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Abstract

Purpose of the review: Exposure to essential and non-essential metals is widespread. Metals
exposure is linked to epigenetic, particularly DNA methylation, differences. The strength of
evidence with respect to the metal exposure type, timing, and level, as well as the DNA
methylation association magnitude, and reproducibility are not clear. Focusing on the most recent
three years, we reviewed the human epidemiologic evidence (n=26 studies) and the toxicologic
animal model evidence (n=18 studies) for associations between metals exposure and DNA
methylation.

Recent findings: In humans, the greatest number of studies focused on lead exposure, followed
by studies examining cadmium and arsenic. Approximately half of studies considered metals
exposure during the 7n utero period and measured DNA methylation with the genome-wide
Illumina arrays in newborn blood or placenta. Few studies performed formal replication testing

or meta-analyses. Toxicology studies of metals and epigenetics had diversity in model systems
(mice, rats, drosophila, tilapia, and zebrafish were represented), high heterogeneity of tissues
used for DNA methylation measure (liver, testis, ovary, heart, blood, brain, muscle, lung, kidney,
whole embryo), and a variety of technologies used for DNA methylation assessment (global, gene
specific, genome-wide). The most common metals tested in toxicologic studies were lead and
cadmium.

Summary: Together, the recent studies reviewed provide the strongest evidence for DNA
methylation signatures with prenatal metals exposures. There is also mounting epidemiologic
evidence supporting lead, arsenic, and cadmium exposures with DNA methylation signatures
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in adults. The field of metals and DNA methylation is strengthened by the inclusion of both
epidemiology and toxicology approaches, and further advancements can be made by coordinating
efforts or integrating analyses across studies. Future advances in understanding the molecular basis
of sequence specific epigenetic responses to metals exposures, methods for handling exposure
mixtures in a genome-wide analytic framework, and pipelines to facilitate collaborative testing
will continue to advance the field.
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Introduction

Environmental exposures to metals are an enduring public health issue. Non-essential
metals, such as lead and cadmium, are those with no normal physiologic function in

the body. At increasing levels, they have deleterious effects on multiple health endpoints,
including neurodevelopment and neurodegenerative disorders, cancer, and cardiometabolic
disorders [1-3]. Non-essential metal exposures arise through multiple sources and pathways,
including contamination of food and water systems from industrial processes, as well

as exposure through ambient air and tobacco smoke [4]. Other trace metals, such as
manganese and selenium, are distinguished by their essential nature for normal biological
processes, including serving as co-factors for enzymatic function or as a component of
amino acids (selenocysteine) [5,6]. Essential metals can exhibit non-linear dose-response
curves with health endpoints, wherein toxicity is observed at both low and excess levels.
Epidemiology studies can approximate human exposure to environmental trace metals
through biomonitoring levels in human tissue (e.g. placenta, whole blood) and excretion
samples (e.g. urine and fecal samples), but these studies are often observational and
available tissues may be limited. Toxicology studies of trace metals are better able to
assess causality and mechanisms of action, however their findings may not always be

able to be extrapolated to humans. Selection of model systems and relevance of dose for
human exposures are important toxicologic study design factors. Across both epidemiology
and toxicology studies of metals, the exposure timing (e.g. adulthood, /n utero), route

(e.g. inhalation, ingestion, injection), duration (e.g. acute, chronic), and source, and dose
may influence the impacts. Altogether, the integration of complementary evidence from
both epidemiology and toxicology studies are critical for advancing human health risk
assessments of metals exposures.

Metals exposure levels related to health can have epigenetic marks as a biomarker or
mechanism of that action. Upon human exposure, trace metals can interact with enzymes
and interfere with intracellular gradients of micronutrients and reactive oxygen species
[7]. These interactions are detectable via shifts in molecular signals, including epigenetic
modifications [8]. There are several types of epigenetic modifications, and although their
mechanisms are unique, they have important implications for regulating gene expression.
DNA methylation is one epigenetic mechanism that can directly influence the magnitude
of gene expression. Levels of epigenetic factors and responses to metals exposure can be
tissue specific. For example, whole blood and saliva are less invasive source tissues in
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epidemiology studies, and they may be a proxy or surrogate of changes in the epigenome at
hypothesized target organs where toxicological effects are occurring [9]. Studies conducted
in animal models are better equipped to directly determine epigenetic mechanisms in

target tissues, such as the brain or heart. The timing of epigenetic measurements is

also important. When measuring epigenetics as a potential consequence of environmental
exposures, prospective study designs with exposure prior to DNA methylation measurement
are necessary. Biologically there are major waves of epigenetic change throughout the life
course, including the /in utero or early life period for all tissues, or other time periods

like puberty for specific tissues. Studies may monitor exposures during these windows of
epigenetic susceptibility.

In this review article, we link together exciting recent research on metals and epigenetics.
The field of metals and epigenetics has been active for at least two decades and previous
review articles summarized early progress [10-13]. To bring the reader up to date, in this
article, we focused on metals and epigenetics research published in the last three years.
First, we cover the domain of human population-based epidemiology. Second, we review
studies using model system-based toxicology. In both fields of research, we summarized
their findings and evaluated the strength of the current evidence. Lastly, we reflect on the
critical gaps and future directions of this field to make suggestions for strategies to make
further advances.

Metals and epigenetics: Epidemiologic evidence

Many recent studies have associated metal exposures to changes in epigenetic endpoints.
Through a PubMed search (Supplementary Methods) and subject matter expertise, we
identified recent epidemiologic observational studies, published between January 1, 2019,
and March 31, 2022. DNA methylation is the most common epigenetic endpoint used

in epidemiologic studies that include epigenetic measurement. We included studies based
on DNA methylation being the primary endpoint, metal exposure the primary exposure,
and observational studies based on human subjects only (Supplemental Figure 1). These
epidemiological studies vary in design, sample characteristics, and timing of exposure and
DNA methylation collection. Our findings included 26 observational studies, including
three prospective studies, three meta-analyses, nineteen cross-sectional studies, and one
case-control study (Table 1). We organized the results by study design and when possible, by
metal exposure (Figure 1).

DNA methylation is sequence specific and microarrays or sequencing technologies allow
for measurement of DNA methylation at candidate locations or genome-wide to test for
differentially methylated positions or regions. Epigenome-wide association studies (EWAS)
are performed as a discovery analysis when all positions or regions are tested for differences.
These methods often rely on bisulfite treatment of the DNA, which converts an un-modified
cytosine to uracil and maintains modified cytosines in the sequence.

Prospective studies

Prospective studies are a strong epidemiologic study design as the exposures are measured
prior to DNA methylation measures, limiting the potential for reverse causation. We
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identified three prospective studies testing prenatal maternal lead concentration levels

and cord blood DNA methylation at birth. Although there were substantial differences

in sample size, these studies were characterized by having repeated measures of lead
concentrations during critical gestational periods with the purpose of unveiling 1) trimester-
specific effects of maternal lead exposure on the offspring DNA methylation levels, and 2)
sex-specific DNA methylation patterns in response to lead exposure. Specifically, in a cohort
of Mexican mother-child pairs, first trimester blood lead concentrations were associated
with DNA methylation levels at three sites, annotated to the genes RAB5A, EXT1, and

a non-genic region, and sites were enriched for pathways related to neurodevelopment
[14]. No associations were observed between second trimester maternal blood lead levels
and DNA methylation, but third trimester blood lead concentrations were associated with
one site in a non-genic region [14]. Additionally, in a study of mother-child pairs in

Korea, the maternal blood lead levels measured during pregnancy weeks 12-20 were tested
with infant sex-specific cord blood DNA methylation was tested [15]. Among males, 11
sites were differentially methylated by lead levels, and sites were enriched for endothelial
cell development via CDH5 and axonogenesis via PLXNA4[15]. Among females, no
differentially methylated sites were observed [15]. Finally, a multi-metal epigenome-wide
association study in the United States explored the relationship between prenatal exposure
to essential and non-essential trace metals during first trimester of pregnancy and DNA
methylation at two time points, in cord blood at birth and in whole blood at mid

childhood [16]. Manganese concentrations were associated with higher DNA methylation
at one site, mapping to the gene A2BP1, while lead exposure was associated with to

lower DNA methylation of a site, mapping to the gene CASPS8. In females, manganese
exposure was associated with nine differentially methylated sites, seven of which persisted
to mid-childhood [16]. Among males, manganese exposure was associated with higher
DNA methylation of one site linked to the gene A2BP1, which persisted to mid-childhood
[16]. Jointly, the results from these studies suggest that metal exposures during critical
gestational periods, in particular during the first trimester of pregnancy, are associated with
sex-dependent differences in DNA methylation in the offspring, which may persist until
mid-childhood.

Meta-analyses

Discovery analyses through EWAS are often challenged by a greater number of DNA
methylation positions being tested than number of participants in the study. Testing for
replication or meta-analyses across samples can help reduce false positive associations.

It has traditionally been difficult to perform meta-analyses of metal exposure epigenetic
signatures due to heterogeneity in relevant design characteristics such as sample size,
demographic composition (sex and genetic ancestry), timing of metal exposure (prenatal
vs adulthood), and epigenetic tissues measured (cord blood, buccal cells, and blood). Three
recent meta-analyses used standardized protocols to harmonize exposure assessment and
DNA methylation datasets with the aim of identifying epigenetic signatures of copper [17],
arsenic [18] and mercury exposure [19], across different populations.

The first meta-analysis combined data from two mother-infant pair cohorts, the New
Hampshire Birth Cohort Study and the Rhode Island Child Health Study, to explore the
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relationship between placental copper concentrations and genome-wide DNA methylation
in placental tissue [17]. These cohorts had similar collection of demographic and
anthropometric measures from mother-infant pairs, assessment of metal concentrations,
measurement of DNA methylation, and data analysis procedures. Through meta-analysis,
placental copper concentrations were associated with DNA methylation at 15 sites and

a region in the promoter of the gene GSTPI [17]. Sensitivity analyses indicated these
results were robust to differences in the racial/ethnic composition of the two cohorts [17].
With common investigators involved in the design of these two cohorts, harmonization of
exposure assessment and DNA methylation measurement was facilitated.

In the meta-analysis of prenatal mercury exposure and DNA methylation, seven existing
cohorts participated [19], and this collaboration was facilitated through the Pregnancy

And Childhood Epigenetics consortium [20]. Total mercury cord blood concentration was
selected as the primary exposure variable. For cohorts with mercury assessment in different
tissues (one in maternal hair and five in maternal whole blood), exposure levels were
transformed to cord blood levels. The timing of DNA methylation measures varied across
cohorts. Five cohorts measured cord blood DNA methylation at birth, four cohorts measured
child blood DNA methylation at ages 7-8, and two cohorts had DNA methylation measures
for both time points [19]. By leveraging the increased power across cohorts, the meta-
analysis identified mercury exposure was associated with higher DNA methylation levels
at two sites mapped to the MED31 gene in both cord and childhood blood. These findings
suggest prenatal exposure to mercury is associated with DNA methylation differences at
birth that are sustained through childhood.

Third, the meta-analysis of arsenic and DNA methylation aimed at identifying arsenic
related signatures of DNA methylation across two different studies (in Chile and
Bangladesh) through standardized data pipelines, study design procedures, and common
applications of statistical methods [18]. The two study samples had differences in exposure
assessment and selected tissues for DNA methylation analysis. The Chilean study assessed
exposure based on recruitment from historical high or low arsenic exposure areas. The
Bangladesh study measured baseline arsenic levels in water samples during recruitment [18].
The Chilean sample used peripheral blood mononuclear cells (PBMCs) and buccal cells

for DNA methylation measurement, while the Bangladesh study used blood samples only
[18]. Results were meta-analyzed using a combination of all PBMC samples from Chile and
Bangladesh; and all PBMC samples (Chile and Bangladesh) plus buccal cells (Chile only).
The meta-analysis from all PBMC samples revealed 11 differentially methylated regions, the
meta-analysis from PBMC plus buccal cells identified 16 differentially methylated regions,
and eight of the differentially methylated regions overlapped [18]. Arsenic-associated

sites were enriched for pathways related to fatty acid elongation, fatty acid metabolism,

and lysosome activity [18]. In general, these copper, mercury, and arsenic meta-analyses
leverage large sample sizes to achieve statistical power to detect common epigenetic
signatures from unique metal exposures across widely diverse populations. Standardized
data procedures facilitated DNA methylation analysis from different tissues and time points
to identify persistent epigenetic differences across the lifespan.
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Cross-sectional studies

Cross-sectional studies are a highly feasible epidemiologic study design because they only
require one participant visit, though we should be cautious when interpreting findings.
Across 19 cross-sectional studies identified, lead exposure was the most researched metal
[21-24]. These studies varied in sample size, geographical region, and target tissue. In
general, lead blood levels were associated with gene specific DNA methylation patterns,
higher average levels of DNA methylation, or differentially methylated sites. In Zambia,
blood lead levels were correlated with differential patterns of DNA methylation of the
ALAD and the pI6tumor suppressor gene promoter regions [24]. At least 84.3% of
children with high lead exposure levels exhibited altered ALAD gen DNA methylation,

in comparison to only 42.1% of children with low lead exposure levels [24]. In a study
involving neonates from the United States, lead exposure was associated with lower cord
blood DNA methylation at 30 sites and higher methylation at three sites [23]. These
associations were attenuated after adjusting for blood cell type proportions, which is an
important factor in DNA methylation profiles. A small study of occupational lead exposure
in China analyzed DNA methylation associations with high blood lead levels (>300ug/L)
versus low (<100ug/L), and lead concentrations were associated with 356 differentially
methylated sites enriched for pathways associated with nervous system development [25].
Lastly, in Mexico, an epigenome-wide association study of prenatal lead exposure and
cord blood DNA methylation found 47 differently methylated sites, 20 of which were
previously identified to be associated with low birth weight [21]. These findings may
suggest differences in DNA methylation may be a mechanism by which lead exposure
contributes to low birth weight [21]. Altogether, these studies provide evidence of the
variable effects of lead exposure on DNA methylation at early life stages and during
adulthood, though a formal meta-analysis across studies has not yet been performed and
is warranted.

After lead, the next most abundant metals examined in human cross-sectional studies are
cadmium, arsenic, and chromium. Among 13 American Indian tribes, cadmium exposure in
adults was associated with six DNA methylation sites, and sites were enriched for cancer
pathways, cardiovascular disease risk factors, and inflammation [26]. A cross-sectional
analysis of electroplating workers in China found chromium exposure was associated with
eight DNA methylation sites, these results were confirmed in vitro, and were associated
with expression of SEMA4B, a gene involved in chromium-related carcinogenesis [27].
Chronic arsenic exposure has previously been associated with epigenetic dysregulation and
carcinogenesis. A large United States cross-sectional study observed arsenic exposure was
associated with 20 differentially methylated sites and one differentially methylated region,
which were consistent across sex groups and replicated findings from independent studies
[28]. The most significant differentially methylated site mapped to the S C7A11 gene,
involved in transport of cysteine, an established mechanism related to arsenic [28]. In a
cross-sectional study in Spain and Bangladesh, urinary arsenic levels were associated with
six common differentially methylated sites and seven differentially hydroxymethylated sites,
enriched for cardiometabolic disease, inflammation, and cancer [29]. Across these metals,
there may be sufficient individual studies for a formal meta-analysis to examine consistency
across populations.
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Environmental exposure to metals occurs in mixtures, and a diverse set of cross-sectional
studies have analyzed the associations between multiple metal exposures and DNA
methylation. For example, among Chinese mothers exposed to e-waste recycling areas
during pregnancy, concentrations of lead, cadmium, manganese, and chromium were tested
for association with DNA methylation in their newborns’ cord blood [30]. Multiple metal
exposures were associated with 125 differentially methylated sites, including 79 with higher
DNA methylation and 46 with lower DNA methylation [30]. In Taiwan, a log unit increase
in lead concentration was associated 0.315% higher global DNA methylation (p < 0.001),
and a log unit increase in cadmium concentration was associated with 0.263% higher global
DNA methylation (p < 0.001) [22]. One study evaluated the relationship between maternal
concentrations of three non-essential metals (lead, cadmium, and mercury) and two essential
trace metals (manganese and selenium), and whole blood DNA methylation levels during
pregnancy [31]. Cadmium and manganese exposure were associated with higher global
DNA methylation [31]. Lead was associated with 11 differentially methylated sites (false
discovery rate <0.1), enriched for neurology-related gene ontologies [31], similar to previous
observations [14]. These studies demonstrate that differences in DNA methylation may be
observed at different life periods with concomitant exposure to multiple metals.

Case-control studies

Case-control studies can be leveraged for environmental epigenetic epidemiology to provide
insights for populations with existing conditions. A matched case-control study conducted
mediation analysis to explore the indirect effect of DNA methylation at the WN/T3A gene
on the relationship between prenatal lead exposure and non-syndromic cleft lip and/or
palate (NSCL/P). /n utero lead concentrations were associated (p < 0.05) with 0.52%
higher DNA methylation at the W/T73A gene. They also observed that 9.2% of the lead
exposure association with non-syndromic cleft lip and/or palate may be attributable to the
mediating effect of WNT3A DNA methylation. Additional studies indirectly point to the
role of metals in DNA methylation. For example, a matched case-control study explored
the joint association between blood aluminum levels and DNA methylation of the beta-2
adrenergic receptor (ADRB2) gene in asthmatic children (n=70) compared to those without
asthma (n=70) [32]. High aluminum levels were associated with asthma (OR = 11.6,
95%Cl: 2.1, 63.4), but high ADRB2DNA methylation was not associated with asthma
(OR =0.7, 95%CI: 0.2, 3.1), suggesting uncontrolled asthma may be affected by elevated
blood aluminum concentrations rather than ADRB2 DNA methylation [32]. However, the
study did not explore the relationship between aluminum concentrations and ADRB2Z DNA
methylation levels directly. In studies such as this, it will be possible to directly test for
relationships between exposure and DNA methylation in the future.

Together, the recent epidemiology studies reviewed provide the strongest evidence for
DNA methylation signatures with prenatal exposures to lead, mercury, arsenic, copper,
and cadmium. Epidemiology studies of metals and DNA methylation are strengthened by
prospective study designs and collaborative meta-analysis or replication testing. Common
limitations of these studies include using surrogate tissues for both exposure and DNA
methylation assessment, instead of the target tissues. DNA methylation measures area
often collected at delivery, though critical periods in development may occur earlier.
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Complementary toxicology studies are able to overcome many of these challenges and
provide controlled exposure doses and epigenetic measures in target tissues.

Metals and epigenetics: Toxicologic evidence

Overview of metal exposure toxicology studies with epigenetic endpoints

Metal exposure toxicology studies with epigenetic endpoints seek to investigate biological
mechanisms of exposure toxicity and the role of changes in the epigenome. We searched for
metal exposure toxicology studies with epigenetic endpoints published as current research
between January 1, 2019 and March 21, 2022 (Supplementary Methods). We included
studies based on epigenetic factors being the primary endpoint, metal exposure the primary
exposure/treatment, and studies in animal models only (Supplemental Figure 2). A total of
18 studies were identified (Table 2).

The studies profiled here were extremely diverse in every aspect. The metal exposures
evaluated in these studies included: cadmium (7 studies), lead (5 studies), titanium dioxide
(1 study), uranium (1 study), and arsenic (1 study), with an additional study that evaluated
a mixture of lead and cadmium exposure (1 study) (Figure 2). Exposure methods included
drinking water, lactation, gavage, intraperitoneally injection and inhalation. Multiple /n
vivo experimental models were used including mice (C57BL/6J, CD1, NIH/OlaHsd), rats
(Sprague-Dawley, Wistar, Long-Evans), drosophila, zebrafish, and Nile tilapia fish. The
target tissues evaluated for DNA methylation in the studies varied considerably. Liver (5)
and testes (4) were the most common targets, with additional tissues including spermatozoa
(2), brain (2), blood (2), embryos (2), kidney (1), ovaries (1), heart (1), and muscle (1).
DNA methylation was the principal epigenetic endpoint measured in all toxicology studies,
though most of the studies evaluated multiple epigenetic endpoints. Methyl groups are
added to DNA using DNA methyltransferase (DNMT) enzymes, and studies measure levels
or activity of DNMT to understand regulation of DNA methylation. Expression DNMTs
and ten-eleven translocation (TET) methylcytosine dioxygenases were often measured as
secondary epigenetic endpoints.

Assessment methods of DNA methylation in exposure toxicology studies

DNA methylation was the primary epigenetic endpoint measured in the exposure
toxicology studies, though there were considerable differences in the assessment methods.
Specific DNA methylation endpoints included global, genome-wide, and locus-specific.
Approximately half of the studies reported results for global DNA methylation, which
represents overall degree of methylated cytosine compared to total cytosine content [33].
Studies reporting changes in global DNA methylation used colorimetric, ELISA, or
luminometric microplate-based assays, or bisulfite conversion/pyrosequencing of LINE-1,
a repetitive DNA retrotransposon used as a proxy for global DNA methylation because

it constitutes 17% of human genome [34]. The other half of included toxicology studies
evaluated genome-wide DNA methylation with either whole genome bisulfite sequencing
(WGBS), an expensive method that covers DNA methylation across the entire genome
[35], or enhanced reduced representation bisulfite sequencing (EERBS), a more streamlined
method that focuses coverage on a large humber of biologically relevant loci. Lastly, a

Curr Environ Health Rep. Author manuscript; available in PMC 2023 December 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Elkin et al.

Page 9

handful of profiled studies evaluated the DNA methylation at individual gene loci, primarily
focusing on imprinted genes.

Differential DNA methylation in liver in metal exposure toxicology studies

As a major organ, the liver is the primary site of xenobiotic metabolism /n vivo, making it

a prominent target for metal exposure toxicity [36]. In the studies profiled here, the liver
was the most evaluated target tissue for changes in DNA methylation. Only two studies
evaluated the same metal (lead) and target tissues (liver and blood), using the same model
(mice) [37,38]. In both studies, maternal mice were exposed to lead through drinking water
2 weeks prior to pregnancy, during pregnancy, and through weaning [37,38]. Male and
female base-pair resolution DNA methylation was measured in offspring at 3 weeks old

in one study [38] and 5 months old in the other study [37]. Although, both studies had
hundreds of tissue- and sex-specific differentially methylated regions in lead-exposed tissues
compared to controls, there was little in common between the results reported. For example,
one of the goals of the two studies was to determine if DNA methylation changes in the liver
corresponded to those in paired blood samples. In young mice, there were few differentially
methylated regions in common between blood and liver, however, in the adult mice, there
were hundreds of differentially methylated regions in common between the two tissues.
Moreover, each study had differentially methylated regions at different imprinted genes in
common between blood and liver: young mice had Arid1b, Pde10a, Smoc2, Trappc9, and
adult mice had Bargain, Peg12, Rasgrfl, Snrpn, and different enriched pathways. Together,
the results of these two studies demonstrated that perinatal lead exposure caused changes in
liver and blood DNA methylation in a dynamic manner over time, even after lead exposure
had ceased.

In addition to the two studies, several other studies evaluated exposure induced differential
DNA methylation in the liver. One study demonstrated that cadmium exposure in adult
rats caused statically significant lower DNA methylation in liver gene promoter regions
[39], while a second study demonstrated that cadmium exposure in juvenile tilapia fish
caused significant time- and dose-dependent lower global DNA methylation [40]. These
findings suggest that cadmium exposure may cause a trend toward lower DNA methylation
in functional regions of the genome, with potential impacts on gene expression.

Differential DNA methylation in brain and embryotic tissue in metal exposure toxicology

studies

In addition to the liver, multiple toxicology evaluated exposure-induced differential DNA
methylation in other target tissues. Neurotoxicity is one of the most studied adverse health
outcomes of lead exposure. Two studies evaluated the effects of perinatal lead exposure on
DNA methylation in different parts of the rodent brain [41,42]. One study evaluated neurons
isolated from the mouse neuronal cortex [41], and the other study evaluated bulk tissue from
the hippocampus [42]. The neuron study reported a trend towards lower DNA methylation
in gene promoter regions in the cortex [41]. In contrast, the hippocampus study reported
higher DNA methylation in gene promoter regions of the hippocampus [42]. The results of
these two studies demonstrated that exposure to metals may cause variable changes in DNA
methylation within different regions from the same organ.
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Besides the brain, early embryonic target tissue was evaluated in several studies for
exposure-induced differential DNA methylation. During early embryonic development,
DNA methylation undergoes multiple windows of reprogramming, making embryos
particularly vulnerable to exposure-induced alternations to DNA methylation, which can last
into adulthood and impact chronic disease risk [43]. One study reported lower methylation
in 12-hour cadmium-exposed zebrafish embryos that returned back to baseline by 24-hour
exposure [44]. Another study reported no change to the global DNA methylation status

of LINE-1 in preimplantation mouse embryos perinatally exposed to cadmium [45]. The
findings of these two studies suggest that cadmium exposure may not significantly affect
global DNA methylation, however, more comprehensive studies using base-pair resolution
methods and cell type adjusted methods are needed to further understand the effects of
cadmium on embryonic tissue DNA methylation changes.

Effects of metal exposure on multi-generational changes in DNA methylation in toxicology

studies

Multi-generational epigenetic studies are conducted with exposure in one generation and
epigenetic markers measured in subsequent generations. Maternal (FO) exposure to toxicants
during pregnancy can directly cause changes in DNA methylation and traits in the offspring
(F1) generation [46]. The F2 generation was also directly exposed to the toxicant through
germ cells, and changes have been observed [46]. Some research examines the F3 and
subsequent generations that were never directly exposed to the toxicant. Reflected in current
research, there has been considerable interest in studying effects of maternal metal exposure
on DNA methylation patterns in adult offspring and subsequent generations. Half of the
studies profiled here evaluated multigeneration effects of metal exposure. Although the
variability in study designs makes it hard to draw specific conclusions about the findings,
these studies reported some type of alterations to DNA methylation resulting from maternal
exposure to metals. Most of the studies only involve evaluation of epigenetic changes in

the F1 generation, however, several studies extend findings to the F2 and F3 generations.
For example, in response to arsenic exposure in rats, lower global testes DNA methylation
was observed in FO, higher testes DNA methylation was observed in F2 and F3, and

higher ovary DNA methylation was observed in F3 [47]. Collectively, the current studies
have demonstrated metal exposures are capable of causing multigenerational epigenetic
alterations, however, the effects of such alterations on the health trajectory over the life
course of individuals in future generations is not yet understood.

Summary, critical gaps, & future directions

Metals exposure and epigenetics research is in a period of rapid growth. A critical mass

of studies and research groups are active in the area, which has generated breadth in

the timing and type of exposure measures, as well as the timing and tissue of DNA
methylation measures. Studies from the last three years offer compelling findings in

their study population or model system. In recent human epidemiology studies, there is
most evidence for lead and cadmium exposure during pregnancy and DNA methylation
differences in tissues collected at birth (cord blood and placenta tissue). In recent toxicology
studies, there is most evidence for prenatal lead and cadmium exposure causing differences
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in DNA methylation in liver from rodent models. Building on these successes, we identify
areas of future development to advance the field.

The most pressing and perplexing question in metals exposure epigenetics, and indeed in
environmental epigenetics more broadly, is the molecular basis for highly reproducible,
sequence-specific epigenetic differences. Metals may have a generalized response on
epigenetic modifying enzymes. For examples, exposures, including some metals, that
generate reactive oxygen species can deplete available methyl groups [48] or oxidize DNA
which alters methyl binding domains [49]. Metals can also influence levels of DNMT
enzymes [50] and cadmium can non-competitively bind DNMT, changing enzyme function
[51]. Metabolism of metals, particularly arsenic, may also influence the availability of

the methyl substrate for DNA methylation [12]. These types of epigenetic enzyme-based
mechanisms would be expected to produce widespread or global differences in DNA
methylation, which have been observed [50]. However, they fail to account for the highly
sequence specific differences in DNA methylation that are also observed with metals
exposures. The availability of sequences for action by epigenetic enzymes (based on the
presence or absence of transcription factors or histone occupancy) varies by developmental
timing and tissue and this has been hypothesized to dictate the exposure-epigenetic
specificity [52,53]. Similarly, while groups of environment-related DNA methylation
differences are concurrently associated with gene expression differences [54], and new
findings suggest epigenetic factors may influence cellular cytoskeletal structures [55],

the range of potential consequences of environment-related DNA methylation differences
have not been fully explored. Early life epigenetic programming may have lagged

effects in adulthood [56], requiring longitudinal investigations of consequences. Targeted,
sequence-specific epigenetic editing techniques [57,58], such as using piRNA to edit DNA
methylation [59], CRISPR to modulate chromatin marks or perturb DNA [60], or the DNA
binding proteins zinc finger nucleases and transcriptional activator like effector nucleases
[61] are emerging. Experimental toxicologic work using these types of techniques will
revolutionize the biologic understanding of the consequences of altered DNA methylation.
Understanding the biologic basis for reproducible, sequence-specific signatures of metals
exposure and their consequences will catapult the field forward.

There are numerous complementary areas of future development in the fields of metals
exposure modeling and in epigenetic measurement. With respect to metals exposure,
especially for essential metals where adverse effects are expected at both low and high
exposures, we need to incorporate non-linear dose-response curves. In epidemiology
studies, the choice of biological media for exposure assessment is a function of important
considerations, including metabolism and half-life of metals, directness of inference to
biological processes according to tissue specificity, and invasiveness towards human subjects
sampling. Additionally, some metals, such as arsenic may be conjugated or modified
upon metabolism within the human body. As such, different species of metals may be
quantified and afford inference of the metal at different stages of the metabolism process.
Metals exposures occur in combination and can influence absorption and metabolism of
each other. Advanced methods for modeling exposure mixtures has been applied [16],
though will be challenged by features of complex exposure matrices, including sparsity
of effect estimate signals within small sample sizes, collinearity between exposures, and
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potential high-dimensional interactions between exposures. Inclusion of multiple offspring
generations of model systems may yield important insight into potential transgenerational
effects attributable to metals exposures. Multigenerational studies should take particular care
when interpreting potential effects, as up to three generations may be directly exposed to the
parent chemical. Future work may also incorporate genetic polymorphisms that influence
metals metabolism, and in turn may modify the relationship between metals exposure and
epigenetics.

In the area of epigenetic markers, repeated longitudinal epigenetic measures will help
answer questions of the persistence and timing of exposure and epigenetic associations.
The development of human DNA methylation microarrays enabled standardization of
measurement across populations, and the new mouse DNA methylation microarray and

the new custom mammalian array [62] should enable new opportunities for cross-toxicology
study investigation. Notably, standard laboratory methods collapse all DNA modifications
(methylation, hydroxymethylation, formylation, carboxylation), though findings are often
attributed to the most abundant DNA modification, which is DNA methylation. Studies
highlighted here have largely focused on DNA methylation for utilitarian purposes (stability
of the marker in archived samples), though biologically DNA methylation is expected

to follow histone modifications [63]. Histone modifications are expected to be rapid
responses to environmental conditions with more immediate impacts on gene expression,
while DNA methylation provides longer term maintenance of environmental signals [64].
Earlier environmental epigenetic influences may be captured by using additional epigenetic
markers, including histone modifications. Measures of hydroxymethylation may also be
considered, particularly early in development or in brain or placenta tissues where the
marker is most abundant [65]. Rapid expansion in technology to measure multi-omics data
frames in combination with enhanced exposure assessment will yield new opportunities.
Improvements in the areas of metals exposure modeling and expansion on epigenetic
markers under consideration or standardization of epigenetic measures will build on the
existing foundational research.

Additionally, advances in the field of metals and epigenetics together will continue. The
rigor of associations between metals exposures and epigenetics is enhanced by testing
triangulation using diverse study designs and is a major current strength. This includes
testing findings across toxicologic model systems for evolutionary conservation and across
diverse human study samples with wide ranges of exposure for assessing generalizability

or specificity of signals. Statistically, we have noted that several the current studies lack
replication testing and are underpowered for epigenome-wide assessment. As with any
genome-wide analysis with relatively small effect sizes and small sample sizes, false positive
associations are expected. It is time for partnerships and replication testing to increase the
impact and rigor of the research. Larger and more collaborative epidemiologic studies which
involve replication testing or meta-analysis, akin to the recent mercury study in the PACE
consortium [19], are critically needed. There is also high potential for these collaborative
meta-analyses of metals and epigenetics through the Toxicant Exposures and Responses

by Genomic and Epigenomic Regulators of Transcription (TaRGET Il) consortium [66],

the Environmental Influences on Child Health Outcomes (ECHQ) consortium [67], and the
Cohorts of Heart and Aging Research in Genetic Epidemiology (CHARGE) consortium
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[68]. When testing associations between metals exposures and epigenetics, we need to be
clear about the limits of the inferences we can make (association, biomarker, mechanism,
cell composition marker) [69]. For example, reproducible epigenetic signatures of metals
may be assessed as biomarker of exposure, as has been effectively demonstrated with
smoking epigenetic signatures [70] and follow up questions can include the persistence and
cross-tissue applicability of the biomarker signal. Currently, human studies lack evidence
of a causal relationship between metals exposure and epigenetic signatures, but toxicologic
studies are advancing this area. Epigenetic signatures may be a marker of metals exposure-
induced altered cell type composition, particularly in toxicology studies where cell type has
generally not been adjusted for, which could be an important biologic effect of exposures
[71]. Continued and expanded collaboration across metals and epigenetics studies will
enable the assessment of reproducible findings, which will open opportunities for using
these signatures in biomarker or mechanistic studies.

Conclusion

In summary, metals exposures that are common in populations are associated with
epigenetic markers, specifically DNA methylation. To date, epigenome-wide studies have
largely investigated cadmium and lead exposure measured in blood and observed sequence
specific differences in DNA methylation, though replication testing is needed. It is an
exciting era for metals and epigenetics studies with emerging methods for multi-metal
exposure assessment, reproducible epigenome-wide DNA methylation measures, and
pipelines to facilitate collaborative testing. The next several years are expected to bring
further rapid advancements.
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