Skip to main content
. Author manuscript; available in PMC: 2023 Apr 8.
Published in final edited form as: Med Phys. 2022 Nov 5;50(2):894–905. doi: 10.1002/mp.16053

TABLE 1.

Area under curve (AUC) mean and standard deviation values of multi-scale, domain knowledge-guided attention (MSGA) performance on validation set for various λh and λm (task importance) parameters

λm
0 1 10 50 100 200

λh 200 0.87 (0.14) 0.98 (0.02) 0.88 (0.21) 0.89 (0.18) 0.87 (0.21) 0.97 (0.02)
100 0.85 (0.20) 0.96 (0.04) 0.86 (0.20) 0.90 (0.10) 0.84 (0.21) 0.97 (0.03)
50 0.83 (0.20) 0.88 (0.09) 0.89 (0.22) 0.84 (0.22) 0.97 (0.01) 0.98 (0.02)
10 0.87 (0.21) 0.92 (0.09) 0.84 (0.17) 0.85 (0.21) 0.99 (0.01) 0.81 (0.23)
1 0.87 (0.18) 0.84 (0.21) 0.95 (0.07) 0.89 (0.08) 0.89 (0.12) 0.76 (0.23)
0 0.93 (0.07) 0.93 (0.07) 0.93 (0.09) 0.86 (0.15) 0.94 (0.04) 0.85 (0.21)

Note: λh and λm are the relative task importance parameters in the overall loss function, representing high- and medium-resolution attentions, respectively. Three top performing combinations (λh = 200 and λm = 1; λh = 50 and λm = 200; λh = 10 and λm = 100) are in bold font.