48.5) 0 (0.0 98 (25.0)
Unknown 104 (51.5) 0 (0.0 104 (26.5)
p53 mutation status, No. (%) < .001°
Mutant 98 (48.5) 94.7) 107 (27.3)
Unknown 62 (30.7) 72 (37.9) 134 (34.2)
Wildtype 42 (20.8) 109 (57.4) 151 (38.5)
Median preoperative TV (IQR), mL 39.6 (18.3-85.7) 34.2 (18.7-64.5) 35.9 (18.4-71.0) .090?
Preoperative TV, mL, No. (%) .140°
<25 67 (33.2) 65 (34.2) 132 (33.7)
25-49 48 (23.8) 59 (31.1) 107 (27.3)
50-99 47 (23.3) 43 (22.6) 90 (23.0)
100-300 40 (19.8) 23 (12.1) 63 (16.1)
Postoperative TV, median (IQR) 2.6 (0.0-11.6) 2.1 (0.0-13.0) 2.6 (0.0-12.0) 4307
Postoperative TV, mL, No. (%) .990°
0.0 63 (31.2) 58 (30.5) 121 (30.9)
0.1-49 60 (29.7) 58 (30.5) 118 (30.1)
5.0-14.9 38 (18.8) 34 (17.9) 72 (18.4)
=15.0 41 (20.3) 40 (21.1) 81 (20.7)
EOR nonenhancing hyperintensity, 92.0 (77.2-100) 91.0 (77.2-100) 92.0 (77.0-100) 2102

median (IQR)

(continued on following page)
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TABLE 1. Characteristics of the Development Cohort, Stratified by Low-Grade Glioma Subtype (continued)

IDH MUT Astrocytoma

IDH MUT 1p/19q Codeleted

Variable (n = 202) Oligodendroglioma (n = 190) Total (n = 392) P
Volumetric EOR, No. (%) .220°
30-59 11 (5.4) 22 (11.6) 33 (8.4)
60-79 43 (21.3) 31 (16.3) 74 (18.9)
80-89 37 (18.3) 34 (17.9) 71 (18.1)
90-99 47 (23.3) 44 (23.2) 93 (23.7)
100 64 (31.7) 59 (31.1) 121 (30.9)
Vital status, No. (%) < .001°
Alive 120 (59.4) 159 (83.7) 279 (71.2)
Deceased 82 (40.6) 31 (16.3) 113 (28.8)
Median OS, years (95% Cl) 13.1 (11.5t0 18.6) NA (22.2 to NA) 19.9 (18.0 to NA) < .001¢
Progression, No. (%) .130°P
Unknown 49 63 112
No 37 (24.2) 41 (32.3) 78 (27.9)
Yes 116 (75.8) 86 (67.7) 202 (72.1)
Median PFS, years (95% Cl) 5.70 (4.95 to 8.02) 11.69 (9.29 to 17.70) 8.65 (7.34 t0 9.70) < .001°
Malignant transformation, No. (%) 310°
Unknown 49 63 112
Malignant transformation 37 (24.2) 29 (22.8) 66 (23.6)
No progression 37 (24.2) 41 (32.3) 78 (27.9)
Nonmalignant transformation 79 (51.6) 57 (44.9) 136 (48.6)
Median MTFS, years (95% CI) 18.6 (12.2 to NA) NA (18.0 to NA) 18.6 (17.8 to NA) .001°¢
Median follow-up, years (IQR) 11.9 (10.5-13.3) 11.7 (10.1-13.3) 11.7 (10.8-12.8) .600°

NOTE. Values are No. (%) unless specified otherwise.

Abbreviations: EOR, extent of resection; IQR, interquartile range; KPS, Karnofsky Performance Scale; MTFS, malignant transformation—free survival; MUT,
mutation; NA, not available; OS, overall survival; PFS, progression-free survival; TV, tumor volume.

alinear model analysis of variance.

bPearson’s chi-square test.

°Log-rank test.

HRs were estimated from a multivariate Cox-PH model with
all matching variables included. All analyses were performed
with R v.4.0.%°

RESULTS

Patient demographics, clinical characteristics, and survival
are shown in Table 1. As of the last data collection,
113 (28.8%) of the 392 patients in the development cohort
had died. The median follow-up was 11.7 years (95% Cl,
10.8 to 12.8); 181 patients were followed for > 10 years. The
median OS was 19.9 years (95% Cl, 18.0 to not available
[NAI). Progression was identified in 202 patients (72.1%)
and malignant transformation in 66 (23.6%). The median
PFS was 8.65 years (95% Cl, 7.310 9.7). The median MTFS
was 18.6 years (95% Cl, 17.8 to NA). OS, PFS, and MTFS
were longer in patients with oligodendroglioma, where their
OS has not reached the median yet (95% Cl, 22.2 to NA); the
median PFSwas 11.7 years (95% Cl,9.3t0 17.7),and MTFS
had not reached the median yet (95% CI, 18 to NA). The

Journal of Clinical Oncology

median OS for patients with astrocytoma was 13.1 years
(95% CI, 11.5 to 18.6); the median PFS was 5.7 years
(95% ClI, 5.0 to 80), and the median MTFS was
18.6 years (95% Cl, 12.2 to NA).

The validation cohorts were similar to the development
cohort in age at diagnosis and sex (Data Supplement). OS
was comparable in the three cohorts; however, PFS and
MTFS differed (Fig 1B, Data Supplement).

OS Risk Groups in Development and Validation Cohorts

RPA identified three distinct survival risk groups in the de-
velopment cohort (P<<.001 by log-rank test; Figs 2A and 2B,
Data Supplement). The groups were based on postoperative
(residual) TV with a cutoff of 4.6 mL, preoperative TV with a
cutoff of 43.1 mL, LGG subtype, and whether a patient
received chemotherapy. For ease of discussion, we refer to
residual TV = 4.6 mL as smaller and > 4.6 mL as larger. A
similar distinction is made for preoperative TV with the
corresponding cutoff.

2033
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FIG 1. (A) World map indicating multicenter—-multinational study cohorts. (B) Kaplan-Meier curves for OS
and PFS across development and external validation cohorts. OS was similar across all three sites, but
PFS differed across the sites. BWH, Brigham and Women’s Hospital, Boston, MA; OS, overall survival;
PFS, progression-free survival; St Olav, St Olavs University Hospital, Trondheim, Norway; UCSF, Uni-

versity of California, San Francisco, CA.

In group 1, OS was shortest in astrocytoma patients with
larger postoperative TV and astrocytoma patients with
larger preoperative TV plus smaller residual TV (group 1;
n = 113; median OS, 9.0 years; 95% Cl, 7.9 to 10.6). In
group 2, OS was intermediate for subsets of both LGG
subtypes (group 2; n 129; median OS, 19.9 years;
95% Cl, 16 to NA). Group 2 includes astrocytoma patients
treated with chemotherapy with smaller preoperative and
residual TV. Group 2 also includes oligodendroglioma
patients with either larger preoperative and smaller residual
TV orjust larger residual TV. In group 3, OS was longest and
the median was not reached (group 3; n = 150; median
0S, NA; 95% Cl, 22.2 to NA). Group 3 includes oligo-
dendroglioma patients with smaller preoperative and re-
sidual TV. Group 3 also includes patients with astrocytoma

2034 © 2023 by American Society of Clinical Oncology

who had not received chemotherapy with smaller preop-
erative and residual TV. The best and intermediate survival
groups (groups 3 and 2, respectively) had similar survival
until 7 years when it diverged (Fig 2B, overall). In a uni-
variate Cox-PH model, the HR for best versus intermediate
survival group is 0.40 (95% CI, 0.2 to 0.7; P = .001).

In Figure 2B, the OS risk groups are also stratified by LGG
subtype. Patients with astrocytoma had a similar median OS
to the overall cohort (group 1: median, 9 years [95% Cl, 7.9
to 10.6]; group 2: median, 16 years [95% Cl, 12.2 to NAI;
group 3: median, NA [95% CI, 17.8 to NAJ]; group 1 v2 v 3:
P <.001 by log-rank test). The association between OS risk,
LGG subtype, and chemotherapy revealed that patients with
group 2 astrocytoma (ie, treated with chemotherapy) had

Volume 41, Issue 11
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FIG 2. OS outcomes for development cohort and external validation. (A) RPA for the development cohort identified three risk groups on the
basis of postoperative TV, preoperative TV, LGG subtype, and chemotherapy. Groups are denoted by number. Group 1 had the worst survival
and consisted of the astrocytoma patients with residual tumor > 4.6 mL or astrocytoma patients with preoperative TV > 43.1 mL and residual
tumor = 4.6 mL. Group 2 had intermediate survival and consisted of a combination of two subgroups: (1) oligodendroglioma patients with
residual tumor > 4.6 mL or oligodendroglioma patients with preoperative TV > 43.1 mL and residual tumor = 4.6 mL and (2) patients with
astrocytoma who had chemotherapy with preoperative TV = 43.1 mL and residual tumor = 4.6 mL. Group 3 had the best survival and
consisted of the combination of two subgroups: (1) oligodendroglioma patients with preoperative TV = 43.1 mL and residual tumor = 4.6 mL
and (2) patients with astrocytoma who had no chemotherapy with preoperative TV < 43.1 mL and residual tumor = 4.6 mL. (A)
Overall Survival RPA Tree (UCSF). (B) Kaplan-Meier curves for OS (UCSF) by the three risk groups delineated (continued on following page)
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FIG 2. (Continued). in (A) for all patients (overall) in the development cohort, patients with astrocytoma, and patients with
oligodendroglioma, respectively. (C) Kaplan-Meier curves for OS (BWH and St Olav) by the three risk groups delineated in (A) for
all patients in the external validation, patients with astrocytoma, and patients with oligodendroglioma, respectively. Hazard ratios
and Cls for Figure 2 are included in the Data Supplement. BWH, Brigham and Women'’s Hospital; LGG, low-grade glioma; NA,
not available; OS, overall survival; RPA, recursive partitioning analysis; St Olav, St Olavs University Hospital; TV, tumor volume;

UCSF, University of California, San Francisco.

larger preoperative and residual TV than patients with group
3 astrocytoma (ie, those not treated with chemotherapy),
representing a provider treatment bias (Data Supplement).
Patients with oligodendroglioma were not included in risk
group 1 (ie, those with shortest survival). Patients with oli-
godendroglioma in group 2 experienced a median survival of
19.9 years (95% Cl, 18.7 to NA) while those in group 3 (the
longest survival) did not reach a median (95% Cl, 22.2 to
NA; group 2 v3: P = .002 by log-rank test). The OS model
was corroborated by the external validation cohorts (Fig 2C).
Risk group 1 in the external cohort had a median OS of
9.5 years (95% Cl, 7.7 to NA) while the median OS was not
reached for risk groups 2 or 3 (P < .001 by Tarone-Ware
test). Importantly, external cohorts stratified by LGG subtype
confirmed the risk stratifications with the exception of in-
termediate risk group 2 astrocytoma because of early cen-
soring (Data Supplement). HR and Cls for all comparisons in
Figure 2 are provided in the Data Supplement.

Survival Benefit of Gross Total Resection+ Is Preserved
Across LGG Subtypes

As smaller postoperative TV was associated with longer OS
for both LGG subtypes (Fig 2A), we explored the effects of
gross total resection (GTR)+ over GTR and GTR- (Fig 3A).
GTR+ was most prevalent in patients with small preop-
erative TVs (Data Supplement). In the development cohort,
OS was longest in patients with GTR+ (median OS, NA;
95% Cl, 18.3 to NA) and GTR+ was significantly different
than GTR and GTR- (P = .001 and P = .0004, respec-
tively; both by log-rank test). There was no notable dif-
ference between GTR and GTR- until 10 years (GTR
median OS, NA; 95% Cl, 16.2 to NA; GTR- median OS,
18.6 years; 95% Cl, 14.5 to NA; P < .001 by Tarone-Ware
test; Fig 3B). Next, we determined whether the survival
advantage of GTR+ persisted within subtype. In patients
with astrocytoma, the survival curves are quite similar to

2036 © 2023 by American Society of Clinical Oncology

those in the overall cohort. OS was longer after GTR+
(median OS, NA [95% Cl, 14.7 to NA]) compared with GTR
(median OS, 16.2 years [95% Cl, 9 to NA]) and GTR-
(median OS, 11.4 years [95% Cl, 9.4 to 16]; P < .001 by
Tarone-Ware test; Fig 3C). For patients with oligoden-
droglioma, the median OS was longer after GTR+ (median
0S, NA [95% ClI, 18.3 to NA]) and GTR (median OS, NA
[95% CI, NA to NA]) compared with GTR— (median OS,
22.2 years [95% Cl, 19.9 to NAl; GTR/GTR+ v GTR-:
P = .04 by Tarone-Ware test). Interestingly, there were no
statistical differences in survival between GTR and GTR+
(GTR v GTR+: P = .47 by Tarone-Ware test; Fig 3D).
Finally, we assessed survival models with and without
controlling for preoperative TV. In patients with astrocytoma,
with GTR+ versus GTR- and GTR versus GTR— with and
without controlling for preoperative TV both were significant
predictors of OS (P = .015 and P = .001, respectively). For
patients with oligodendroglioma, GTR+/GTR versus
GTR- was not a significant predictor when controlling for
preoperative TV (P = .32) but trended significant without
preoperative TV (P = .065; Data Supplement).

PFS and MTFS in the Development and Validation Cohorts

Next, we sought to understand the interactive effects of
clinical and treatment variables on tumor progression, a
nearly universal characteristic of diffuse, LGGs. Since PFS
and MTFS differed in the cohorts (Fig 1B and Data Sup-
plement), we combined the data from all three cohorts.
Almost identical to our OS model in Figure 2A, the RPA
identified three PFS risk groups on the basis of postoper-
ative TVs and LGG tumor subtypes (Fig 4A). Kaplan-Meier
curves were generated for each risk group (P < .0001 by
log-rank test, Fig 4B). PFS was shortest in astrocytoma
patients with the largest postoperative TVs (> 32.7 mL;
group 1, n = 29; median PFS, 1.8 years; 95% Cl, 1.1 to
2.6); intermediate in astrocytoma patients with moderate
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FIG 3. GTR and GTR+ in the development cohort. (A) Schematic of GTR, GTR+
(resection beyond the imaging-defined tumor margin), and GTR- (resection = 100%).
(B) Kaplan-Meier curves for all OS UCSF patients (continued on following page)
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FIG 3. (Continued).

stratified by GTR status. OS was longer in patients with GTR +

(P < .001 by Tarone-Ware test). (C) Kaplan-Meier curves stratified by GTR status in
UCSF patients with astrocytoma (P < .001 by Tarone-Ware test). (D) Kaplan-Meier
curves stratified by GTR status in UCSF patients with oligodendroglioma (P = .11 by
Tarone-Ware test). GTR, gross total resection; NA, not available; OS, overall survival;
UCSF, University of California, San Francisco.

postoperative TV (between 1.2 and 32.7 mL; group 2,
n = 218; median PFS, 3.99 years; 95% Cl, 3.3t0 4.8); and
longest in the combination of the astrocytoma patients with
small residual TV (= 1.2 mL) with all oligodendroglioma
patients (group 3, n = 510; median PFS, 8.1 years; 95% Cl,
6.9 t0 9.3).

For MTFS, RPA identified three risk groups on the basis of
postoperative TV, LGG subtype, preoperative TV, and age at
diagnosis (Fig 4C). MTFS was shortest in patients with
astrocytoma age younger than 43 years at diagnosis with
larger preoperative TV (> 31.2 mL) and larger residual TV
(> 0.14 mL; group 1, n = 143; median MTFS, 4.5 years;
95% Cl, 3.3 to 6.7). MTFS was intermediate in oligoden-
droglioma patients with larger residual tumor > 9.75 mL
and those patients with astrocytoma age older than
43 years with larger residual TV (> 0.14 mL) or those
patients with astrocytoma age younger than 43 years with
smaller preoperative TV (= 31.2 mL) and larger residual TV
(> 0.14 mL; group 2, n = 275; median MTFS, 12 years;
95% Cl, 9.4 to NA). MTFS was longest in oligodendroglioma
patients with smaller residual TV (= 9.75 mL) and astrocy-
toma patients with smaller residual TV (= 0.14 mL;
group 3, n = 339; median MTFS, NA; 95% ClI, 18.3 to
NA). Kaplan-Meier curves for the three MTFS risk groups
(P < .0001 by log-rank test) are shown in Figure 4D and
MTFS separated by institution in the Data Supplement.

To mimic a randomized control trial and get robust power to
predict the influence of EOR, we used propensity score
matching at EOR cutoffs between 60% and 100% with all
three cohorts combined (n = 757). Patients were matched
for age at diagnosis, diffuse LGG subtype, chemotherapy,
radiation, preoperative tumor volume (TV), and tumor lo-
cation (Data Supplement). As EOR increased, the HR
decreased (Fig 4E), and by 75%, the effect of EOR was
significant (Cl for HR did not include 1) and protective
(HR < 1; Data Supplement). EOR had a similar effect on
PFS at a threshold of 80% and MTFS at a threshold of 70%.
We performed the same propensity score matching for VOR
at cutoffs between 1 and 10 mL. VOR below 10 mL was
significant for OS and MPFS (Data Supplement).

DISCUSSION

In this study, we confirmed two hypotheses that OS is longer
after more extensive resection than after subtotal resection
of LGG regardless of subtype and that resection beyond the
imaging-defined tumor margins improves survival out-
comes with greatest benefit seen in patients with astro-
cytoma. The findings of all four presented analyses

2038 © 2023 by American Society of Clinical Oncology

reinforce the importance of maximal EOR and smaller
residual TV regardless of LGG subtype.

In the first analysis, we investigated the combined effects of
volumetric EOR and molecular and clinical factors on OS in
the development cohort (median follow-up, 11.7 years;
median OS, 19.9 years). We delineated three risk groups on
the basis of an interaction between preoperative and
postoperative TVs, chemotherapy use, and LGG subtype.
OS was longest in oligodendroglioma patients with smaller
pre-operative and residual TVs as well as in patients with
astrocytoma who had not received chemotherapy who also
had smaller preoperative and residual TVs (Fig 2A). OS was
shortest in astrocytoma patients with larger postoperative
TV and astrocytoma patients with larger preoperative TV
plus smaller residual TV. These findings persisted when risk
groups were stratified by LGG subtype (Fig 2B). Interest-
ingly, patients with astrocytoma in the intermediate and
longest survival risk groups (groups 2 and 3, respectively)
experienced similar survival outcomes with divergent out-
comes after 7 years. Comparisons of these two risk groups
determined that intermediate risk (group 2) patients who
received chemotherapy had larger gliomas, greater residual
TV, and less EOR when compared with risk group 3 patients
who did not receive chemotherapy (Data Supplement).
European Organisation for Research and Treatment of
Cancer defined LGG risk was greater for patients in group 2
when compared with those in risk group 3.3° Thus, these
results suggest that the use of chemotherapy represents a
provider treatment bias with the early introduction of
chemotherapy for patients presumed to be at a higher than
average risk (Data Supplement) 831-34

In the second analysis, we determined whether GTR+
provided a survival advantage. We found that median OS
after GTR+ was longer when compared with GTR and GTR—
(Figs 3B-3D). However, the relative benefit of EOR beyond
the imaging defined tumor margin appears greatest for
patients with astrocytoma given the demonstrated survival
advantage of GTR+ compared with GTR and GTR- in this
LGG subtype. This important distinction sits in contrast to
patients with oligodendroglioma tumors in which GTR and
GTR+ demonstrated similar beneficial survival outcomes
when compared with patients receiving GTR-.

Current imaging techniques cannot define the margins of
brain tumors accurately and precisely, so margin surgery
has never been considered the standard of care. Fur-
thermore, few tools exist to identify and quantify tumor
burden quickly and reliably during surgery. Intraoperative
magnetic resonance imaging and fluorescent labeling of
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FIG 4. RPA of PFS and MTFS and corresponding Kaplan-Meier survival curves. (A) RPA identified three PFS risk groups on the basis of
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FIG 4. (Continued). residual TV > 0.14 mL. Group 3 patients (n = 339) had the best MTFS and included both (1) the astrocytoma patients
with residual TV = 0.14 mL and (2) oligodendroglioma patients with residual TV = 9.75 mL. (D) Kaplan-Meier curves for the three MTFS risk
groups identified in (C; P<.0001 by log-rank test). (E) Forest plot of HRs determined by propensity score analysis (UCSF + BWH + St Olavs).
(F) The interactive effects of molecular (tumor), therapeutic, and patient factors indicates that EOR = 75% confers a survival benefit. BWH,
Brigham Women’s Hospital; EOR, extent of resection; HR, hazard ratio; LGG, low-grade glioma; OS, overall survival; MTFS, malignant
transformation—free survival; NA, not available; PFS, progression-free survival; RPA, recursive partitioning analysis; St Olavs, St Olavs
University Hospital; TV, tumor volume; UCSF, University of California, San Francisco.

tumors have been helpful but are often limited to investi-
gational use at high-volume tertiary care centers.®>2° In the
setting of glioblastoma, EOR outside the classically defined
contrast-enhancing glioma margins offered a survival ad-
vantage in a large subset of patients.?* EOR beyond the
imaging-defined tumor margin has been investigated in
LGG, but those studies were done before WHO tumor
subclassification or included small, single-institution series
with a median follow-up of 5-6 years.'>%7-41

In the third analysis, we investigated the interactive effects
of molecular, clinical, and treatment variable on tumor
progression, as LGGs are highly likely to progress. Analysis
of the three cohorts combined identified PFS risk groups on
the basis of postoperative TVs and LGG subtype (Fig 4A).
The interaction was similar to that seen in the OS model
(Fig 2A). Three MTFS risk groups on the basis of preop-
erative and postoperative TV, LGG subgroup, and age at
diagnosis were also identified (Fig 4C).

The interactions between LGG subtype and clinical and
therapeutic factors such as EOR have been a topic of great
interest to the cancer community. However, a randomized
trial of EOR would not be feasible because of the perceived
lack of equipoise. Therefore, in the fourth analysis, we sought
to mimic such a trial by propensity score matching analysis
using the 757 patients in the combined three cohorts. This
analysis provided convincing evidence that EOR = 75%
improves OS; however, the EOR threshold to alter the natural
history of the disease by PFS and MTFS differs (EOR = 80%
and = 70%, respectively).

In the analyses presented, we were able to address the
concern that the survival benefit associated with LGG
subtype may be attributable to the extent of resectability.
We found no significant associations between TV and tumor
subtype or EOR and tumor subtype (Table 1). In most
cases, decisions about EOR are made without knowledge of
the LGG subclassification. A presurgical biopsy of patients
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with presumed LGG would be costly, add risk, and delay
treatment. However, advances in biomedical imaging and
liquid biopsies are increasing diagnostic accuracy and may
be clinically useful in the future.#>%4

This study has several limitations. This retrospective cohort
involves patients from three large tertiary referral centers
across the United States and Europe. However, cohort size,
median follow-up, and PFS varied across institution. As
clinical practice varied across all sites treatment charac-
teristics such as use of chemoradiation and EOR were not
completely uniform. Furthermore, this analysis was focused
on surgically resectable LGGs, as determined by the
treating neurosurgeon. Therefore, patients with multifocal,
diffuse disease in which biopsy might be indicated are not
included in this analysis. Since slow-growing tumors may
be treated multiple times over many years, there may be
several interactions between factors over time. It is im-
portant to note that GTR and GTR+ occur predominantly in
patients with smaller preoperative TVs (Data Supplement).
When controlling for preoperative TVs, GTR+ was asso-
ciated with a survival benefit for patients with astrocytoma;
however, the same was not true for patients with oligo-
dendroglioma. It remains unknown whether the apparent
survival benefit is driven by lead time bias, extent of tumor
resection, smaller preoperative TVs, or a combination.
Furthermore, although glioma resection outside of the
imaging defined tumor margins portends a survival ad-
vantage, these data do not offera GTR+ EOR threshold and
the volume of resection and interactions between tissue
removal, neurological function, and OS are beyond the
scope of this work. As a randomized clinical trial of EOR is
not feasible, we used propensity matched scoring instead.
This analysis, which considered prognostic covariates that
would be used to stratify patients, demonstrated an EOR
threshold; however, clinicians must consider the long-term
effects of treatment on function, as well as survival.
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