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Numerous studies suggest that biological neuronal networks self-organize toward a critical state with stable recruitment dy-
namics. Individual neurons would then statistically activate exactly one further neuron during activity cascades termed neuro-
nal avalanches. Yet, it is unclear if and how this can be reconciled with the explosive recruitment dynamics within
neocortical minicolumns in vivo and within neuronal clusters in vitro, which indicates that neurons form supercritical local
circuits. Theoretical studies propose that modular networks with a mix of regionally subcritical and supercritical dynamics
would create apparently critical dynamics, resolving this inconsistency. Here, we provide experimental support by manipulat-
ing the structural self-organization process of networks of cultured rat cortical neurons (either sex). Consistent with the pre-
diction, we show that increasing clustering in neuronal networks developing in vitro strongly correlates with avalanche size
distributions transitioning from supercritical to subcritical activity dynamics. Avalanche size distributions approximated a
power law in moderately clustered networks, indicating overall critical recruitment. We propose that activity-dependent self-
organization can tune inherently supercritical networks toward mesoscale criticality by creating a modular structure in neuro-
nal networks.
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Significance Statement

Critical recruitment dynamics in neuronal networks are considered optimal for information processing in the brain.
However, it remains heavily debated how neuronal networks would self-organize criticality by detailed fine-tuning of connec-
tivity, inhibition, and excitability. We provide experimental support for theoretical considerations that modularity tunes criti-
cal recruitment dynamics at the mesoscale level of interacting neuron clusters. This reconciles reports of supercritical
recruitment dynamics in local neuron clusters with findings on criticality sampled at mesoscopic network scales. Intriguingly,
altered mesoscale organization is a prominent aspect of various neuropathological diseases currently investigated in the
framework of criticality. We therefore believe that our findings would also be of interest for clinical scientists searching to
link the functional and anatomic signatures of such brain disorders.

Introduction
For optimal computational performance, the brain is considered
to operate at a critical phase transition between fading of activity
and explosive recruitment (Beggs and Plenz, 2003; Shew et al.,

2009; Beggs and Timme, 2012; Hesse and Gross, 2014; Gautam
et al., 2015; Li et al., 2019; Plenz et al., 2021). Critical propagation
dynamics were reported for various neuronal systems in vivo and
in vitro, indicating that these operate at or near criticality (Beggs
and Plenz, 2003, 2004; Pasquale et al., 2008; Petermann et al.,
2009; Hahn et al., 2010; Tetzlaff et al., 2010; Beggs and Timme,
2012; Plenz et al., 2021). Yet, despite decades of discussion, it
remains heavily debated how neuronal networks would self-
organize to achieve criticality. Moreover, reports on highly corre-
lated activity in clusters of several tens of neurons in vivo
(Maruoka et al., 2017; Hosoya, 2019) or in vitro (Cohen et al.,
2008; Teller et al., 2014; Lonardoni et al., 2017) suggest that neu-
rons instead self-organize into supercritical local circuits with ex-
plosive recruitment dynamics. An extended theoretical framework
predicts system criticality to arise from a mixture of regionally
subcritical and supercritical dynamics (Wang and Zhou, 2012;
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Moretti and Muñoz, 2013; Hilgetag and Hütt, 2014) in modular
networks. With appropriate modularity, runaway dynamics are
confined within modules, allowing critical mesoscale dynamics to
emerge more robustly than in random networks (Gutjahr et al.,
2021) and at minimal wiring cost (Liang et al., 2022). Here, we
propose that closeness to criticality in neuronal networks in vitro
mainly depends on the homeostatic regulation of the neuronal
interaction range as a function of neuronal clustering (spatial
aggregation of cell bodies), which shapes the degree of modularity.

Modular mesoscale architecture reflects a prevailing design
principle in neuronal networks in vivo (Mountcastle, 1997;
Buxhoeveden and Casanova, 2002; Rockland, 2010) and in vitro
(Stetter et al., 2012; Okujeni et al., 2017; Okujeni and Egert,
2019b). Synchronized activity and similar functional tuning of
neurons, for example, within cortical minicolumns (Maruoka et
al., 2017; Hosoya, 2019) or modules in the entorhinal cortex
(Naumann et al., 2018; Tukker et al., 2022), indicates a binary
mode of module activation that effectively relocates the elementary
computational unit and computational benefits of criticality from
the single neuron to the module level. Considered as a branching
process (Beggs and Plenz, 2003), a critical state would then be
achieved if the modules on average activate exactly only one down-
stream module during activation cascades termed neuronal ava-
lanches. Yet, how local neuronal interactions shape appropriate
modular connectivity in developing networks remains elusive.

Because it is currently not feasible to modify structural modular-
ity systematically in intact brain tissue, we pharmacologically
manipulated the self-organization of neuronal network architecture
developing in vitro (Okujeni et al., 2017; Okujeni and Egert, 2019b).
Here, we analyzed avalanche size distributions (ASD) in spontane-
ous network activity probed with microelectrode arrays (MEAs)
and found a gradual transition from supercritical to subcritical
ASDs for increasingly clustered networks. Assuming supercritical
recurrent dynamics within clusters (Cohen et al., 2008; Teller et al.,
2014; Lonardoni et al., 2017), this suggests weakening connectivity
between clusters. ASDs followed a power law only in moderately
clustered networks, indicating critical branching dynamics on
the mesoscopic scale. Simulations of networks with realistic
assumptions for neuronal interaction range and clustering indi-
cate a strong correlation between the degree of clustering, net-
work modularity, and the apparent branching dynamics.

We thus provide experimental support for the theoretical pre-
diction (Wang and Zhou, 2012; Moretti and Muñoz, 2013;
Hilgetag and Hütt, 2014) that moderate modularity creates a con-
figurational corridor facilitating critical dynamics on the mesoscale
level. Criticality and its relation to brain modularity is currently
being investigated at different anatomic scales in the context of neu-
rologic disorders and clinical diagnostics (Tagliazucchi et al., 2012;
Jiang et al., 2018; Wang et al., 2019; Zimmern, 2020; Hagemann et
al., 2021; Heiney et al., 2021; Alamian et al., 2022). Our findings
offer insights into how neuroanatomical reorganization may have
an impact on pathologic brain dynamics and criticality.

Materials and Methods
Cell culture techniques
Primary cortical cell cultures were prepared on MEAs (Multi Channel
Systems; electrode grid layout/pitch distance in mm, 16 � 16/200) and
standard coverslips (12 mm diameter, Roth). All substrates were coated
with polyethyleneimine (150ml 0.2% aqueous solution; Sigma-Aldrich;
CAS number 9002-98-6) for cell adhesion. Cortical tissue was excised
from brains of neonatal Wistar rat pups of either sex, minced with a scal-
pel, and transferred into PBS (Invitrogen). Tissue pieces were incubated
with trypsin (isozyme mixture, 0.05%, 37°C, 15min; Invitrogen).

Proteolysis was stopped with horse serum (20%; Invitrogen). DNase (type
IV, 50mg/ml; Sigma-Aldrich) was added to eliminate cell trapping in DNA
strands. Cells were dissociated by trituration with a serologic pipette, cen-
trifuged (5min, 617 � g) and resuspended in growth medium (Minimal
Essential Medium supplemented with 5% heat-inactivated horse serum,
0.5–1 mM L-glutamine, 20 mM glucose, and 20mg/ml gentamycin, 1 ml/
pup; all from Invitrogen). Cells were counted with an automated cell coun-
ter (CASY, Schärfe System) and seeded at;3 * 105 cells per network (;1
cm2). Networks developed in 1–2ml growthmedium in a humidified incu-
bator (5% CO2, 37°C). Protein kinase C (PKC) inhibitor Gö6976 (1 mM;
Sigma-Aldrich; CAS number 136194-77-9) and PKC agonist phorbol-12-
myristate-13-acetate (1mM; Sigma-Aldrich; CAS number 16561-29-8) were
dissolved in dimethyl sulfoxide (DMSO; Sigma-Aldrich) and added to the
culture medium directly after cell preparation. The maximal concentration
of DMSO in the growth medium was 0.1%. Animal handling and tissue
preparation were done in accordance with the guidelines for animal research
at the University of Freiburg and approved by the Regierungspräsidium
Freiburg (permits X-12/08D, X-16/07A, X-15/01H, X-18/04K).

Experimental design and statistical analysis
The statistical tools used are given below for morphologic, electrophysio-
logical, and computational analyses separately.

Morphologic analyses
Cluster analysis. To evaluate the degree of neuronal clustering, net-

works with 400–1500 neurons/mm2 growing on coverslips or MEAs were
fixed between 20–37d in vitro (DIV) with paraformaldehyde (Sigma-
Aldrich) and methanol (Sigma-Aldrich), respectively. Neuronal somata
were either stained immunohistochemically (NeuN, rabbit-anti-NeuN,
1:500; Abcam; RRID:AB2744676; MAP2, chicken-anti-MAP2, 1:500;
Abcam; RRID:AB_2138147) or labeled by transfection (pAAV-CaMKIIa-
hChR2(H134R)-mCherry, titer, 1011 ml�1; Addgene; RRID:Addgene_
26975). The detection of neuronal somata in immunofluorescent images
(Axio Observer microscope, ZEN Digital Imaging for Light Microscopy,
Carl Zeiss; RRID:SCR_013672) was based on the colocalization of one of
the neuron-specific stains above with a general stain for cellular nuclei
(DAPI, Sigma-Aldrich) using custom-designed image processing with
MATLAB 2021a (MathWorks; background subtraction, spatial filtering,
normalization, thresholding using Otsu’s method). Clustering of neuronal
somata was analyzed using a modified Clark-Evans clustering index (CI)
accounting for the average cell body diameter as minimal possible inter-
neuron distance (Clark and Evans, 1954; Okujeni et al., 2017). Cluster
affiliation was determined by the proximity of a neuron to cluster centers
identified as significant peaks in the neuron density landscape. These were
obtained by convolution of the coordinates of each neuron with a 2D-
Gaussian kernel (SD, 35mm), z-scoring, and detection of local maxima
above 0.1. Clusters were analyzed for size (average number of neurons
within clusters) and cluster spread (square root of the average squared dis-
tances between neurons and their respective cluster center). Intercluster
distance (ICD) was calculated as the average edge length (excluding pe-
rimeter edges) in a mesh obtained by Delaunay triangulation of cluster
centers. The relative cluster spread s c of each network was calculated by
dividing the average cluster spread by the average ICD.

Neurite analysis. Neurites were detected in immunofluorescence
micrographs for axons [rabbit-anti-neurofilament (NF), 1:10; Abcam;
RRID:AB_448148] using MATLAB (spatial high-pass filtering, peak
detection in line scans at different orientation, skeletonization) as
described previously (Okujeni et al., 2017). Axonal projection range was
approximated statistically based on the average length of axon per neu-
ron calculated as the sum of axon pixels divided by the number of neu-
rons in the image and multiplied with the pixel resolution and a
correction factor of 1.12. The latter accounted for the orientation de-
pendence of neurite length per pixel (i.e.,

p
2 for diagonal vs 1 for hori-

zontal or vertical neurite orientation; Smit et al., 1994). The relative axon
length l a was calculated as the ratio between the average length of axon
per neuron and the average ICD in the network.

Electrophysiological measurements and analyses
MEA recordings. Multiunit spike activity was recorded with MEAs

(MEA1060-BC and USB-MEA256 systems, 25 kHz sampling frequency,
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12bit analog/digital conversion, Multi Channel Systems; MC Rack soft-
ware versions 3.3–4.0; RRID:SCR_014955) under culture conditions (37°C,
5% CO2). Recordings lasted at least 1 h per network. Action potentials were
detected with a threshold set to �5 SD of the high-pass-filtered electrode
signal (Butterworth second-order high-pass filter, 200Hz cutoff, detection
dead time 2ms). Raw data from MEA recordings was processed with
MATLAB for further analysis.

Avalanche analysis. Avalanche detection was modified from
Pasquale et al. (2008). In our study, we considered that bin width
should be a function of the propagation velocity and distance
between recording sites (Beggs and Plenz, 2003). Accordingly, the
shortest possible delay in the subsampled branching process is the
distance-dependent propagation delay between neighboring electro-
des. Instead of using fixed bin widths, we therefore calculated bin
width as the average distance between neighboring electrodes with
spike activity (�0.2 mm) obtained by Delaunay triangulation di-
vided by the action potential velocity of ;1 m/s reported for cortical
networks in vitro (Bakkum et al., 2013). The resulting average bin
widths were slightly larger in clustered networks with larger spacing
between electrodes detecting spike activity (PKC�, 0.26 6 0.05ms;
PKCN, 0.28 6 0.10ms; PKC1, 0.32 6 0.12ms). Following the bin
size calculation for each network, global spike trains were binned
and avalanches were determined as continuous series of bins with
activity that were delimited by empty bins. Avalanche size was
defined as the number of unique recording sites that participated in
the avalanche. ASDs captured the relative frequency p of a given s,
omitting avalanche size s ¼ 1 to reduce the impact of uncorrelated
noise on the initial slope of the distribution. To compare ASDs
across recordings and networks, raw ASDs were logarithmized in p
and s axis and normalized such that the first third of the curve pnorm
(snorm) crossed the point [1 �1] involving interpolation and resampling
at 256 regular intervals, as follows. First, we calculated the logarithmic
size range Ds of the first third of the ASD:

Ds ¼ 1
3
log

smax

smin

� �
;

where smin is the smallest and smax the largest observed avalanche.
Second, we calculated the logarithmic probability range Dp of the same
ASD section as follows:

Dp ¼ log
p smin 1 eDsð Þ

pðsminÞ

 !
:

These ranges were used to normalize ASDs pðsÞ ! pnormðsnormÞ as
follows:

snorm ¼ 1
Ds

� log s
smin

� �

pnorm ¼ 1
jDpj � log

p sð Þ
p sminð Þ

 !
:

The initial ASD slope a was calculated as:

a ¼ Dp
Ds

:

The procedure highlighted the overall shape of a distribution as ei-
ther straight, convex, or concave on a double logarithmic scale. Principal
component analysis (PCA; the set of ASDs were treated as observations
and their pnormðsnormÞ values as dimensions) of the normalized ASDs
showed that this fundamental shape aspect was captured by the first
principal component (PC1) weighted by scoring factor (PC1 score). The
median a of close to power law ASDs with a PC1 score between �2 and
2 was �1.89. We used this exponent to rescale ASDs to a common s/N-

axis with s normalized by the number of sites with spike activity N,
adapting similar analyses (Klaus et al., 2011; Levina and Priesemann,
2017), as follows:

s ! s=N

p sð Þ ! presc s=Nð Þ ¼ Nmax

N

� �/
� pðsÞ;

where Nmax = 256 is the number of MEA electrodes.
The exponent a =�1.89 was in the range of critical exponents previ-

ously reported for neuronal avalanches in cultured networks (Tetzlaff et
al., 2010; Levina and Priesemann, 2017). Functional modularity Qfunc

was calculated based on the correlation of avalanche participation
between pairs of recording sites with spike activity. The resulting correla-
tion matrices with negative correlations set to zero were analyzed by the
Louvain method (Blondel et al., 2008). Network classification into low,
moderate, and high Qfunc was based on the 33.3rd and 66.7th percentiles.
To test howMEA size affected the avalanche analysis, we defined subsets
of electrodes by successively removing perimeter electrodes from the
dataset to subsample the 16� 16 arrays down to 8� 8 electrodes.

To visualize the gradual change from subcritical to supercritical as a
function of Qfunc (see Fig. 5B) we rendered the array of ASDs as a surface
by interpolation in s/N and Qfunc axes and boxcar smoothing with a ker-
nel of 5% in s/N-range and 20% in Qfunc-range.

Computational model
To study dependencies between the structural network architecture and
modularity, we implemented a spatial network model in which we could
systematically modulate the degree of clustering and the projection range
of neurons. We then explored how different network architectures influ-
enced probabilistic activity propagation and resulting ASDs with respect
to criticality.

Modulating the degree of clustering. We defined networks of 1000
neurons forming 37 clusters on a hexagonal grid with an ICD of 227.9
arbitrary units (a.u.; with a.u. roughly reflecting mm in vitro, this would
correspond to 2 mm2 of a cultured network with 500 neurons/mm2).
Neuron coordinates were determined from the coordinates of a ran-
domly selected cluster center plus a deviation in x and y directions
drawn from a Gaussian distribution with a varying SD. Positions violat-
ing a minimal distance (10 a.u.) to other neurons were rejected to
account for the diameter of a neuronal soma. Neuronal clusters were
subsequently redefined by assigning neurons to their respective closest
cluster center. The effective relative cluster spread s �

c was subsequently
calculated for each simulated network as the SD of neuron coordinates
from their respective cluster centers divided by ICD, therefore s �

c,0:5
(superscript asterisks indicate model parameters corresponding to
experimentally derived parameters). We modulated s �

c between 0.16
and 0.32 to cover the range determined experimentally. The iterative
neuron seeding procedure yielded clusters with 27 neurons on average
and neuron distributions resembling those in cultured networks with a
homogeneous distribution of clusters of varying compactness.

Modulating projection range. In neuronal networks in vitro, the
probability to find a connection between two neurons decays with dis-
tance following a Gaussian profile (Barral and Reyes, 2016). Hence, we
modulated projection range based on the SD of a 2D-Gaussian profile
defining the distance-dependent probability to form synaptic connec-
tions. The relative axonal length la determined from experiments was
mapped to 2 SDs accounting for 95% of connections. The simulated axo-
nal projection range relative to the ICD l�a was then varied between 0.2
and 1.5, which covered the corresponding experimental la range. Each
neuron was connected to 100 presynaptic neurons drawn according to
their relative distance-dependent probability. The procedure fixed the
in-degree but entailed variable out-degrees to account for the homeo-
static regulation of connectivity in real networks. However, the average
out-degree equaled the fixed in-degree. Individual presynaptic neurons
could be drawn repeatedly, creating multiple synapses with a postsynap-
tic neuron (multapses).
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Simulating avalanches. Neuronal avalanches were simulated based
on probabilistic activity propagation in the network with each synapse
conveying activity with a certain probability. First, we balanced synapses
to establish an average branching ratio b of 1, that is, a neuron would
activate one postsynaptic neuron on average in the next time step as
follows:

wij ¼ b n

1
Nsyn

;

where synaptic strength wij reflects the probability of a synapse of neu-
ron i to activate the postsynaptic neuron j, and Nsyn ¼ 100 is the number
of input synapses per neuron. Multapses were treated as multiple indi-
vidual synapses, each with the same probability to activate the target
neuron. Neuronal avalanches (N = 106) were initiated by activating a
randomly selected neuron in the network and ended when no further
neuron was activated. ASDs were calculated based on the number of
recruited neurons during avalanches. In a second step, we then increased
b to 1.05 in the same networks to establish supercritical recruitment dy-
namics. In all simulations, avalanches were terminated once all neurons
had been recruited (maximal avalanche size) to save computation time,
which was particularly necessary in case of persistent avalanches occur-
ring with branching ratio.1. In real networks, synaptic depression
would also enforce avalanche termination following explosive recruit-
ment dynamics and recurrent activation of neurons and their synapses.

Structural modularity Q* was calculated based on the connectivity
matrices using the Louvain method (Blondel et al., 2008) and accounted
for multapses effectively forming stronger connections. Functional mod-
ularity Q*

func was calculated based on the correlation matrices for the par-
ticipation of neurons (or subsampled neurons) in avalanches (analogous
to Qfunc from the electrophysiological recordings) with negative correla-
tions set to zero. For a given relative cluster spread s c and relative axon
length la, structural modularity (Qest) of in vitro networks was estimated
by mapping from the dependence of Q* on the corresponding s �

c and l�a
in simulated networks, assuming the same dependency in vitro.

Results
In the current study, we investigated how the mesoscale network
structure influences avalanche dynamics in networks of rat corti-
cal neurons. Toward this, we manipulated the structural self-
organization of neuronal networks in vitro by pharmacological
modulation of PKC activity (PKC inhibition, PKC�; normal con-
dition, PKCN; PKC activation, PKC1) as described previously
(Okujeni et al., 2017; Okujeni and Egert, 2019b). Experimental
results and simulations show that criticality assessed at the meso-
scopic scale is a function of network modularity.

Neuronal clustering and axonal projection range in vitro
In spatial networks, modularity would depend on the relation-
ship between neuronal clustering and the range of axonal projec-
tions. To assess this, we first analyzed the spatial distribution of
neurons (Fig. 1A) in networks on coverslips (PKC�, N = 5;
PKCN, N = 6; PKC1, N = 7 networks) that developed under dif-
ferent PKC activity conditions with 400–900 neurons/mm2

(PKC�, 824 6 43; PKCN, 491 6 45; PKC1, 519 6 60 neurons/
mm2, mean 6 SD). Neuronal cell bodies clustered in all net-
works with an average cluster size of 15–32 neurons (PKC�,
30 6 2; PKCN, 19 6 3; PKC1, 27 6 3 neurons/cluster, mean 6
SD across networks) and an average ICD between 220 and
290mm (PKC�, 226 6 4mm; PKCN, 235 6 9mm; PKC1, 273 6
10mm, mean6 SD across networks). The overall contrast in the
neuron density landscape was determined as the relative spatial
cluster spread s c (average SD of neuron distances to their re-
spective cluster center divided by average ICD in a network),
which decreased with increasing clustering, that is, with decreasing

CI (Fig. 1B). Clusters were significantly broader in PKC� net-
works (s c = 0.29 6 0.01; mean 6 SD of s c across networks; p =
2.6*10�3; Student’s unpaired two-sample t test) compared with
PKCN networks (s c = 0.26 6 0.02) and compact clusters in
PKC1 networks (s c = 0.20 6 0.01, p = 9.6 * 10�6). Second, we
assessed how the projection range scaled with the degree of clus-
tering. The true distribution of projection ranges cannot be recon-
structed histologically in high-density networks. We therefore
used the length of axon per neuron as a statistical proxy for axonal
projection range, calculated by dividing the total length of axon
segments by the number of neurons detected in an image. In con-
trast to intercluster connections, axons entangled within clusters
cannot be readily resolved microscopically. Hence, the detection
procedure underestimated the absolute length of axons within clus-
ters and predominantly reflected intercluster connectivity. We
therefore calculated the ratio la of the length of axon per neuron
and ICD as an indicator of connectedness across clusters. la was
increased in PKC� networks (1.366 0.07, mean6 SD of la across
networks; p = 9.3 * 10�4, Student’s unpaired two-sample t test)
compared with PKCN networks (0.946 0.18) and was decreased in
PKC1 networks (0.456 0.09, p = 5.5 * 10�5; Fig. 1C) and thus pos-
itively correlated with CI. Across PKC conditions, la and s c were
strongly correlated (Fig. 1D).

Neuronal clustering and estimated structural modularity in
vitro
Estimating modularity in networks with several tens of thou-
sands of neurons is difficult because of the inaccessibility of the
full neuronal connectivity in vitro. However, distance-dependent
connectivity in conjunction with clustering can be expected to
create modular networks. Using simulated networks to gain
insight into dependencies between the degree of clustering, axo-
nal connectivity range, and modularity, we varied s �

c as well as
l�a (Fig. 1E) across the CI range found in vitro (Fig. 1F).
Structural modularity Q* was mostly controlled by l�a and was
affected by s �

c only if l
�
a � ICD (Fig. 1G). Because of the pro-

nounced positive correlation between la and s c in in vitro
networks, estimated structural modularity Qest increased with
decreasing CI, suggesting that neuronal clustering promoted
structural modularity in vitro (Fig. 1H).

Neuronal clustering correlates with altered avalanche
statistics
To determine dependencies between avalanche dynamics and
network architecture, we recorded spontaneous spike activity
from networks grown on MEAs (PKC�, N = 55/24; PKCN, N =
69/36; PKC1, N = 29/15 recordings/networks). Although MEA
recordings undersampled network activity on the neuron level,
the electrode pitch of 200mm matched the spatial scale of ICDs
determined for a subset of recorded networks also analyzed mor-
phologically (Fig. 2A; PKC�, 2066 74mm, N = 13; PKCN, 2216
79mm, N = 11; PKC1, 258 6 85mm, N = 2; mean 6 average
SD). Neuron densities in this subset of networks ranged between
400 and 1600 neurons/mm2 (PKC�, 1070 6 329; PKCN, 798 6
198; PKC1, 1007 6 120; mean 6 SD). All networks produced
synchronous bursting, regardless of their degree of clustering
(Fig. 2B), but stronger clustering correlated with higher burst
rates and activity levels and weaker synchronization (Okujeni et
al., 2017; Okujeni and Egert, 2019a, b). Neuronal avalanches
were detected as periods of continuous network activity delim-
ited by silent periods. Each network was typically recorded twice
for 1 h between 18 and 57 DIV, yielding between 104 and 106

avalanches per recording session. Critical branching dynamics
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Figure 1. Clustering and structural modularity in developing networks. A, Chronic pharmacological modulation of PKC activity altered the mesoscale architecture of self-organizing networks
in vitro. Top, Fluorescence micrographs showing somata (red, NeuN), axons (green, NF) and cellular nuclei (blue, DAPI) in networks with modified PKC activity at 20 DIV (somata appear white
because of colocalization of NeuN with NF and nuclear stain). Bottom, Cluster identification (marker color) and assignment of neurons to clusters based on peaks (white crosses) in the land-
scape of relative neuron density (background). Clusters become more compact and delimited from left to right. B, Cluster spread relative to ICD (s c) decreased with increasing clustering
(decreasing CI). C, Average length of axon per neuron relative to ICD (la) decreased with increasing clustering. D, Relative cluster spread s c and relative axon length la were positively corre-
lated. E, Networks resembling those observed in vitro were modeled by increasing relative cluster spread (s �

c ) and axonal projection range (l
�
a ) relative to the ICD, respectively (bottom left,

labels denote s �
c ; l

�
a ), within experimentally approximated ranges. Perimeter color refers to networks representing PKC

1, PKCN, and PKC� conditions. Colored lines are projection patterns of
individual neurons. F, As in vitro, CIp in simulated networks increased toward 1 (random distribution) with increasing s �

c (arrow colors refer to networks in E; error bars indicate SD across net-
works). G, Structural modularity Qp mainly depended on lp

a and was weakly influenced by s
�
c only in combination with a short projection range. Gray values were interpolated from combina-

tions of l�
a and s �

c in simulated networks (white markers; colored arrows refer to networks in E). la and s c of in vitro networks were within the parameter range simulated (colored
markers, data from D). H, Structural modularity of in vitro networks estimated from the map in G (Qest) was strongly correlated with CI. In B-D, F and H, magenta line and label show the linear
regression with respective coefficient of determination (R2) .
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produce ASDs following a power law. Raw ASDs for the number
of recruited electrodes differed considerably across networks with
some following a power law and others showing under-represen-
tation (concave curve in log-log plots) or overrepresentation

(convex curve) of large avalanches, suggesting subcritical and
supercritical dynamics, respectively (Fig. 2C). To capture their
fundamental shape, we normalized ASDs with respect to the ini-
tial third of each curve (Fig. 2D) and performed a principal

Figure 2. Neuronal clustering and avalanche statistics. A, Spontaneous spike activity was recorded at 256 sites in neuronal networks grown on MEAs (white circles, 0.2 mm pitch).
Staining and cluster assignment was performed at 37 DIV as in Figure 1A. B, In all PKC conditions, spike activity was organized in periods of synchronous bursting and little interburst ac-
tivity. Burst rates increased, and peak firing rates decreased with the degree of somata clustering. C, Raw ASDs with probability p plotted against avalanche size s (number of recruited re-
cording sites; s = 1 was omitted to diminish the influence of noise) for PKC�, PKCN, and PKC1 networks. Thick lines show averaged ASDs of PKC conditions. D, E, ASDs normalized to the
first third of the logarithmic curve (crosshairs; normalization yields a slope anorm = �1) were analyzed by PCA. The first principal component (PC1, inset) weighted by PC1 score (E) cap-
tured the continuous spectrum of convex to concave ASD shapes by accounting for 86.4% of the variance (inset). F, Surface derived by sliding average across the array of ASDs illustrates
the gradual transition from concave to convex ASDs as a function of PC1 score with ASDs close to a power law at PC1 score = 0 (white line). Surface color indicates the pointwise difference
between the normalized avalanche size probability and a normalized power law (anorm = �1) shown as a tilted grid. G, PC1 score increased with increasing clustering (decreasing CI,
asterisks indicate data derived from networks shown in Fig. 1A; magenta lines show linear regression with 95% confidence intervals). Power law ASDs predominantly appear in networks
with moderate clustering of somata (CI = 0.82 at PC1 score = 0). H, Slopes of the initial third of ASD curves (no normalization) a as function of PC1 score. Magenta line shows the moving
median (window62) of a. ASDs close to a power law around PC1 score = 0 had a median a =�1.89 (crossing of blue lines) and were dominated by PKCN networks.
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component analysis. The first principal component (PC1; Fig. 2D,
inset) captured overall ASD curvature, explaining 86.4% of the
variance (Fig. 2E, inset), which becomes apparent in the recon-
struction of normalized ASDs using PC1 (Fig. 2E). PC1 continu-
ously mapped the shape of normalized ASDs from concave to
convex as function of the PC1 score with straight ASDs (power
law) at zero (Fig. 2F). Distributions of the PC1 score differed
significantly across PKC conditions [PKC�, 3.7 6 0.3 j 2.5, p
= 6.8 * 10�11 (vs PKCN), p = 4.3 * 10�22 (vs PKC1); PKCN,
�0.7 6 0.5 j 3.9; PKC1, �5.4 6 0.7 j 3.7, p = 1.8*10�7 (vs
PKCN); mean 6 standard error of the mean (SEM) j SD,
Student’s unpaired two-sample t test]. In the morphologically
analyzed networks, CI increased with PC1 score (Fig. 2G),
reflecting the transition from concave (subcritical) to convex
(supercritical) ASDs with increasing degree of neuronal clus-
tering. The rescaling exponent a = �1.89 was determined as
the median initial slope of ASDs close to a power law (PC1

scores between �2 and 2; Fig. 2H).

Neuronal clustering and functional modularity in vitro
Estimating modularity based on multisite recordings relies on a
meaningful description of the functional network connectivity.
We derived a measure of functional modularity from the pair-
wise correlation of sites in their participation in avalanches. The
substructuring of the correlation matrices increased with the
degree of clustering in networks (Fig. 3A), indicating the appear-
ance of functional submodules. The strongest correlations in the
most homogeneous PKC� networks showed little depend-
ence on the distance between sites. Correlations were increas-
ingly dominated by nearby and neighboring sites in the more
clustered PKCN and PKC1 networks (Fig. 3B). Average corre-
lation strength decreased with increasing clustering in the net-
work. In addition, the distance dependence of the correlation
became steeper with increasing clustering (Fig. 3C). This sug-
gested progressively more local connectivity and spatial modula-
rization of the network with increasing clustering. Functional
modularity calculated from the correlation matrices (negative
correlations set to zero) using the Louvain method (Qfunc) was
significantly different between PKC conditions and their respec-
tive degrees of neuronal clustering [Fig. 3D; PKC�, 3.2 * 10�2 6
1.9 * 10�3 j 1.4 * 10�2, p = 7.7*10�4 (vs PKCN), p = 2.4�11 (vs
PKC1); PKCN, 5.3 * 10�2 6 5.0 * 10�3 j 4.2*10�2; PKC1, 1.7 *
10�1 6 2.4 * 10�2 j 1.3*10�1, p = 1.5*10�9 (vs PKCN); mean 6
SEM j SD, Student’s unpaired two-sample t test]. Combining
electrophysiological and morphologic analyses for the subset of
recorded networks mentioned above showed a strong correlation
between the Qfunc and PC1 scores (Fig. 3E) as well as between
Qfunc and CI (Fig. 3F), indicating a crucial role of neuronal clus-
tering and associated network modularity in the gradual shift
from supercritical to subcritical avalanche dynamics. Networks
with moderate CI (0.82) displayed moderate Qfunc (6.4*10�2)
and close to power law ASDs (PC1 score = 0). Variations of neu-
ron density did not account for differences in Qfunc across net-
works (Fig. 3G).

Moderate functional modularity correlates with critical
avalanche dynamics
To illustrate how Qfunc was reflected in avalanche dynamics,
we assigned networks of the different PKC conditions and re-
spective ASDs (Fig. 4A) into the three categories low (,33.3rd
percentile), moderate and high (.66.7th percentile) Qfunc

(Fig. 4B). Note that networks recorded several times in the
course of development can contribute to more than one category.

Homogeneous PKC� networks dominated in the low Qfunc group,
with convex (supercritical) ASDs, whereas strongly clustered
PKC1 networks formed most of the high Qfunc group with
concave (subcritical) ASDs. Moderately clustered PKCN net-
works, in turn, contributed most of the moderate Qfunc group
with ASDs close to a power law (approximately critical). ASDs
showed little dependence on spatial extent of the sampling
of activity as estimated with computationally reduced MEA
sizes (Fig. 4C).

Mesoscale criticality in simulated networks
Avalanche statistics derived from mesoscale subsampling of spike
activity in in vitro networks showed a gradual transition from sub-
critical to supercritical ASDs as a function of Qfunc (Fig. 5A,B). To
understand how network modularity affected recruitment dynam-
ics across different scales, we determined avalanche statistics in
model networks. First, we simulated probabilistic activity propaga-
tion with an average branching ratio b = 1, corresponding to a
critical branching process, by balancing synaptic weights relative to
the number of synapses Nsyn. Any neuron would thus on average
activate one postsynaptic neuron. Increasing modularity in spatial
networks shifted full network ASDs from a power law distribution
with a = �1.5 toward concave subcritical distributions with a shift
toward smaller avalanche sizes (Fig. 5C, left; Note that the over-
representation of network-size avalanches is a finite-size effect col-
lapsing all larger avalanches that could appear in networks with
infinite size.). This can be explained by an increasing likelihood of
redundant neuron activation through multapses and convergent
connections with increasing modularity (coalescence). As super-
critical ASDs dominated in homogenous PKC� networks, we
increased b to 1.05 in the simulation. As expected, random net-
works with such dynamics displayed supercritical ASDs. Increasing
modularity tuned full network ASDs toward a power law with a
critical exponent a = �1.5 and then toward subcritical ASDs
(Fig. 5C, right). Recruitment statistics within clusters showed
the opposite dependence during avalanche dynamics, with
supercritical intracluster recruitment in networks with high mod-
ularity transitioning to subcritical recruitment dynamics in homo-
geneous and random networks. In simulated networks, Qp

func

increased exponentially with Qp toward convergence at 1 (fully
isolated neurons; Fig. 5D). b ¼ 1:05 effectively increased func-
tional connectivity and thereby decreased Qp

func, leading to a
steeper exponential dependence between Qp

func and Qp. MEA
recordings sample avalanche dynamics on the mesoscale and
typically show multiunit activity. To understand how this influ-
ences ASDs, we calculated avalanches for the simulated networks
from the combined time series of the two neurons closest to each
cluster center. With b = 1, mesoscale subsampling in random
connectivity produced steeper ASDs with a ; �1.9, close to the
exponent determined from our recordings (Fig. 5E, left).
Increasing modularity led to subcritical recruitment dynamics.
However, with b = 1.05, increasing modularity led to a gradual
transition from supercritical to subcritical dynamics (Fig. 5E,
right). Moderate structural modularity (Qp ;0.8) was associated
with close to power law ASDs with a approximately �1.9. For
mesoscale subsampling, Qp

func showed a similar exponential decay
with decreasing Qp as assessed from the full network, with a
steeper decay for b = 1.05 (Fig. 5F).

Discussion
Ample experimental evidence suggests that neuronal networks
self-organize toward a critical point where activity on average
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Figure 3. Neuronal clustering promotes functional modularity. A, Pairwise correlation matrices for the participation of recording sites with spike activity determined for all avalanches became increas-
ingly structured with the degree of clustering in PKC�, PKCN, and PKC1 networks (examples for networks shown in Fig. 1A), indicating the emergence of functional submodules. Negative correlations
were zeroed. Only for illustration, correlations were saturated at the lowest 1% and highest 99% of their range. B, Functional modularization illustrated for the highest 400 correlations (edges) between
MEA recording sites with spike activity (black dots; gray dots, no spike activity). C, Pairwise correlation weakened with distance between recording sites and decreased overall with the degree of clustering
in PKC�, PKCN, and PKC1 networks. Isoclines indicate the cumulative fraction of equal or lower correlation coefficients at a given distance between recording sites. D, Functional modularity Qfunc was cal-
culated based on the pairwise correlation matrices using the Louvain method and significantly differed between PKC conditions (box plot shows median and 25th and 75th percentiles with whiskers
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neither tends to grow nor decay (Plenz et al., 2021). Although a
tempting concept, given the associated computational benefits
(Gautam et al., 2015), fine-tuning of complex biological networks
toward a narrow range in a vast configurational space seems
unlikely (Heiney et al., 2021). Theoretical studies proposed that
network modularity could be an important ingredient for critical
dynamics by providing more configurational leeway on the basis
of regional mixtures of subcritical and supercritical dynamics
(Rubinov et al., 2011; Wang and Zhou, 2012; Moretti and Muñoz,
2013; Hilgetag and Hütt, 2014). Whether and how neuronal

/

extending to the most extreme datapoints not considered as outliers). Asterisks denote significant
differences between distributions (p , 0.001, Student’s unpaired two-sample t test). E, Qfunc
decreased exponentially with PC1 score increasing from negative (concave ASD shapes) to positive
(convex ASD shapes). ASDs close to power law (PC1 score = 0) were associated with moderate
Qfunc (intersection of blue lines) prominent in PKC

N networks. F, Qfunc increased exponentially with
decreasing CI (increasing clustering) calculated from micrographs. The correlation suggested that
moderate Qfunc appeared with a moderate CI;0.8. G, Qfunc was only weakly correlated with neu-
ron density. Magenta lines (E–G) show linear regression with logarithmic Qfunc-axis and 95% confi-
dence intervals. Asterisks refer to networks shown in Figure 1A.

Figure 4. Moderate functional modularity promotes close to power law ASDs. A, ASDs from the respective PKC conditions with avalanche size s normalized by the number of recordings sites
N using a = �1.89 (obtained for close to power law ASDs, Fig. 2H) for rescaling to a common axis. Individual networks were typically recorded twice in the course of development after 18
DIV. B, Networks were assigned into the three categories representing low (,33.3rd percentile), moderate, and high (.66.7th percentile) Qfunc. PKC

� networks were mostly part of the low
Qfunc group with convex ASDs, whereas PKC

1 networks dominated in the high Qfunc group with concave ASDs. PKC
N networks contributed most to the moderate Qfunc group with ASDs close to

a power law but also constituted large fractions in the other groups. ASD line color refers to PKC conditions in A. Blue lines show the respective Qfunc group averages. C, Reducing the virtual
MEA size by successively removing perimeter electrodes did not fundamentally change ASDs.
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network self-organization establishes adequate modularity levels
for critical dynamics is not known.

Dependencies between clustering and modularity
The degree of modularity in a neuronal network may be quanti-
fied in terms of its structural connections or based on the func-
tional correlations between neurons. Because of the inaccessibility

of the full connectivity, given the large number of neurons
and synapses and synaptic plasticity even at short timescales,
it is virtually impossible to quantify the true structural modu-
larity in biological networks. Nevertheless, in neuronal net-
works in vivo and in vitro, the vast majority of connections are
formed locally (Levy and Reyes, 2012; Barral and Reyes, 2016),
and simulations of abstract networks show that modularity is

Figure 5. Clustering and modularity determine mesoscale avalanche statistics. A, B, ASDs sorted as a function of Qfunc. ASDs gradually transition from concave (subcritical) to convex (supercritical)
shapes with decreasing Qfunc. Close to power law ASDs occur at moderate Qfunc. Line or surface color in A and B indicate the pointwise ratio of avalanche size probability and a power law with a =
�1.89 shown as a tilted plane or grid. B, Surface obtained by moving median smoothing of the array of ASDs in A to visualize the gradual transition. White lines delimit the moderate Qfunc group
in Figure 4B. C, Full network ASDs derived from simulations of probabilistic activity propagations (N = 1000 neurons; networks in Fig. 1E–G). Left, ASDs become increasingly subcritical with increas-
ing structural modularity Qp, although neurons on average activate one postsynaptic neuron (branching ratio b = 1). ASD line color denotes pointwise ratio with a power law, indicated by a plane
with a = �1.5. The ASD with finite-size effects expected for random connectivity is shown at Qp = 0.6 for reference. Right, Increasing b to 1.05 resulted in supercritical ASDs in networks with
low Qp. Increasing Qp dampened supercritical recruitment toward critical and subcritical ASDs (color code and reference lines as in left). D, Qpfunc derived from the recruitment statistics in simulated
networks (as in Fig. 3) scaled exponentially with Qp and depended on b . Increasing b from 1.0 to 1.05 reduced the functional modularity Qpfunc for a given structural modularity Q

p, with increasing
reduction toward lower Qp (steeper slope; magenta lines, regression with logarithmic Qpfunc-axis). E, Avalanche dynamics subsampled at the mesoscale level (using only activity of the two neurons
closest to each of the respective cluster centers; N = 37) mimics MEA recordings (same simulations as in C). s/N hence denotes the fraction of sampled sites (1 per cluster) recruited in an avalanche.
Mesoscale ASDs show the same dependence on Qp as full network ASDs, however, with a steeper slope a =�1.9 and reduced finite size effect (shown in A and B). ASD line color denotes point-
wise ratio with a power law (a = �1.9). ASD effects expected for random connectivity shown at Qp = 0.6 for reference. F, The reduction of Qpfunc with decreasing Q

p was more pronounced with
subsampling. For b = 1.05 and low Qp, Qpfunc decayed toward zero indicating full recruitment of the sampled sites during avalanches.
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influenced by clustering if average axonal projection ranges
are in the range of ICDs (Gilarranz, 2020). Homeostatic reg-
ulation of connectivity by adjusting neurite field growth to
the local neuron density (Okujeni and Egert, 2019b) would
amplify short-range connectivity at the expense of long-range
intercluster connectivity. Consistent with this, we find a nega-
tive dependence of average axon length normalized to ICD on the
degree of clustering in vitro. Because of this control loop, axons
would become shorter in overall denser networks, which explains
why functional modularity was largely independent of the aver-
age neuron density. Functional modularity, however, increased
exponentially with the degree of neuron clustering and esti-
mates of structural modularity. The same relations appeared in
our simulations of modular networks. The exponential depend-
ence may be explained by structural modularity reflecting direct
connections, whereas functional modularity also comprises
indirect links that contribute to activity correlations. The result-
ing increase of functional connectivity decreases modularity.
The effective strength of indirect connections decays exponen-
tially with the number of synaptic steps by multiplication of
activation probabilities. Consequently, in clustered networks
with shorter axons, the number of effective indirect pathways
and their influence on functional modularity decreases.

Impact of modularity on avalanche dynamics
At criticality and branching ratio = 1 synaptic weights need to be
balanced by the number of synapses formed by each neuron. This
could be reflected in the continuous redistribution of synaptic
resources (Minerbi et al., 2009; Hazan and Ziv, 2020) and synaptic
scaling (Wilson et al., 2007; Turrigiano, 2008) in biological net-
works. However, in recurrent networks, multiple synapsing of indi-
vidual presynaptic neurons and convergent synapsing of neurons
with correlated firing can result in excess depolarization of postsy-
naptic neurons, which effectively absorbs synaptic input (coales-
cence) and reduces postsynaptic firing (Zierenberg et al., 2020),
decreasing the branching ratio with increasing modularity.
Previous work indicated multapses in highly clustered PKC1

networks and a large number of weak divergent synaptic connec-
tions in homogeneous PKC� networks (Okujeni et al., 2017). The
latter would have fewer multapses and less convergence; and, hence,
activity propagation would be affected less by coalescence. This is in
agreement with the transition from supercritical to subcritical dy-
namics with increasing clustering and modularity reported here.

Criticality assessment with subsampled networks
In modular networks with supercritical local circuits but critical
mesoscale branching dynamics, sampling ASDs from local popula-
tions would entail strong deviations from power laws (Levina and
Priesemann, 2017). In fact, most experimental studies reporting
criticality in neuronal systems used electrode spacing too large
(.0.1 mm) to differentiate intracluster dynamics but corresponded
well with mesoscopic activity propagation across neuron clusters
(Pasquale et al., 2008; Petermann et al., 2009; Hahn et al., 2010;
Tetzlaff et al., 2010; Plenz et al., 2021). The more negative critical
exponents reported for cultured networks in vitro, around �2
rather than �1.5 associated with a critical branching process,
could be readily explained by subsampling (Carvalho et al., 2020).

Mesoscale criticality in vitro and in vivo
Our experimental data indicates a strong correlation between the
degree of clustering and modularity in neuronal networks in
vitro and their closeness to criticality. We propose that neurons
in homogeneous networks will exhibit supercritical recruitment

dynamics. Reports indicating supercritical dynamics within local
clusters in vitro (Cohen et al., 2008; Teller et al., 2014; Lonardoni
et al., 2017) support this concept in that each cluster constitutes
an intrinsically homogeneously connected network. Appropriate
modularity with weaker intercluster connectivity would then
dampen activity propagation across clusters toward criticality
(Wang et al., 2017; Gutjahr et al., 2021). In such a scenario, crit-
icality would emerge at the mesoscopic network level of interact-
ing clusters.

Mesoscale criticality may apply to the neocortex with its mini-
columnar architecture and to other modular brain regions where
clustered network architecture (Rockland, 2010; Ji et al., 2015)
combines with highly correlated intracluster activity (Maruoka et
al., 2017; Hosoya, 2019). Conversely, neuronal migration deficits
that have an impact on the minicolumnar organization of the
neocortex have been found in several neurodevelopmental disor-
ders (Di Rosa et al., 2009; McKavanagh et al., 2015; Casanova
and Casanova, 2019). In line with reports of disrupted criticality
in such conditions, typically sampled frommesoscale and macro-
scale structures, clinical diagnostics increasingly investigates
indicators of criticality in brain activity (Arviv et al., 2016; Jiang
et al., 2018; Zimmern, 2020; Hagemann et al., 2021; Heiney et al.,
2021; Alamian et al., 2022).

In conclusion, network modularization could be a powerful
mechanism contributing to self-organized mesoscale criticality
in neuronal networks.
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