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Abstract

Background: Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible, and usually fatal 

lung disease of unknown reasons, generally affecting the elderly population. Early diagnosis of 

IPF is crucial for triaging patients’ treatment planning into anti-fibrotic treatment or treatments 

for other causes of pulmonary fibrosis. However, current IPF diagnosis workflow is complicated 

and time-consuming, which involves collaborative efforts from radiologists, pathologists, and 

clinicians and it is largely subject to inter-observer variability.

Purpose: The purpose of this work is to develop a deep learning-based automated system that 

can diagnose subjects with IPF among subjects with interstitial lung disease (ILD) using an 

axial chest computed tomography (CT) scan. This work can potentially enable timely diagnosis 

decisions and reduce inter-observer variability.

Methods: Our dataset contains CT scans from 349 IPF patients and 529 non-IPF ILD patients. 

We used 80% of the dataset for training and validation purposes and 20% as the holdout test set. 

We proposed a two-stage model: at stage one, we built a multi-scale, domain knowledge-guided 

attention model (MSGA) that encouraged the model to focus on specific areas of interest to 

enhance model explainability, including both high- and medium-resolution attentions; at stage 
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two, we collected the output from MSGA and constructed a random forest (RF) classifier for 

patient-level diagnosis, to further boost model accuracy. RF classifier is utilized as a final decision 

stage since it is interpretable, computationally fast, and can handle correlated variables. Model 

utility was examined by (1) accuracy, represented by the area under the receiver operating 

characteristic curve (AUC) with standard deviation (SD), and (2) explainability, illustrated by the 

visual examination of the estimated attention maps which showed the important areas for model 

diagnostics.

Results: During the training and validation stage, we observe that when we provide no guidance 

from domain knowledge, the IPF diagnosis model reaches acceptable performance (AUC±SD 

= 0.93±0.07),but lacks explainability; when including only guided high- or medium-resolution 

attention, the learned attention maps are not satisfactory; when including both high- and medium-

resolution attention, under certain hyperparameter settings, the model reaches the highest AUC 

among all experiments (AUC±SD = 0.99±0.01) and the estimated attention maps concentrate on 

the regions of interests for this task. Three best-performing hyperparameter selections according to 

MSGA were applied to the holdout test set and reached comparable model performance to that of 

the validation set.

Conclusions: Our results suggest that, for a task with only scan-level labels available, 

MSGA+RF can utilize the population-level domain knowledge to guide the training of the 

network, which increases both model accuracy and explainability.

Keywords

attention models; computed tomography; deep learning; domain knowledge; idiopathic pulmonary 
fibrosis; machine learning; medical imaging

1 INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a specific form of chronic, progressive, irreversible, 

and usually lethal lung disease of unknown causes with an estimated median survival of 3–5 

years since the initial diagnosis.1 In clinical settings, making a correct, rapid, and reliable 

IPF diagnosis is critical to triage patients’ treatment planning into anti-fibrotic treatment or 

other causes of pulmonary fibrosis treatment, and even lung transplantation registry.2

According to the official clinical guideline,2 computed tomography (CT) has become an 

integral part of the diagnosis of IPF. Radiological patterns of usual interstitial pneumonia 

(UIP) are the hallmark of IPF.2 Specifically, several CT features are frequently observed in 

UIP patterns, including honeycombing, subpleural reticulation, and traction bronchiectasis 

in a lower lobe subpleural distribution.2 The diagnosis of IPF involves the collaboration 

of multi-disciplinary discussion from specialists: clinicians, radiologists, and pathologists.2 

In more detail, patients suspected to have IPF should undergo an in-depth evaluation of 

potential causes or associated conditions, such as hypersensitivity pneumonitis, connective 

tissue disease, etc. If there is no potential cause identified, the chest CT patterns of the 

patient are evaluated. Despite the existence of these guidelines,2 the evaluation of these 

radiological patterns is a difficult task and needs a multidisciplinary team of experts in 
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interstitial lung disease (ILD) with subject to inter-observer variability.3,4 The average time 

from the referral to multidisciplinary diagnosis is a year.

To this end, this research aims to develop a deep learning-based automated diagnosis 

system to distinguish IPF from non-IPF among subjects with ILD based on chest CT 

scans. This diagnostic system is a stand-alone system without requiring additional efforts 

from imaging analysts and radiologists, such as lung segmentation, contouring, or other 

disease assessment. The clinical meaning of this research area is to (1) reduce inter-observer 

variability in the IPF diagnosis task, (2) enable timely and reliable IPF diagnosis, and (3) 

enable early anti-fibrosis treatment which may prolong patients’ survival time in the long 

term.5

Several machine learning and deep learning approaches have been developed to provide 

diagnostic support for IPF.6,7 For example, Walsh et al. trained a deep learning-based 

method to classify fibrotic lung disease into UIP, possible UIP, or inconsistent with UIP 

based on four CT slice combinations.8 Similarly, Christe et al. developed a pipeline for the 

automatic classification of CT images into several UIP patterns.9 The diagnostic pipeline 

involves lung segmentation and voxel-level tissue characterization. The development and 

maintenance of these techniques usually involve extensive collaborative efforts from 

radiologists, imaging analysts, software engineers, data scientists, which are not as desirable 

taking time and resource considerations into account.10

Moreover, some work in this area takes several CT slices as training or testing samples8,11; 

whereas our work takes 3D CT volumes as input to utilize more information across the 

lungs.

In recent years, numerous deep learning-based algorithms have achieved great success in 

various medical imaging tasks, such as segmentation, diagnosis, detection, etc.12,13 The 

successful application of deep learning systems in clinical practice relies on these three 

prerequisites: (1) the availability of well-labeled fine-scale data, which are usually at a pixel, 

regions of interests (RoI), or image slice level; (2) the extent of explainability on where and 

how the deep learning-based system makes the decision; and (3) the ability to generalize 

well to a new dataset.

Attention mechanisms, which originated from natural language processing, have gained 

substantial interests in research problems that deal with label scarcity, strengthen model 

generalizability to a new dataset, and encourage long-range dependencies in computer 

vision.14–16 Attention mechanisms are one way to explain which region of the image the 

network’s decision depends on and can enhance the explainability of deep learning-based 

systems.17 Attention mechanisms have recently become popular in the medical imaging 

domain to solve the research question of segmentation18–20 classification,21,22 detection,23 

and so on. Notably, attention mechanisms are usually incorporated at multiple resolution 

scales, to encourage a more effective feature connection.24,25 In this work, guided attention 

modules of multiple scales are implemented to encourage the deep learning-based system to 

focus on the areas of interests, which are lung parenchyma, especially the peripheral lung 
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areas, based on the provided population-level domain knowledge (DK) acquired from prior 

studies.

The goal of this study is to develop an automated diagnosis system using deep learning 

that meets explainability and adequate model performance using chest high-resolution CT 

(HRCT) scans to distinguish IPF from non-IPF among subjects with ILDs.

1 | MATERIALS AND METHODS

1.1 | Datasets

Lung CT images in this research were collected from multi-center studies and the UCLA 

computer vision and imaging biomarkers (CVIB) Laboratory served as the imaging core 

facility. Only subjects with clinical diagnoses of ILD were included. A total number of 878 

volumetric non-contrast HRCT scans were retrospectively collected IPF (N = 349, 39.7%) 

and non-IPF ILD cohorts (N = 529, 60.3%). In more detail, non-IPF subjects were clinically 

diagnosed as systemic sclerosis ILD (N = 230), rheumatoid arthritis (RA) ILD (N = 103), 

myositis ILD (N = 81), hypersensitivity pneumonitis ILD (N = 74), and Sjogren syndrome 

ILD (N = 41). CT images were collected from May 1997 to May 2018. We applied the 

stratified random sampling of IPF and non-IPF subjects: the training and validation set (N 
= 702, 80.0%, IPF% = 39.7%) and the testing set (N = 176, 20.0%, IPF% = 39.8%), as 

illustrated in Figure 1. As a result, the training, validation, and testing set are composed of 

CT scans collected from multi-center studies. A five-fold cross-validation was employed to 

the training and validation with stratification of IPF and non-IPF subjects: four subsets were 

used to construct the model and one subset was used to evaluate the model performance 

(shown as “Val” in Figure 1).

1.2 | Image processing

HRCT scans underwent preprocessing (see Supporting information A for details). Each CT 

scan was standardized to the dimension 256 × 256 × 128, and further resampled a fixed 

number M  of 3D-volumes, with dimension 128 × 128 × 64 to boost sample size and reduce 

the data dimension. We use subject index i and resample index j = 1, …, M; for example, 

Xij is the j th sampled CT volume from subject i (see Supporting information B and Table 

S1 for the key notations). The total number of resampling M = 20 was chosen after the 

evaluation of balance in model performance and computational time (see the details of 

M = 1, 10, 20, 30 in Supporting information C.1 and Figure S1).

1.3 | Elements of two-staged multi-scale guided attention and random forest model

During the model training stage, the input of the system contains three 

components: X1, …, XN , y1, …, yN , DK  and the expected output contains two parts: 

{ ŷ1, …, ŷN , (β̂11, …, β̂NM)]. Specifically, Xi is the patient-level CT scan collected from subject 

i; yi ∈ 0,1  is the ground truth indicating whether the subject i is clinically diagnosed as 

IPF yi = 1  or non-IPF ILD yi = 0 , which is used to compute the loss function for model 

training; N is the number of subjects in the study; DK is a standardized quantitative measure 

of population-level DK collected from previous IPF studies, indicating which regions in lung 
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parenchyma are typically prevalent in pulmonary fibrosis. ŷi is the predicted label for scan 

i and ŷi ∈ 0,1 . β̂ij is the estimated attention maps for scan i and sample j, highlighting the 

regions that are closed to DK image. We implemented two attention multi-scale modules at 

a high- and medium-resolution level, then β̂ij = (β̂ij
ℎ , β̂ij

m), where β̂ij
ℎ
 and β̂ij

m
 are the estimated 

attention map at a high- and medium-resolution for a subject’s scan i and sample j, 
respectively. During the model testing stage, only patient-level CT scans Xi  are required 

as model input and model output includes scan-level predictions (IPF vs. non-IPF, ŷi,) and 

estimated attention maps (β̂ij).

The dimension of information is: (a) Xi is usually of dimension 512 × 512 × number of CT 

slices, where 512 is the number of voxels in the x-and y-dimension for each CT slice; (b) 

standardized domain knowledge DK is a multi-dimensional array of dimension 256 × 256 × 

128 as an input image. It is down sampled to high- and medium-resolutions, as represented 

by DKℎ
 and DKm

, which are dimension 64 × 64 × 32 and 16 × 16 × 8, respectively (Figure 

2); (c) for the estimated attention maps, the dimensions of β̂ij
ℎ
 and β̂ij

m
 are 64 × 64 × 32 and 

16 × 16 × 8, respectively. The image dimension is represented as H × W × D throughout 

this paper, where the depth dimension D is the dimension along the patient’s body from 

apex to base and height–width H − − W  plane is the axial plane of each CT slice. The 

dimension of intermediate features generated by 3D-convolutions is H × W × D × C, where 

C-dimension is the channel dimension.

1.4 | Population-level domain knowledge

1.4.1 | Explainability—In the past 10 years, quantitative CT imaging biomarkers 

have been developed and evaluated as clinical studies among patients with ILD.26 These 

developed measures are spatially traceable and can be used as DK to guide the training of 

IPF diagnosis model.

Quantitative lung fibrosis (QLF) is a well-developed automated algorithm to classify 

CT voxels into different types, including normal, lung fibrosis, ground glass opacity, 

honeycombing etc.27 In this study, QLF score is used to provide a DK map, which is defined 

as a marginal probability map that serves as a general guidance on where disease patterns 

usually locate, especially for IPF subjects. Therefore, DK is calculated before the training of 

the IPF diagnosis models and is not dependent on the training and testing procedure of the 

IPF diagnosis model.

DK is acquired as follows: (1) Voxel-level prediction: using the QLF algorithm to predict 

the CT scans from the 102 eligible IPF subjects on a voxel-level. We define DKv
t = 1 or 

0 indicating if the scan for subject t at voxel location v is predicted as lung fibrosis; (2) 

Population-level sum and standardization: after acquiring the voxel-level prediction for all 

102 subjects, we sum over all subjects for each voxel location by DKv = ∑t = 1
T DKv

t , and then 

standardize to a scale of [0, 1]: DKv = DKv
maxv DKv

. By definition, DK ranges from 0 to 1.
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Domain knowledge DK  is later downsampled to two resolution scales: 64 × 64 × 32 and 

16 × 16 × 8, as shown in Figure 2. A 3D representation of the DK map is provided in 

Supporting information D and Figure S2. Higher intensity values (more orange) in Figure 

2 represent a greater value of DKv, which concentrates on the Rol for this IPF diagnosis 

task. Lung areas, especially peripheral lungs, are highlighted in Figure 2, which agrees with 

IPF-related CT features. In the future sections, we will discuss how DK is incorporated as 

an integral part of the loss function during training to encourage the model to focus on IPF 

disease patterns.

1.5 | Attention gates

We provide a schematic of the proposed guided attention gates in Figure 3. The attention 

gates take intermediate feature maps x, and population-level domain knowledge DK as 

input and produce two outputs: (1) a feature map A x  with the same dimension as the 

input x , and (2) an estimated attention map β̂ ∣ x. For simplicity, β̂ ∣ x is represented as β̂
throughout the paper. Theoretically, attention gates can be incorporated in any layer of any 

existing CNN architecture. In this work, we focus on the attention gates that are suitable 

for 3D-CNN architectures, which generate intermediate feature maps of four dimensions, 

including height, width, depth, and channel.

Suppose the attention gates are implemented at the I th layer and takes the intermediate 

feature maps xl that are generated at the previous layer, that is, (l − 1)th layer, as input. 

For 3D-CNN architectures, xl is a four-dimensional tensor with xl ∈ ℝHl × W l × Dl × Cl
, where 

Hl, W l, Dl, Cl are the height, weight, depth, the number of channels at the lth layer, 

respectively. For simplicity, we omit the subject index i and sample index j throughout 

this section E. The intermediate feature maps xl are first transformed into two feature 

spaces f(x)l and ℎ(x)l using 1 × 1 × 1 convolutions: f(x)l = xl × W f
l , ℎ(x)l = xl × W ℎ′

l  where 

W f
l ∈ ℝCl, f(x)l ∈ ℝHl × W l × Dl, W ℎ

l ∈ ℝC × Cl, ℎ(x)l ∈ RHl + W l × Dl × Cl

A sigmoid function is applied to the feature space f(x)l to calculate the attention scores (i.e., 

estimated attention maps) at layer / at a three-dimensional voxel location v = (vHl, vW l, vDl), β̂v
l
, 

where β̂v
l = 1

1 + exp(−f(x)v
l ) . Here, β̂v

l
 is a scalar, and vHl ∈ ℝHl, vW l ∈ ℝW l, vDl ∈ ℝDl

. The 

dimension of β̂l
 is decided by the choice of layers l, where the attention module 

is implemented in. In our example, let the model layers where the attention 

modules are incorporated be l = ℎ and l = m, which represent the high and medium 

attention, respectively. Based on our design, β h is a three-dimensional tensor with 

βℎ ∈ ℝHℎ × W ℎ × Dℎ = ℝ64 × 64 × 32 and βm ∈ ℝHm × W m × Dm = ℝ16 × 16 × 8.

We further calculate the element-wise multiplication of ℎ(x)l and the estimated 

attention maps β̂l
 across each channel: o(x)c

l = β̂l ⊙ ℎ(x)c
l, where o(x)c

l is the cth channel 

of the intermediate feature maps o(x)l, o(x)c
l ∈ ℝHl × W l × Dl; ℎ(x)c

l is the cth channel of 

ℎ(x)l, ℎ(x)c
l ∈ ℝHl × W l × Dl

, and Θ is the elementwise multiplication operation.

Yu et al. Page 6

Med Phys. Author manuscript; available in PMC 2023 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The final output of the attention gate (A(x)l) is a weighted average of the input intermediate 

feature maps x and o(x):A(x)l = γl × o(x)l + 1 − γl × xl, where γl is a trainable scalar parameter 

initialized at zero.

1.6 | Multi-scale guided-attention model

1.6.1 | Loss function—We use the voxel-wise mean absolute error as the attention-

based loss to measure the similarity between the estimated map of each sample (β̂ij
l ) with 

the provided population-level maps (DKl):Lij
l = avg(|β̂ij

l − DKl|) where β̂ij
l
 is the estimated 

attention maps for subject i and sample j at layer l, DKl
 is the rescaled domain knowledge 

map at layer I that has the same dimension as β̂ij
l
, and avg(x) is the grand average of all 

elements from a tensor x.

During training, the attention-based loss function is calculated by averaging all the samples: 

Ll = ∑i = 1
N Σj = 1

M Lij
l

NM . In this work, we introduced two attention modules at high- and medium-

resolution scales; therefore, attention-based loss Ll  is incorporated into the overall loss 

function under two forms: Lℎ and Lm, where ℎ and m represent high and medium.

1.6.2 | Explainability—The overall schematic diagram of MSGA is provided in Figure 

4b. 3D-residual blocks are used as building blocks for our model, which is shown as RB1, 

RB2, and RB3 in Figure 4b). Detailed implementations of 3D-residual blocks, including 

layer name, hyperparameters, and output size, are provided in Supporting information E 

and Table S2. For each scan i, we first produce M number of 3D samples for each scan, 

indexed by j = 1, …, M. During the model training procedure, the system includes three 

types of input: the processed CT scans Xi , the population-level domain knowledge maps at 

two resolution scales (DKℎ
 and DKm

), and the patient-level clinical ground truth yi . MSGA 

takes each sample as a training or testing unit and produces three types of output for each 

input sample: the sample-level predicted score of being IPF p̂ij  the learned attention map 

at different resolution scales (β̂ij
ℎ
 and β̂ij

m
) and the estimated attention-based loss values at two 

resolution scales Lij
ℎ and Lij

m). The attention gates are incorporated into the training of the IPF 

diagnosis model in an end-to-end manner, at two resolution scales, shown as AG1 and AG2.

Binary cross-entropy loss is used for the IPF diagnosis task:

LD = − 1
NM ∑i = 1

N ∑j = 1
M yilog p̂ij + 1 − yi log 1 − p̂ij

where yi = 0, 1 if the subject i is clinically diagnosed as non-IPF or IPF, respectively, and p̂i

is the predicted probability of subject i, sample j being IPF at the last layer of MSGA.

The overall loss function of the system is composed of a weighted average of two attention-

based losses and one diagnosis-based loss:

L = LD + λℎLℎ + λmLm,
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where LD is the binary cross-entropy for IPF diagnosis, Lℎ is the attention-based loss at a 

high resolution, Lm is the attention-based loss at a medium resolution. λℎ and λm are the 

relative task importance for the high- and medium-resolution attention models, respectively, 

with λℎ ≥ 0 and λm ≥ 0. We note that when setting λℎ = 0 and λm = 0, this represents a scenario 

where both attention modules are unguided with population-level maps (see Figure 5 for IPF 

and Figure S3 for non-IPF examples of the estimated AG1 and AG2).

1.6.3 | Evaluation of explainability—We provide both qualitative and quantitative 

methods to examine the extent of explainability in this research. Qualitatively, the scan-level 

estimated attention maps at both high- and medium-resolution can be viewed to see if 

highlighted areas correspond to disease-specific regions (Figure S4). This method can shed 

some light on what specific regions are critical for this IPF diagnosis task.

From a quantitative perspective, previous research has shown that histogram analysis of 

the segmented lung areas is associated with the disease progression of IPF subjects.28 

Specifically, a low kurtosis of lung regions is found to be associated with a higher risk 

of mortality. In this study, we use kurtosis from the estimated attention maps as an 

explainability index to identify patients with IPF from other causes of pulmonary fibrosis. 

More technical details are provided in the Supporting information G and Table S3.

1.7 | Random forest classifier

1.7.1 | Enhanced improvement—Random forest (RF) is a popular supervised 

machine learning approach, where the model output is decided based on majority voting 

of multiple decision trees.29 For a classification task, such as patient-level IPF diagnosis, 

RF outputs the mode of the classes (IPF vs. non-IPF) predicted by individual decision trees. 

It has been widely used in medical fields due to its high accuracies, robustness to outliers, 

explainable nature, and a possibility of parallel processing.30 RF is chosen as the final stage 

classifier for this research since (1) it is easy to implement and computationally fast; (2) it 

can handle correlated variables, for example, in our case, the estimated attention loss from M 
samples; and (3) it is a relatively interpretable algorithm where the variable importance can 

be used to empirically understand the model decision process.

The intuition of adding RF in the final decision stage is that the high magnitude of 

attention-based loss (Li
ℎ and Li

m) in the training model can also play a role in the feedback 

loop of improving the classification of IPF and non-IPF, where the hyperparameters are 

not close to optimal (Figure S5 for the variable importance in RF). We provide a figure 

(Figure S6), which shows the distribution of the estimated attention loss values is visually 

different for IPF and non-IPF subjects. The estimated attention-based loss depicts how 

each processed CT scan differs from the population-level IPF information. Therefore, we 

utilize the information of difference of the processed CT scan from the population-level IPF 

information (i.e., Li
ℎ, and Li

m) as well as the predicted probability (i.e., p̂i) for IPF diagnosis.

For each CT scan i, we leverage these three types of information acquired from all samples, 

including the estimated high- Li
ℎ = Li1

ℎ , …, LiM
ℎ  and medium- Li

m = Li1
m, …, LiM

m  resolution 

attention loss and the predicted probability of being IPF p̂i = p̂i1, …, p̂MM , to build an RF 
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model that classifies whether a given CT scan is from an IPF subject or a non-IPF ILD 

subject. For each scan, the designed MSGA produces a vector of size 1 × M for Li
ℎ, Li

m, p̂in, 

respectively, representing the estimated high-, medium attention-based loss function and the 

predicted IPF score from the M samples. This is later combined into a vector of size 1 × 3M, 

in our case, 1 × 60, as the input for the RF model, as shown in Figure 4c).

After the training process of the MSGA is completed, we continue to build an RF-based 

classifier for each hyperparameter selection (λℎ and λm) and for each fold. At each fold, we 

construct an RF using training samples only. For simplicity, we fix the hyperparameters 

during the training of RF for each model: RF classifier was consistently configured to use 90 

decision trees with a maximum depth of 4.

1.8 | Overall proposed method: multi-scale, domain knowledge-guided attention +random 
forest

We propose a two-stage model for scan-level IPF diagnosis.

1.8.1 | Stage one (multi-scale, domain knowledge-guided attention)—For each 

CT scan i, MSGA provides (1) two estimated attention maps at high- and medium- 

resolutions and (2) three outputs, including the loss function for high- Li
ℎ  and medium- 

Li
m  attention gates, and the binary cross-entropy loss for IPF diagnosis Li

D . The training 

process of stage one is end-to-end. For each hyperparameter selection, we constructed five 

MSGA models, leaving one fold of data as the validation set as a time.

1.8.2 | Stage two (random forest)—For each CT scan, RF takes the features produced 

by MSGA as input and produces the final probability of being IPF for each scan. We then 

built an RF model for each MSGA model using the training cases in that fold only. The 

mean and standard deviations (SDs) across five folds for both MSGA and MSGA+RF were 

reported as validation set performance. Based on the validation set performance, we further 

selected the best performing hyperparameter combination as our final model to apply to the 

test set. Test set performance was reported as the mean and SD across five-fold models.

1.9 | Model implementation details

For model training, we used Adam optimizer with an initial learning rate of 10−4, followed 

by an exponential decay after 20 epochs of decay rate 0.05. The batch size was set to 

be 5 and the model trained after 200 epochs was saved for evaluation. The hardware of 

Tesla V100-SXM2–32GB and GeForce RTX 2080 Ti and Keras framework were used.31 

Sensitivity analysis of epoch numbers is included in Supporting information C.

2 | RESULTS

2.1 | Model results: multi-scale, domain knowledge-guided attention (validation set 
performance)

We report the performance of MSGA from two perspectives of accuracy and explainability. 

Accuracy was assessed by the area under the curve (AUC) from an ROC analysis. The other 
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assessment is done to visually examine explainability, which is characterized by reviewing 

the estimated attention maps.

2.1.1 | Multi-scale, domain knowledge-guided attention model accuracy: 
idiopathic pulmonary fibrosis diagnosis—Regarding the sample-level IPF diagnosis, 

Table 1 summarizes the AUC values of MSGA with mean and SD across folds under the 

validation set, with different selections of hyperparameters (λℎ and λm). Both λℎ and λm are 

selected from a range of values: 0, 1, 10, 50, 100, 200. This range of hyperparameter 

searching was selected by examining the empirical values of each loss function component. 

Also, similar work which optimizes a multi-objective loss function utilizes hyperparameters 

within this range.17,21

As shown in Table 1, without including guided attention by attention-based loss function 

(λℎ = 0 and λm = 0), the IPF diagnosis model reached an AUC ( ± SD) of 0.93( ± 0.07). In most 

cases (9 out of 10 hyperparameter combinations), only incorporating guided high- λℎ > 0
and λm = 0  or medium-resolution attention λℎ = 0 and λm > 0) decreased the performance of 

IPF diagnosis, compared to without guided attention in the loss function (λℎ = 0 and λm = 0). 

Under one hyperparameter setting λℎ = 0 and λm = 100 , the average AUC across five folds is 

0.94, which is slightly higher than that of the unguided model (average AUC= 0.93).

Our proposal, which included both high- and medium-resolution attentions, was able to 

reach the highest AUC (± SD) value of 0.99( ± 0.01) for all of the experiments, under certain 

hyperparameter selections (λℎ = 10 and λm = 100). Three top performing hyperparameter 

combinations are (1) λℎ = 200 and λm = 1; (2) λℎ = 50 and λm = 200; (3) λℎ = 10 and λm = 100. 

Notably, model performance is sensitive to the selection of relative task importance. For 

example, under certain hyperparameter combinations, that is, λℎ = 1 and λm = 200, the AUC 

(± SD) decreased to 0.76( ± 0.23).

2.1.2 | Model explainability: estimated attention maps—We explored the model 

explainability by plotting the estimated attention maps at both high- and medium-resolutions 

(β̂ij
ℎ , β̂ij

m) using one randomly sampled IPF as an example, shown in Figure 5. We also provided 

one non-IPF ILD subject in Supporting information F and Figure S3. We note that without 

guided attention models (Figure 5, column a), the observed attention maps are uninformative 

and lack explainability.

When we provide guidance from population-level DK in constructing the overall loss 

function, the estimated attention maps begin to focus on the lung parenchyma. Specifically, 

when the relative task importance is low (column b), the attention maps begin to concentrate 

on the lungs, but it is not clear. When we add solely the high-resolution guided attention 

in the loss function (Figure 5, columns c and e), visual examinations indicate that high-

resolution attention maps can characterize the lungs, while the medium-resolution attention 

maps are less informative. On the other hand, when only medium-resolution guidance is 

added (Figure 5, columns d and f), both high- and medium-resolution attention maps do not 

concentrate on the lung parenchyma.
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Finally, when we provide guidance on both high- and medium-resolution attentions with 

considerable relative task importance (Figure 5, columns g, h, i, and j), the estimated 

attention maps become instructive, focus on the lung parenchyma, and suppress irrelevant 

background areas. Under certain hyperparameter collection (columns h, i, and j), both the 

estimated attention map and a high- and medium-resolution can focus on peripheral lungs, 

which are the key regions for making a correct IPF diagnosis. These highlighted areas are 

critical for this task of IPF diagnosis and are incorporated into the training of deep learning 

systems.

2.2 | Model results: multi-scale, domain knowledge-guided attention +random forest 
(validation set performance)

Table 2 summarizes the model performance using MSGA+RF with mean and SE across 

five folds under the validation set, under different selections of hyperparameters λℎ and λm . 

Top three hyperparameter selections based on MSGA remained one of the best performing 

hyperparameter groups for MSGA+RF (average UC ≥ 0.98); therefore, these three models 

were selected as best performing models and were used as the final models for this task (see 

Table S4 for the each fold).

We also calculated and plotted the variable importance for the constructed RF using the 

normalized total reduction of Gini impurity brought by each feature (as shown in Supporting 

information H). Variable importance plots show that when MSGA can perform well (Figure 

S5a), RF mostly leveraged information from the predicted probability of IPF generated in 

the last layer of MSGA for the final classification; when MSGA performs unsatisfactorily 

(Figure S5c), attention-based loss values play a role in the final classification of MSGA+RF 

and boosted the model performance.

2.3 | Test set performance

Based on the validation set performance and the estimated attention maps, we applied the 

three best performing models to the holdout test set (N = 176). The three best performing 

models (i.e., (1) λℎ =200 and λm = 1; (2) λℎ = 50 and λm = 200; (3) λℎ =10 and λm = 100) had 

the AUC (± SD) values 0.987 (±0.007), 0.975 (±0.011), and 0.980 (±0.018), respectively.

3 | DISCUSSIONS AND CONCLUSIONS

We presented a two-stage model for automated IPF diagnosis among subjects with ILD 

based on chest HRCT images. The model combines an MSGA, for explainability and 

an RF model for enhancing accuracy in the final decision. MSGA+RF is well-suited for 

other weakly supervised tasks in medical imaging domains, where population-level DK 

is available. Several advantages can be addressed using MSGA+RF.First,population-level 

DK from the prior studies was utilized, which may overcome the black-box approaches 

of deep learning and the time and expert-dependent labeling of machine learning. Guided 

with population-level DK at various resolution scales, we can accomplish satisfactory model 

performance only using the clinical information of IPF diagnosis in subjects with ILD.
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Second, using attention models at various resolution scales increase model explainability, 

which is a crucial step for transparency in AI for medical applications. Over the past 

decade, there have been extensive discussions regarding enhancing the explainability of deep 

learning-based systems, especially in clinical settings.32 Building explainable deep learning 

models can increase trust in models and it is a critical step for model diagnostics. Saliency 

maps,33 and class activation mapping34 are effective post hoc methods for visualizing deep 

learning models; attention mechanisms, on the other hand, can encourage the network 

to focus on specific areas of interest (in our case, lung parenchyma) in a trainable and 

end-to-end manner. Furthermore, using attention models at different resolution scales can 

effectively capture more useful information for this diagnosis task and improve model 

performance. For example, low-resolution attention gates can focus more on the overall 

disease distribution, whereas high-resolution attention gates are able to capture more 

detailed disease characteristics. Previous research also found that combining multi-scale 

features can improve model performance.20,35

The third advantage is in accuracy. To boost model performance, traditional machine 

learning models tend to increase model accuracy by adding model features in a classifier.36 

We borrowed a similar idea here by adding RF classifiers using the feature sets learned 

from the estimated loss function of learning from MSGA, as the final decision stage. This 

is necessary since we note that results on the validation set are sensitive to the selection 

of relative task importance (i.e., λh and λm). For example, in Table 1, 36 hyperparameter 

combinations,7 out of 36 combinations have a mean AUC less than 0.85 using stratified 

five-fold cross-validation on the validation sets. However, after adding the RF classifier, 

as results shown in Table 2, all 36 combinations have a mean AUC greater than 0.92. 

Therefore, in our example, having a two-stage model increases the model’s robustness 

against changes regarding relative task importance. Overall, RF can boost the performance 

of the worst-performing models, but it does not aid the best-performing models. The ceiling 

effect may be one reason since the three best-performing models have achieved an AUC of 

greater than 0.98 without RF, leaving limited room for improvement.

Based on our understanding, it is infeasible to compare our results with other literature since 

little research has been concentrated on developing automated software for a scan-level IPF 

diagnosis. On a similar note, Walsh et al. developed an algorithm to classify several CT 

slices into different UIP patterns and reported an accuracy of 76.4% on the test set.8 Christe 

et al. built an automated UIP classification model that includes lung segmentation, tissue 

characterization, and quantification. This algorithm can perform on par with radiologists 

with a reported accuracy of 81%.9 The novelty of this study is to utilize the DK and 

multi-scale attention gated model. The DK of the expected spatial location in ILD patterns 

in the lung serves as indirect lung segmentation. Multi-scale attention models increase the 

explainability of this model, increase model performance, and lead to reliable measurements.

Most of the criticism in deep learning models is that model accuracy does not guarantee 

satisfactory model explainability on the validation set in deep learning. To overcome this 

issue, we designed a two-stage model that combines explainability achieved by a deep 

learning approach, MSGA, and accuracy by a machine learning technique, RF. Strengthened 
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by the combined benefit of a transparent model decision process and boosted diagnostic 

performance, the proposed method serves as an important step for clinical applications.

Certain limitations exist in this work: (1) the current MSGA setup requires population-

level DK acquired from prior studies; (2) only volumetric CT scans with consistent slice 

spacing were included in the training and testing sets, which limited the applicability 

of this trained model to other non-volumetric CT scans; (3) the selections of relative 

task importance requires extensive computational time and resources in hyperparameter 

selections. (4) It is worth investigating the model performance when applying to datasets 

from different institutions, which may contain CT scans collected from different non-IPF 

disease types, disease severity, and various CT imaging protocols. Although some research 

works demonstrated the superior generalizability of attention models to unseen datasets,16 

the evaluation of our proposed model to independent datasets is underway and is out of the 

scope of this paper.

In this paper, we have developed an automated IPF diagnosis using CT images and 

demonstrated a promising method of attention maps for both enhancing explainability 

and increasing performance. Future work includes examining the trained MSGA+RF on 

independent cohort and prospective studies.
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FIGURE 1. 
The overall separation of the dataset. Val: validation, which is the subset that is used to 

evaluate the model performance at a specific fold
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FIGURE 2. 
Population-level domain knowledge at high (a) and medium (b) resolutions. Subplots (a) are 

produced at the 3%, 28%, 53%, 78%, 97% position along the depth D-axis; subplots (b) are 

produced at the 13%, 38%, 63%, 75%, 88% position along the D-axis

Yu et al. Page 17

Med Phys. Author manuscript; available in PMC 2023 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 3. 
Attention gate (AG) modules
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FIGURE 4. 
Schematic of the overall system. First, a total number of Msamples are generated from one 

processed computed tomography (CT) scan i, Xi. The samples are presented as Xij, where 

j = 1, …, M. Multi-scale, domain knowledge-guided attention (MSGA) takes each function at 

a high- Lij
h  and medium- Lij

m , and the estimated attention maps at a high- (β̂ij
h) and medium- 

(β̂ij
m) resolutions. The overall loss function for MSGA is a weighted average of three loss 

function components: overall IPF diagnosis loss (LD), attention-based loss at a high- (Lh) and 

medium- Lm  resolution. At the final decision stage, random forest (RF) takes the output 

from MSGA from all M samples and produces a patient-level diagnosis. RB: 3D residual 

blocks; AG: attention gates (see Figure 3 for the details)
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FIGURE 5. 
Estimated attention map for an idiopathic pulmonary fibrosis (IPF) subject with 10 different 

hyperparameters. One representative computed tomography (CT) slice (slice number = 153; 

in total 309 slices for this scan) of the pre-processed image is provided. One processed 

CT image is plotted at D = 33 out of 64. The estimated attention maps for high- and 

medium-resolutions are plotted at D = 17 out of 32 and D = 5 out of 8, respectively. 

Key CT features of usual interstitial pneumonia (UIP) are highlighted as arrows. Three 

top performing combinations based on multi-scale, domain knowledge-guided attention 

(MSGA) are highlighted as an orange rectangle. The models that used this scan as validation 

samples were selected for plotting. For all ten hyperparameter collections (λh and λm), both 

MSGA and MSGA+RF successfully classify this scan as IPF (true positives)
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TABLE 1

Area under curve (AUC) mean and standard deviation values of multi-scale, domain knowledge-guided 

attention (MSGA) performance on validation set for various λh and λm (task importance) parameters

λm

0 1 10 50 100 200

λh 200 0.87 (0.14) 0.98 (0.02) 0.88 (0.21) 0.89 (0.18) 0.87 (0.21) 0.97 (0.02)

100 0.85 (0.20) 0.96 (0.04) 0.86 (0.20) 0.90 (0.10) 0.84 (0.21) 0.97 (0.03)

50 0.83 (0.20) 0.88 (0.09) 0.89 (0.22) 0.84 (0.22) 0.97 (0.01) 0.98 (0.02)

10 0.87 (0.21) 0.92 (0.09) 0.84 (0.17) 0.85 (0.21) 0.99 (0.01) 0.81 (0.23)

1 0.87 (0.18) 0.84 (0.21) 0.95 (0.07) 0.89 (0.08) 0.89 (0.12) 0.76 (0.23)

0 0.93 (0.07) 0.93 (0.07) 0.93 (0.09) 0.86 (0.15) 0.94 (0.04) 0.85 (0.21)

Note: λh and λm are the relative task importance parameters in the overall loss function, representing high- and medium-resolution attentions, 

respectively. Three top performing combinations (λh = 200 and λm = 1; λh = 50 and λm = 200; λh = 10 and λm = 100) are in bold font.
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TABLE 2

Area under curve (AUC) mean and standard deviation values of multi-scale, domain knowledge-guided 

attention + random forest (MSGA+RF performance on validation set for various λh and λm (task importance) 

parameters

λm

0 1 10 50 100 200

λh 200 0.95 (0.04) 0.98 (0.01) 0.99 (0.01) 0.97 (0.01) 0.97 (0.04) 0.98 (0.02)

100 0.97 (0.03) 0.98 (0.02) 0.97 (0.03) 0.95 (0.06) 0.96 (0.04) 0.97 (0.02)

50 0.97 (0.03) 0.96 (0.03) 0.97 (0.03) 0.94 (0.05) 0.97 (0.02) 0.98 (0.02)

10 0.95 (0.06) 0.98 (0.02) 0.97 (0.03) 0.95 (0.05) 0.99 (0) 0.96 (0.02)

1 0.99 (0.02) 0.98 (0.02) 0.97 (0.05) 0.94 (0.05) 0.97 (0.03) 0.92 (0.08)

0 0.97 (0.03) 0.98 (0.01) 0.99 (0.01) 0.94 (0.04) 0.95 (0.03) 0.95 (0.06)

Note: λh and λm are the relative task importance parameters in the overall loss function, representing high- and medium-resolution attentions, 

respectively. Three top performing combinations based on MSGA (λh = 200 and λm = 1; λh = 50 and λm = 200; = 10 and = 100) are in bold font.
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