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Abstract

Graph theoretical measures have frequently been used to study disrupted connectivity in 

Alzheimer’s disease human brain connectomes. However, prior studies have noted that differences 

in graph creation methods are confounding factors that may alter the topological observations 

found in these measures. In this study, we conduct a novel investigation regarding the effect of 

parcellation scale on graph theoretical measures computed for fiber density networks derived 

from diffusion tensor imaging. We computed 4 network-wide graph theoretical measures of 

average clustering coefficient, transitivity, characteristic path length, and global efficiency, and 

we tested whether these measures are able to consistently identify group differences among 

healthy control (HC), mild cognitive impairment (MCI), and AD groups in the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) cohort across 5 scales of the Lausanne parcellation. We 

found that the segregative measure of transtivity offered the greatest consistency across scales 

in distinguishing between healthy and diseased groups, while the other measures were impacted 

by the selection of scale to varying degrees. Global efficiency was the second most consistent 

measure that we tested, where the measure could distinguish between HC and MCI in all 5 scales 

and between HC and AD in 3 out of 5 scales. Characteristic path length was highly sensitive to 

the variation in scale, corroborating previous findings, and could not identify group differences 

in many of the scales. Average clustering coefficient was also greatly impacted by scale, as 

it consistently failed to identify group differences in the higher resolution parcellations. From 

these results, we conclude that many graph theoretical measures are sensitive to the selection 

of parcellation scale, and further development in methodology is needed to offer a more robust 

characterization of AD’s relationship with disrupted connectivity.
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I. Introduction

Alzheimer’s disease, the most common form of dementia characterized by an irreversible 

progressive memory loss followed by deterioration of cognitive function and memory recall, 

is currently afflicting over 6 million people in the United States with the number estimated 

to increase to 15 million by the year 2050 [1]. The disease’s pathology has a complex 

relationship with anatomical deterioration and has long been considered as a disconnection 

syndrome where pathology may arise from disrupted efferent and afferent connections [2], 

leading it to receive much attention in network neuroscience where methods of quantifying 

complex connectivity disruptions are readily available [3]. Graph theoretical measurements 

that enable efficient characterization of brain network topology have been broadly applied to 

study Alzheimer’s disease across many structural and functional imaging modalities, noting 

statistical differences in graph theoretical measurements among healthy control (HC), mild 

cognitive impairment (MCI), and AD subjects [4], [5].

However, there are inconsistencies across studies in the direction of change of the 

measurements and their discriminating power, resulting in a critical barrier of diverging 

interpretations of the relationship between disease state and network connectivity [6], [7]. 

The discrepancies may arise from differences in network construction methods, including 

but not limited to the selections of parcellation scheme, spatial resolution, and connection 

density [8]–[11]. These realizations have raised questions regarding how variations in 

the multitude of choices in network construction methods may influence the observed 

topological properties of diseased brain networks. Previous studies have noted sensitivity 

of characteristic path length, small-world index, and clustering coefficient to the number 

of nodes and density of brain networks [12]. In AD-specific research, it is noted that 

graph theoretical measures’ capabilities of identifying population differences among AD 

diagnostic groups will vary based on parcellation scheme [13]–[16]. However, although 

different parcellation schemes offer varying resolutions and scales of a brain network, the 

comparisons between atlases are not strictly hierarchical as the regional boundaries in each 

parcellation scheme may not be identified in a consistent manner [17]. As such, a more 

controlled investigation across resolutions of the same parcellation scheme is needed.

To that end, our present study investigates the effect of parcellation scale, which governs 

the number of nodes in the brain network in a hierarchical manner, on the observed 

topological properties of AD-related white matter connectomes. We use fiber density 

networks derived from diffusion tensor imaging (DTI) tractography and observe the stability 

of graph theoretical measures across 5 scales of the Lausanne parcellation. To the best of our 

knowledge, fiber density has not been previously explored in this context. Our hypothesis 

is that graph theoretical measures will vary in observed significance between diagnostic 
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groups when the parcellation scale is changed, corroborating previous findings regarding the 

sensitivity of these measures to graph creation methods.

II. Materials and Methods

A. Data acquisition, preprocessing, and network construction.

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) [18], [19]. The ADNI was 

launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. 

Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance 

imaging (MRI), positron emission tomography (PET), other biological markers, and clinical 

and neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment (MCI) and early AD. For up-to-date information, see www.adni-

info.org.

DTI scans and demographic data were obtained from the Alzheimer’s disease neuroimaging 

initiative (ADNI-GO/2) database [18]–[21]. The population consisted of 99 male and 74 

female subjects. The population was age-controlled with the AD population averaging 

at 72.5 years, the MCI population averaging at 72.0 years, and the HC population 

averaging at 73.3 years. No significant difference in ages was detected across population 

groups (ANOVA: P = 0.805, F = 0.217). The DTI data were entered into an image 

processing pipeline, including denoising, motion-correction, and distortion-correction using 

an overcomplete local principal components analysis (PCA) [22]. Probabilistic white matter 

fiber tractography was then performed using a streamline tractography algorithm called fiber 

assignment by continuous tracking (FACT) [23].

Structural MRI (sMRI) scans were then registered to lower resolution b0 volume of the DTI 

data using the FLIRT toolbox in the FMRIB Software Library (FSL) [24] and cortical and 

subcortical brain regions of interest (ROIs) were defined based on the Lausanne parcellation 

[25]. The process was repeated for 5 scales of the Lausanne parcellation: 33, 60, 125, 250, 

and 500. The parcellation scales contain 83, 129, 234, 463, and 1015 ROIs respectively. 

The number of the fibres (NOF) connecting each pair of ROIs (i, j) and each ROI’s surface 

area (SA) were obtained, and the fiber density (FD) in the connection was obtained by 

dividing NOF between ROIs (i, j) by the average SA of regions i and j [26]. Finally, the 

brain networks were constructed using the fiber density of tracts connecting between pairs 

of ROIs. An example of a subject’s structural network at different scales depicted using 

heatmaps generated from adjacency matrices can be found in Figure 1.

To study the changes in graph theoretical across diagnostic populations, the 173 subjects 

were organized into three groups. The Healthy Control (HC) group consisted of 76 subjects, 

including healthy control without symptoms and significant memory concern subjects who 

were self-perceived to have cognitive decline without objective cognitive impairment [27]. 

The Mild Cognitive Impairment (MCI) group consisted of 68 subjects, either with early 

MCI or late MCI. The final AD group consisted of 29 subjects clinically diagnosed with 

Alzheimer’s disease.
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B. Network analysis across scales.

We computed 4 network-level graph theoretical measures for comparison, with two global 

integrative measures and two local segregative measures. The computations were done using 

the Python implementation of the Brain Connectivity Toolbox (BCT) [28]. For integrative 

measures, we computed characteristic path length and global efficiency. Characteristic path 

length is defined as:

L = 1
n ∑

i ∈ N

∑j ∈ N, j ≠ i dij
w

n − 1 , (1)

which is equivalent to the average of the shortest path lengths in the network [29]. dij
w denotes 

the distance between nodes (i, j), derived by inverting the edge weight between the two 

nodes dij = 1/wij. However, it is noted that in the event that a network is disconnected, path 

lengths will yield infinities. An alternative approach to measuring integration is thus global 

efficiency, defined as:

E = 1
n ∑

i ∈ N

∑j ∈ N, j ≠ i dij
w −1

n − 1 (2)

yielding an inverse relationship with the shortest path length [30]. In the event that a path 

has infinite length, the global efficiency approaches 0.

For measures of segregation, we computed average clustering coefficient and transitivity. 

Both of the measures investigate the presence of cliques, or triplets, in the network [29]. 

Clustering coefficient at the nodal level for the ith node (Ci) is defined as:

Ci = 2
ki ki − 1 ∑

j, k
wijwjkwki

1/3
(3)

where nodes j and k are neighboring nodes and ki is the degree of node i. To calculate 

a network average clustering coefficient, the individual nodal clustering coefficients are 

averaged:

C = 1
n ∑

i ∈ N
Ci . (4)

An alternative approach to calculate a network-level clustering coefficient is the transitivity, 

which observes the ratio of the number of closed triplets to the number of total possible 

triplets [31], [32]. The transitivity is calculated as:

T = ∑i ∈ N 2 wijwjkwki
1/3

∑i ∈ N ki ki − 1 . (5)

The 4 network-level graph theoretical measures are computed for each subject at each of 

the 5 scales of the Lausanne parcellation, yielding a total of 20 measures for each subject. 
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To compare group differences, Kruskal-Wallis was conducted followed by Dunn posthoc. 

A false discovery rate (FDR) correction was applied to correct for multiple comparisons. 

Significance was tested at a 5% level (P > 0.05) and the medians of the populations were 

then compared for directionality analysis.

III. Results

The medians of the computed graph theoretical measures and their relationship with scale 

are shown in Figure 2. It was observed that the characteristic path length generally increased 

alongside with parcellation scale, exhibiting the longest median path lengths at Scale 500 

(Figure 2C). As global efficiency is related to the inverse characteristic path length, it 

exhibited the expected trend of decreasing as the parcellation scale was increased (Figure 

2D). The average clustering coefficient exhibited a slight increase with parcellation scale 

(Figure 2A), while transitivity was largely unaffected by the selection of scale (Figure 2B).

Significant group differences were found primarily when comparing the healthy control to 

the two disease groups (HC vs. MCI, HC vs. AD), with varying degrees of consistency. 

When observing segregative measures of average clustering coefficient and transitivity, 

transitivity was the most robust measure, capable of consistently identifying group 

differences across all scales in the HC vs. MCI and HC vs. AD comparisons. Average 

clustering coefficient only exhibited significant differences at the lower scale parcellations, 

showing significant differences in Scales 33 and 60 for the HC vs. MCI comparison (P = 

0.0358) and in Scales 33, 60, 125, and 250 for the HC vs. AD comparison (P = 0.0289) 

(Table I). The directionality of change in both segregative measures was consistent across 

scales, where they exhibited a decrease from HC to MCI and an increase from HC to AD 

(Figure 3A,B). Lastly, no significant differences could be found in the segregative measures 

when comparing the two disease groups of MCI and AD.

For the two integrative measures of characteristic path length and global efficiency, we 

found that global efficiency was able to consistently identify group differences between HC 

and MCI, while characteristic path length was less robust and could only identify group 

differences between HC and MCI in Scale 33 (P = 0.0132), Scale 125 (P = 0.0289), 

and Scale 250 (P = 0.0203). Characteristic path length showed a consistent decrease 

when comparing HC vs. MCI and global efficiency showed a consistent increase in the 

comparison (Figure 3C,D). In the HC vs. AD comparison, neither of the measures were 

robust to the change in scale. Characteristic path length only exhibited HC to AD group 

differences at Scale 250 (P = 0.0083), while global efficiency exhibited group differences 

at Scales 33 (P = 0.0494), 250 (P = 0.0494), and 500 (P = 0.0312) (Table I). Similar to the 

segregative measures, no significant differences were observed in the integrative measures 

when comparing between the two diseased groups.

IV. Discussion

The consistency of graph theoretical measures across different methods of graph creation 

has been a long-standing problem in network neuroscience, whereby changes to parcellation 

scheme and the number of nodes have an impact on the magnitude of the measures 
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observed. In prior studies in the field, it was noted that characteristic path length and global 

efficiency are highly sensitive to the number of nodes [8], [12], while average clustering 

coefficient and transitivity are less affected by the choice of parcellation [8], [13]. We 

observe similar relationships between scale and graph theoretical measures in our study, 

with the integrative measures of characteristic path length and global efficiency being more 

sensitive to parcellation scale compared transitivity, which exhibited more stability across 

scales (Figure 2).

A. Significance when comparing disease groups

The effects of scale on graph theoretical measures become more apparent when observing 

between-groups differences in the measures. It has been posited that differences in graph 

creation methods are a source of inconsistency in the significance and direction of change 

in relation to disease state [6]. A previous finding in white matter networks note that both 

segregative and integrative measures to be inconsistent in identifying group differences when 

compared across parcellation schemes [15]. Corroborating prior studies, we observed that 

the integrative measures of characteristic path length and global efficiency were highly 

sensitive to the choice of parcellation scale, with characteristic path length only finding 

significance for the HC vs. AD comparison in Scale 250 and global efficiency only finding 

significance for the HC vs. AD comparison in Scales 33, 250, and 500. In the previous 

study using fractional anisotropy networks, it is noted that average clustering coefficient in 

particular struggled to identify group differences at a network level [15]. The weaknesses 

of average clustering coefficient identified in previous studies thus align with our present 

findings where average clustering coefficient was unable to distinguish between MCI and 

AD group networks in any parcellation scale and was unable to distinguish between HC 

and MCI groups in the higher scales of 125, 250, and 500. Average clustering coefficient’s 

sensitivity to scale and previously identified sensitivty to parcellation scheme may offer an 

explanation regarding previous studies’ struggles to find significance in the measure [6].

The second segregative measure that we investigated, transitivity, showed the greatest 

robustness against scale, as group differences were identified for HC vs. MCI and HC 

vs. AD across all parcellation scales. The robustness of transitivity to the selection of scale 

corroborates previous findings in AD cortical thickness networks, where transitivity was 

noted to have the greatest stability when altering the number of nodes and parcellation 

schemes used to create structural networks [13], [14]. As such, we conclude that the 

segregative measure of transitivity offers the greatest robustness to parcellation-related 

choices and may offer a more consistent depiction of topological disruption when comparing 

between healthy and disease-state brain networks.

B. Direction of change with respect to increasing disease severity

In terms of directionality, we found that segregative measures generally increased with 

disease severity when comparing between HC and AD. These findings align with that of 

prior studies indicating that the structural connectome eventually becomes more segregated 

as AD progresses, leading to disrupted connectivity and supporting the hypothesis that 

AD is a disconnection syndrome [2], [13]–[15], [33], [34]. However, the comparison 

between HC and MCI depicts the opposite trend in segregative measures, indicating 
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that early stages of the disease may exhibit an initial decrease in segregation before 

increasing as the disease worsens. These findings in relation to MCI in clustering coefficient 

corroborate those of certain studies in MCI structural networks that weighted networks 

with streamline counts [35], [36], while running against trends found in structural networks 

using fractional anisotropy [15]. We also found that integrative measures pointed towards 

increased integration in MCI while being largely insignificant when comparing to AD 

groups, with decreased characteristic path length and increased global efficiency, again 

running counter to findings using other weighting methods [15], [35]–[37]. As such, we 

conclude that there are additional factors that influence the observed directionality of graph 

theoretical measures that may warrant further study.

V. Conclusion

From this study, we conclude that the selection of parcellation scale has an impact on the 

observed graph theoretical measures of fiber density networks and their ability to distinguish 

between diagnostic groups in the ADNI cohort. Most notably, average clustering coefficent, 

characteristic path length, and global efficiency largely do not maintain significance when 

the parcellation scale is varied, while transitivity is more robust to the change in scale. 

The study has thus provided further evidence that these measurements are highly sensitive 

to brain network creation methods and future study must be conducted to determine more 

robust measures for quantifying topological disruptions in the context of disease.
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Fig. 1. 
An example of the structural connectome derived using fiber density is shown at 5 different 

scales for a healthy control subject (scales 33, 60, 125, 250, and 500). The heatmaps are 

generated from the adjacency matrices of each structural network, with the axes being the 

ROIs ordered by their index number in the parcellation scheme. It can be seen that as the 

scale is increased, the connections become significantly more sparse.
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Fig. 2. 
The median values of the 4 graph theoretical measures are plotted with respect to 

parcellation scale. We can observe that the two segregative measures of average clustering 

coefficient (A) and transitivity (B) are less sensitive to scale than the integrative measures of 

characteristic path length (C) and global efficiency (D).
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Fig. 3. 
Heatmaps were constructed to depict the directionality of change in the network 

measurements with respect to increasing disease severity. The first column in each subplot 

is the difference when progressing from HC to MCI, the second is from MCI to AD, and 

the third is from HC to AD. Red coloration indicates that the measure increases as disease 

severity increases, while blue coloration indicates that the measure decreases as disease 

severity increases. Results are shown for average clustering coefficient (A), transitivity 

(B), characteristic path length (C), and global efficiency (D). Numerical labels indicate the 

difference in medians between the two groups with respect to increasing disease severity.
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