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Abstract

Achieving convergent synthetic strategies has long been a gold standard in constructing complex 

molecular skeletons, allowing for the rapid generation of complexity in comparatively streamlined 

synthetic routes. Traditionally, biocatalysis has not played a prominent role in convergent 

laboratory synthesis, with the application of biocatalysts in convergent strategies primarily 

limited to the synthesis of chiral fragments. Although the use of enzymes to enable convergent 

synthetic approaches is relatively new and emerging, combining the efficiency of convergent 

transformations with the selectivity achievable through biocatalysis creates new opportunities for 

efficient synthetic strategies. This Perspective provides an overview of recent developments in 

biocatalytic strategies for convergent transformations and offers insights into the advantages of 

these methods compared to their small molecule-based counterparts.

Graphical Abstract

INTRODUCTION

Determining the major disconnections for a targeted campaign is an important exercise 

that governs the overall cost-effectiveness and atom economy in a multistep synthesis.1 As 

defined by Hendrickson in 1975,2 an ideal synthesis entails “only construction reactions 
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involving no intermediary refunctionalisations, and leading directly to the target, not only 

its skeleton but also its correctly placed functionality.” Toward this goal of designing 

increasingly streamlined synthetic routes focused on skeletal construction, convergent 

synthesis has risen as a governing principle in synthetic design.2, 3 In convergent 

transformations, two independently synthesized fragments are stitched together to construct 

the core skeleton of the targeted product in a single, complexity-generating step.3 In 

contrast to linear sequences, in which a starting material undergoes a series of iterative 

chemical transformations to deliver a final product of interest, the convergent synthesis of 

small molecules offers advantages in reducing the overall step count of a sequence while 

increasing the overall yield (Figure 1a).4

In the history of contemporary synthetic organic chemistry, a plethora of fragment coupling 

strategies using small molecule-based catalysts have been developed and employed in 

synthetic campaigns, ultimately reshaping the way we approach the construction of 

molecules. However, the advantages inherent to convergent synthetic strategies can be 

difficult to realize based on practical challenges encountered in their application, especially 

for guiding the selectivity of the fragment coupling event. For example, in the synthesis 

of the complex skeleton present in the communesin family of alkaloid natural products 

(see 1), Movassaghi and coworkers devised an elegant convergent route that employed a 

radical–radical coupling to form the central carbon–carbon bond uniting the two fragments 

in 2.5 However, to achieve selectivity in the convergent C–C bond-forming step, a detour 

to an intermediate diazene 3 was necessary, requiring additional steps for the installation 

of directing and protecting groups in the fragment synthesis and coupling.5 In contrast, 

a single cytochrome P450 enzyme can unite unprotected building blocks 6 and 7 with 

catalyst-controlled selectivity in the biosynthesis of communesin alkaloids, circumventing 

any requirement for intermediary functionalization steps (Figure 1b).6

The precision and efficiency offered by enzyme catalysis has propelled the incorporation 

of biocatalytic strategies into synthetic campaigns in academic and industrial spheres.7–9 

Most biocatalytic reactions employed in multi-step synthesis have centered on 

individual functional group manipulations to access chiral building blocks or late-stage 

functionalization reactions.10–12 This trend can be observed in the role biocatalysis has 

historically played in convergent synthesis, with the utilization of enzymes for the synthesis 

of key fragments present in active pharmaceutical ingredients (Figure 2). Enzymatic kinetic 

resolutions dominated the field of biocatalysis in the 1990s and early 2000s, resulting in the 

development of robust strategies for the preparation of chiral building blocks,13–15 including 

the chiral amines present in amoxicillin (8)16 and draflazine (9).17, 18 The development 

of directed evolution-based strategies to tailor biocatalysts for a targeted transformation 

drastically expanded the application of biocatalysis in asymmetric catalysis.19 This new 

wave of biocatalysis brought the synthesis of chiral alcohols to the forefront of the 

field, with a wealth of catalysts capable of the stereoselective reduction of ketones, as 

demonstrated in the convergent synthesis of atorvastatin (10)20 and atazanavir (11).21, 22 

Additionally, biocatalysis has played a significant role in oxidative desymmetrization 

reactions, enabling the synthesis of the key chiral fragments present in telaprevir (12)23 

and islatravir (13).24
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Although the extensive development of biocatalysts for functional group interconversions 

has increased the footprint of biocatalysis in the retrosynthetic playbook, biocatalysts 

are less commonly considered for constructing the core skeleton of molecules. This 

missed opportunity in biocatalysis is exemplified by the structural complexity of the 

molecular frameworks represented in natural products assembled through total enzymatic 

synthesis. Merging the selectivity offered by biocatalysis with the efficiency of convergent 

transformations holds the potential for increasingly streamlined strategies for complex 

molecule synthesis. This Perspective provides an overview of recent developments 

in biocatalytic strategies for convergent transformations. We provide insights into the 

development of convergent biocatalytic reactions, their incorporation in multistep synthesis, 

and probe the advantages convergent biocatalytic methods provide compared to their small 

molecule-based counterparts. As a non-comprehensive review, the goal of this Perspective 

is to discuss the current state of convergent biocatalysis and how this mode of synthetic 

convergence can impact the way we think about making molecules.

BIOCATALYTIC TOOLBOX FOR FRAGMENT COUPLING REACTIONS

The most well-studied biosynthetic pathways embrace linear blueprints with an iterative 

assembly of the core skeleton and functionality present in natural products.25–29 An example 

of this can be seen in the biosynthesis of the vast class of terpenoid natural products, in 

which simple isoprene building blocks are iteratively assembled and cyclized to provide 

structurally complex terpene scaffolds.25 Advances in DNA sequencing and bioinformatic 

technologies have fueled the discovery of biosynthetic enzymes from secondary metabolism, 

further illuminating Nature’s strategies for complex molecule synthesis.30 Among these 

strategies, a growing number of biosynthetic enzymes have been identified that break from 

the canonical linear blueprint for natural product synthesis by stitching together two or more 

building blocks in convergent transformations.31, 32 These enzymes offer the efficiency 

of convergent reactions with the precision of enzyme catalysis, thereby avoiding the 

traditionally accepted requirements for protecting groups and functional handles in synthetic 

planning. The transformative potential of these enzyme catalysts for convergent synthesis 

has been explored over the last decade, leading to promising advances in biocatalytic 

strategies for convergent C–N and C–C bond formation.

Convergent synthesis of unnatural nucleosides.

The earliest examples of enzymes applied as convergent biocatalysts can be found in the 

synthesis of carbohydrates.33 Aldolases are robust catalysts for the union of simple building 

blocks to form both natural and unnatural sugars with programmable stereoselectivity 

to rapidly build molecular complexity.34, 35 Additionally, glycosyltransferases can stitch 

together carbohydrates of varying complexity or perform highly site-selective glycosylations 

of complex molecules with the formation of a glycosidic bond.36–39

An excellent example of the power of both of these transformations can be found in the 

total synthesis of the HIV antiviral drug islatravir (18).24 Inspired by the bacterial nucleotide 

salvage pathway,40 Merck and Codexis engineered an enzymatic cascade to transform chiral 

aldehyde 14 into the unnatural nucleoside 18 in a single step (Figure 3a).24 The first step in 
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this cascade utilized an aldolase (DERA) that natively catalyzes the reversible retro-aldol 

cleavage of a sugar into glyceraldehyde 3-phosphate and acetaldehyde. To reverse the 

direction of the aldol reaction, the aldolase was engineered to tolerate a large excesses of 

acetaldehyde, thereby driving the equilibrium toward the formation of the desired sugar 16. 

Once formed, sugar 16 was selectively phosphorylated by a phosphorylase (PPM) at the C5 

position to provide the correct functional handle to allow for the ligation of the nucleobase 

17 to the sugar to afford the unnatural nucleoside 18.

Nucleoside phosphorylases (such as PNP) typically catalyze the reversible cleavage of 

nucleosides to free the purine or pyrimidine base in nucleotide salvage pathways.40 Given 

the reversible nature of these reactions, nucleoside phosphorylases can be harnessed as 

convergent catalysts to synthesize nucleosides.40 However, for this convergent chemistry to 

be realized, a mechanism to drive the equilibrium toward the nucleoside formation must 

be incorporated to consume free inorganic phosphates released through the progression of 

the reaction. To accomplish this, Codexis and Merck incorporated sucrose phosphorylase 

into the cascade, allowing for the irreversible consumption of free phosphate present in the 

reaction by converting sucrose to glucose-1-phosphate and fructose.24

Another example of using a nucleoside phosphorylase from a nucleotide salvage pathway 

to synthesize an unnatural nucleoside was recently disclosed in the synthesis of the 

COVID-19 antiviral molnupiravir (22; Figure 3b).41 Similarly to the islatravir synthesis, 

Merck engineered an enzymatic cascade in which a phosphorylase (MTR kinase) added a 

phosphate group to ribose 19, enabling the ligation of uracil (20) to the ribose through the 

displacement of the phosphate to form the unnatural nucleoside 21. However, in contrast 

to the phosphate sequestration strategy employed in the islatravir (18) synthesis, Merck 

employed an ATP recycling strategy in which the free phosphate was converted to ATP. Not 

only did this prevent the undesired nucleoside cleavage reaction, but the generation of ATP 

also provided MTR kinase with the required phosphate source for the phosphorylation step, 

thereby alleviating the cost of supplying the reaction with stoichiometric amounts of ATP.

Directed evolution of the key enzymes involved in the syntheses of islatravir (18) and 

molnupiravir (22) led to substantial improvements in the efficiency of the synthesis of 

these unnatural nucleosides over alternative synthetic approaches. For example, a previous 

chemical synthesis of islatravir (18) from a chiral building block similar to 14 was achieved 

with a 17% total yield over ten steps,42 providing a stark contrast to the 76% yield provided 

by the enzymatic cascade that takes place in a single reaction vessel.24 Similarly, following 

installation of the oxime moiety onto nucleoside 21, molnupiravir (22) was accessed in only 

three steps in a 69% overall yield, representing a drastic improvement over the previously 

developed 10-step synthesis starting from ribose that afforded <10% yield using small 

molecule-based synthetic strategies.41

Altogether, these biocatalytic strategies present a robust tool in the retrosynthetic design 

of unnatural nucleosides, breaking from the necessity of protecting group toggling and the 

challenge of setting the anomeric stereochemistry hindering analogous chemical strategies. 

Moreover, the tunability of nucleoside phosphorylases through protein engineering positions 
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this class of enzymes as powerful convergent catalysts for the ligation of increasingly 

complex sugars and nucleobases to access potent antiviral drugs.

Convergent amidation reactions.

Similar to glycosidic bonds, amide bonds are a common covalent link in biological systems, 

with a widespread presence in proteins, peptides, and secondary metabolites.43 Despite 

their ubiquitous presence in peptides and bioactive organic small molecules, traditional 

methods of constructing amide bonds often require the activation of the carboxylic acid 

motif using stoichiometric reagents and rely on protecting group strategies to achieve 

chemoselectivity.44 This often results in stoichiometric organic waste, posing significant 

challenges in amidation reactions, especially those carried out on an industrial scale.45

In an alternative approach to the complex ribosome machinery that performs iterative 

amidation reactions in the synthesis of proteins and peptides,46 Nature has evolved a catalog 

of biosynthetic enzymes that perform convergent amidation reactions in the synthesis of 

secondary metabolites (Figure 4a).47 This subset of enzymes are composed primarily 

of ligases called amide bond synthetases.48 These ATP-dependent enzymes mediate the 

tethering of adenosine monophosphate (AMP) to a substrate harboring a carboxylate. This 

creates a leaving group that allows for the substitution reaction with a free amine present 

on the second fragment, thereby forming the target amide linkage, as demonstrated in the 

convergent synthesis of the antidepressant moclobemide (30; Figure 4b).49

Substrate scope profiling of several amide bond synthetases has demonstrated a broad 

substrate scope, with these ligases accepting a wide range of carboxylic acids and amines 

(Figure 4c).49–51 The most broadly studied ligase is McbA, an amide bond synthetase 

involved in the biosynthesis of marinacarbolines such as 23.50 Substrate scope profiling 

of McbA has demonstrated that it can be used as a versatile catalyst for amide coupling 

reactions, with the ability to accept a range of aromatic carboxylic acids and both aliphatic 

and aromatic amines.49, 51 The promiscuity of McbA was further validated by a crystal 

structure of the ligase, showing a flexible binding site with relatively few specific binding 

interactions. In addition to McbA, several CfaL orthologues associated with coronatine 

biosynthesis (24) were recently discovered to perform promiscuous amide couplings.52 

Expanding on the chemistry achievable with McbA, the CfaL ligases accept both aromatic 

and aliphatic acids in reactions with various natural and unnatural amino acids serving as the 

amine coupling partner.

Altogether, this class of enzymes has demonstrated an ability to template a diverse 

array of carboxylic acids and amines in their active site for fragment coupling 

reactions. Significantly, these biocatalytic reactions offer the unique advantage of catalytic 

regeneration of the ATP activating reagent,49 thereby eliminating the requirement for 

stoichiometric activating reagents and organic waste inherent to many traditional approaches 

for amide bond formation.44 These factors, combined with the pivotal role amide bond 

formation plays in medicinal chemistry,53 poise amide bond synthetases as an attractive tool 

for convergent amide bond formation.
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Convergent amination reactions.

The prevalence of chiral amine moieties in pharmaceutical agents has led to an intense 

interest in developing biocatalytic tools for stereoselective amination reactions.54 The 

majority of these biocatalytic strategies rely on transaminases that perform functional group 

interconversions to form chiral amine building blocks.55 However, several enzymes have 

been characterized which perform convergent amination reactions through the generation 

of imine intermediates. These imine intermediates are formed by condensing one fragment 

bearing a free amine and a secondary fragment bearing a carbonyl, forming an electrophilic 

species poised for nucleophilic attack (Figure 5a).

In one scenario, a hydride can be delivered to the imine intermediate in a reductive 

amination reaction, a transformation that has emerged as one of the leading approaches 

toward amine synthesis in the pharmaceutical industry.53 As an alternative to the highly 

reactive reducing agents typically required in chemical reductive aminations, NADPH can 

be used as a hydride source in imine reductase-catalyzed reductive aminations.55 The 

majority of biocatalytic strategies for reductive aminations have been developed with simple 

amine substrates; however, imine reductases can also unite two larger fragments through the 

formation of a C–N bond.56 An excellent example of this can be found in the asymmetric 

synthesis of GSK2879552 (34), a lysine-specific demethylase-1 inhibitor currently in 

clinical trials for the treatment of several cancers (Figure 5b).57 The previous synthesis 

of GSK2879552 (34) required a classic resolution of the racemic amine fragment 31 prior 

to reductive amination using stoichiometric sodium borohydride at low temperatures. To 

overcome issues with cost, the number of steps, solvent usage, and stoichiometric boron 

waste presented by the chemical process, a biocatalytic strategy for the formation of key 

intermediate 33 was explored.57 Specifically, an imine reductase was engineered to catalyze 

the reductive amination with the simultaneous kinetic resolution of the amine fragment 

31, providing key intermediate 33 in >99% ee through a single step from racemic starting 

material 31.

As an alternative to enzymatic delivery of a hydride to an imine intermediate, Nature 

has evolved enzymes that exploit the electrophilicity of imine intermediates to achieve 

stereoselective cyclization reactions, such as Pictet–Spengler reactions, in the biosynthesis 

of various alkaloids including 38 and 41.58 The first enzyme-catalyzed Pictet–Spengler 

reaction was discovered in 1977,59 over sixty years after Amé Pictet and Theodor Spengler 

first discovered the abiotic version of this reaction.60 Since then, an ever-expanding 

collection of Pictet–Spenglerases have been characterized in plant secondary metabolite 

pathways, including noroclaurine and strictosidine synthase (Figure 5c).58 Following the 

intermolecular condensation of a β-arylethylamine and an aldehyde to form an imine 

intermediate (such as 37), an intramolecular C–C bond is formed through an electrophilic 

aromatic substitution reaction.61, 62 In addition to their natural reactivity, both noroclaurine 

and strictosidine synthase have demonstrated broad substrate scope, with the ability to 

couple a variety of fragments in the synthesis of diverse alkaloid products.63
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Convergent alkylation reactions.

Beyond intramolecular C–C bond formation, such as those catalyzed by Pictet–

Spenglerases, a growing number of biocatalysts capable of mediating intermolecular C–C 

bond formation have been developed.64 The majority of these biocatalytic reactions include 

late-stage C–H functionalization reactions catalyzed by transferases or the convergence 

of two small units catalyzed by lyases.64–66 The last several years have brought with 

them an expansion to this biocatalytic toolbox for intermolecular C–C bond formation, 

including the development of convergent alkylation reactions. These biocatalytic strategies 

have been developed with new-to-nature reactions and by harnessing complexity-generating 

biosynthetic enzymes in secondary metabolite pathways.

Radical coupling reactions offer new retrosynthetic disconnections in complex molecular 

synthesis compared to reactions based on ionic chemistry. However, the inherently high 

reactivity and frequently short lifetimes of radical intermediates create a significant 

challenge in controlling the chemo-, site- and stereoselectivity of radical transformations.67 

Over the last several years, creative strategies pairing the radical chemistry initiated with 

photocatalysis and the selectivity achievable for reactions within an enzyme active site 

have been developed for stereoselective formation of C(sp3)–C(sp3) bonds through radical 

coupling reactions.68

Ene-reductases are flavin-dependent enzymes that naturally catalyze the asymmetric 

reduction of alkenes.69 In a typical alkene reduction, a hydride from NADPH is transferred 

to the flavin cofactor to form the reduced cofactor. The reduced flavin cofactor is then poised 

to deliver a hydride to an alkene substrate bound in the enzyme active site. However, this 

mechanism can be interceded by binding an α-halo carbonyl substrate (42) followed by 

excitation by visible light, thereby triggering a single electron transfer in the presence of 

the reduced flavin cofactor.70 This photoexcitation-promoted electron transfer results in the 

release of a halide anion, leaving behind intermediate 43 with a carbon-centered radical 

that is primed for a Giese-type addition with a second alkene substrate (44). Finally, a 

stereoselective hydrogen atom transfer from the semiquinone flavin cofactor (47) to radical 

intermediate 45 forms C–C coupled product 46, thereby completing the catalytic cycle. 

This photoenzymatic approach for the hydroalkylation of alkenes has been exploited for 

the versatile C–C coupling of various α-halo carbonyls and alkenes to from γ-stereogenic 

ketones, amides, and esters (Figure 6a).70–72

In addition to photoenzymatic hydroalkylation reactions, several strategies for convergent 

C–C bond formation through biocatalytic Friedel–Crafts alkylation reactions have been 

explored.73–75 Discovered in 1877 by Charles Friedel and James Mason Crafts, the 

Friedel–Crafts reaction has become an incredibly versatile reaction commonly used to 

accomplish alkylation and acylation reactions.76 Furthermore, a number of enzymes have 

been identified to perform intermolecular Friedel–Crafts reactions in secondary metabolite 

pathways, several of which have been harnessed as biocatalysts for C–C bond formation.64 

Of particular interest in convergent biocatalysis, one of these biosynthetic enzymes performs 

a late-stage dimerization reaction to form the natural product cylindrocyclophane F (49).77 

In a head-to-tail Friedel–Crafts alkylation, CylK catalyzes the site- and stereoselective 
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dimerization of substrates harboring resorcinol and an alkyl halide (48; Figure 6b). Beyond 

the native reactivity, CylK can also catalyze a range of Friedel–Crafts alkylations with 

resorcinol derivatives and alkyl halide chains terminating in a hydroxyl group or extended 

chains bearing amides, thioesters, esters, and ketones.74

Intermolecular Diels–Alder reactions.

Like the Friedel–Crafts alkylation reaction, the Diels–Alder reaction represents another 

classic synthetic transformation in every synthetic chemist’s retrosynthetic playbook. In 

particular, the ubiquity of the cyclohexane skeleton in natural product structures has 

positioned the Diels–Alder reaction as a versatile transformation for convergent strategies 

toward complex molecules.78 It has inspired an intense interest in the discovery of 

biosynthetic enzymes that perform this reaction.79 Nevertheless, for many decades, the 

discovery of intermolecular Diels–Alderases eluded chemists, raising into question the 

fundamental existence of enzymes that have evolved explicitly for this function and spurring 

the development of artificial Diels–Alderase enzymes.

Artificial Diels–Alderases harness the acid-base activation and stereocontrol provided upon 

binding of a given diene and dienophile in a protein cavity for asymmetric cycloadditions 

(Figure 7a).80 Several artificial metalloenzymes have been designed to catalyze Diels–Alder 

reactions, often utilizing a copper species as a Lewis acid catalyst to promote the convergent 

cycloaddition.81 Alternatively, stabilization of the desired pericyclic transition state can be 

achieved by training catalytic antibodies to bind a synthetic transition state mimic82 or 

through the computational design of de novo enzymes.83

In addition to advances in the design of artificial enzymes, there have been several 

significant milestones in the discovery of biosynthetic enzymes performing Diels–Alder 

reactions. Of the biosynthetic Diels–Alderases identified to date, the majority evolved from 

divergent ancestors with no involvement in the catalysis of Diels–Alder reactions.84 As such, 

many of these biosynthetic enzymes are bifunctional, first catalyzing the preparation of one 

of the two substrates followed by stereoselective [4+2] cycloaddition within the enzyme 

active site.84 This can be observed in the biosynthesis of the tropolonic natural product 

neosetophomone B (54), in which EupfF first catalyzes the dehydration of a tropolone 51 to 

form the diene 53 required for a spontaneous [4+2] cycloaddition (Figure 7b).85 However, 

due to the bifunctional nature of these catalysts, the mechanism of their involvement in the 

cycloaddition is sometimes unclear, with only reactions proceeding through a concerted, 

synchronous pericyclic transition state constituting a true Diels–Alder reaction.79

The long-standing debate over the existence of biosynthetic enzymes specifically evolved to 

catalyze a Diels–Alder reaction was finally put to rest in 2011, when an enzyme evolved 

to perform a concerted, intramolecular [4+2] cycloaddition was identified.86 This landmark 

discovery led to the identification of additional stand-alone Diels–Alderases catalyzing 

intramolecular reactions through homology-based searches with its sequence. However, 

it wasn’t until almost ten years later that the first stand-alone Diels–Alderase catalyzing 

an intermolecular reaction was identified in the biosynthesis of the plant natural product 

chalcomoracin (57).87 This Diels–Alderase, MaDA, is a flavin-dependent enzyme that unites 

diene 5 and dienophile 56 in a [4+2] cycloaddition through a concerted, asynchronous 
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mechanism (Figure 7c). Despite the absence of redox chemistry in the [4+2] cycloaddition, 

the flavin cofactor was identified to be essential for catalytic activity and is likely involved 

in hydrogen-bonding interactions with the substrate. Substrate scope analysis of the enzyme 

demonstrated promiscuous activity, with the ability to accept different combinations of 

unnatural dienes and dienophiles, ultimately allowing for the chemoenzymatic synthesis of 

various natural product derivatives.

The myriad of small molecule-based chiral ligands developed for asymmetric Diels–Alder 

reactions offers versatility that has yet to be accomplished using biocatalytic strategies.88 

However, performing reactions within these protein environments, either using artificially-

designed or natural enzymes, offers the unique advantage of further genetic manipulation 

to allow for designer catalysts with high levels of efficiency and selectivity. Moreover, 

the possibility for accessing isomeric scaffolds using Diels–Alderases with complementary 

selectivity compared to traditional synthetic methods positions this class of enzymes as 

potentially powerful tools for convergent synthesis.

Intermolecular oxidative coupling reactions.

A growing number of enzymes from secondary metabolite pathways, like the previously 

described CylK alkylase and Diels–Alderases, have been implicated in complexity-

generating dimerization reactions.32 Convergent strategies such as these for the construction 

of natural products break from the canonical linear sequences invoked in many biosynthetic 

pathways and offer compelling new tools for convergent synthesis. Of the biosynthetic 

dimerization reactions characterized to date, one of the most prevalent modes of 

dimerization is through intermolecular oxidative coupling reactions.89

The proposed mechanism for oxidative dimerization reactions in Nature involves the 

abstraction of a hydrogen atom from a phenolic or indole-containing substrate followed 

by a radical C–C coupling or addition reaction, often with the formation of a biaryl bond 

(Figure 8a).89 Traditional synthetic strategies to construct biaryl bonds face fundamental 

challenges in controlling the selectivity of bond formation. For example, metal-catalyzed 

cross-couplings such as Suzuki and Negishi reactions require the prefunctionalization of 

both fragments to dictate the site of bond formation, thereby adding steps to a given 

synthetic campaign.90 Alternatively, the direct oxidative coupling of two C–H bonds 

drastically increases the efficiency of a convergent synthetic sequence, albeit often at the 

expense of selectivity in the bond-forming event.91 In contrast, enzymes mediating these 

transformations have the advantage of catalyst control over the site- and stereoselectivity of 

the oxidative coupling reaction by templating the two substrates in a specific orientation in 

the enzyme active site (Figure 8b).

One approach to oxidative dimerization in secondary metabolism involves enzymatic 

oxidation followed by rapid binding of the oxidized substrates to an auxiliary protein, 

wherein the templating of the two substrates in a specific orientation allows for 

a stereoselective radical–radical coupling reaction.92 These oxidations are typically 

performed by laccases, a class of multicopper oxidases that readily oxidize diverse 

phenolic substrates.93, 94 Laccase-catalyzed oxidations are ubiquitous in fungal and plant 

systems, such as in the biosynthesis of lignin, and have been harnessed for a variety 
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of biotechnological applications.95 However, the application of laccases in asymmetric 

catalysis has been limited due to the scarcity of examples in which laccases exert control 

over the bond formation event following the initial oxidation.96 To overcome this limitation, 

auxiliary dirigent proteins can be harnessed to regain control over the selectivity of the bond 

formation event.89, 92, 97, 98 For example, in the convergent biosynthesis of viriditoxin (61), 

a late-stage oxidative dimerization catalyzed by a laccase and dirigent protein forms (P)-61 
with excellent atroposelectivity (>95:5 er).98 In contrast, removal of the dirigent protein 

from the oxidative dimerization results in a complete loss in atroposelectivity, with the 

formation of a mixture of (P)-61 and (M)-61 in a 1:2 ratio.98

In addition to laccases, cytochrome P450 enzymes (P450s) have been identified as 

convergent catalysts in the biosynthesis of numerous dimeric natural products.32 However, 

unlike most laccases, these P450s exert control over both the oxidation and selectivity of 

the bond formation event.89 This catalyst-controlled selectivity has been demonstrated in 

the biosynthesis of an ever-expanding catalog of biaryl products from fungi and bacteria, 

with P450s catalyzing the selective dimerization of highly oxygenated tricyclic, coumarin, 

and naphthalene substrates (such as 62 and 63).89 In addition to the oxidative coupling of 

phenolic substrates, P450s have also been implicated in the oxidative coupling of substrates 

harboring indoles in the biosynthesis of alkaloids (such as 64 and 65).99–101

Recently, the potential application of P450s involved in the biosynthesis of biaryl 

metabolites was investigated as a tool for more general biocatalytic oxidative cross-coupling 

reactions.102 In particular, a P450 that naturally dimerizes a coumarin substrate to form 

bicoumarin 62 was identified to catalyze an array of coumarin cross-coupling reactions 

uniting a coumarin substrate with diverse phenolic substrates to form tetra-ortho-substituted 

biaryl scaffolds.102 Moreover, through the directed evolution of the P450, a catalyst 

with improved activity, site-selectivity, and atroposelectivity was engineered for the cross-

coupling reaction to form biaryl 66 (Figure 8c). This tunability of P450 catalysts for 

oxidative cross-coupling reactions overcomes several limitations inherent to small molecule-

based methods. For example, traditional oxidative cross-coupling methods often rely on the 

statistical distribution of individual substrate dimers and cross-coupling products in cases 

where blocking groups are not used.103, 104 Alternatively, small molecule-based methods 

for oxidative cross-coupling can be rendered selective, albeit at the expense of blocking 

groups.105, 106 Compared to the inherent limitations of small moleculebased catalysts 

for oxidative cross-coupling reactions, the developed biocatalytic approach provides a 

superior platform by providing a paradigm for catalyst-controlled selectivity and overcomes 

the requirements of blocking groups and limitations of substrate-controlled reaction 

outcomes.102

CONCLUSION & OUTLOOK

Until recently, the area of convergent biocatalysis remained largely untapped, preventing 

the full realization of the impact enzymes can offer to synthesize complex molecules.12 

Encouragingly, the last decade has seen an increase in the development of biocatalytic 

strategies for C–N and C–C fragment coupling reactions. Nevertheless, these convergent 

biocatalytic strategies remain prohibitively underdeveloped compared to the vast repertoire 
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of small molecule catalysts and reagents that mediate fragment couplings reactions. 

The further development of this category of biocatalysts can potentially change the 

retrosynthetic framework for fragment coupling reactions by circumventing traditionally 

accepted requirements for protecting groups and functional handles into synthetic planning. 

To realize this goal, it is imperative that significant efforts are spent in the discovery of 
biosynthetic enzymes from secondary metabolite pathways that perform fragment coupling 
reactions, particularly ones that can streamline bond constructions that are often difficult 
to achieve using traditional synthetic approaches. Additionally, continued development of 

biocatalytic strategies for bread-and-butter reactions in medicinal chemistry such as amide 

bond formation and reductive aminations.53, 107 Expanding the repertoire of biocatalytic 

strategies for these key transformations will provide more cost-effective and greener 

synthetic routes, especially considering the advantages of cofactor recycling in biocatalytic 

reactions offers compared to the often expensive and wasteful use of stoichiometric reagents 

in chemical transformations.108

The continued discovery of convergent biocatalytic equivalents for existing chemical 

methods for powerful bond constructions will expand the repertoire of biocatalytic 

convergence for use in the chemoenzymatic total synthesis of complex molecules. 

Traditional challenges associated with applying biocatalytic transformations in synthesis 

have included enzyme availability and limited substrate promiscuity, thus contributing to 

the slow adoption of biocatalytic methods within the mainstream synthetic community.109 

However, the repertoire of biocatalytic methods has increased tremendously in recent years, 

and chemoenzymatic synthesis methods are taking up speed.8 To accelerate this trend, 

broader commercialization of enzymes is needed to increase their accessibility.

Moreover, to enable a more extensive adoption of biocatalytic methods to redefine the 

retrosynthesis of organic molecules, several innovations and developments are required 

in the field. A minimal connection is often made using enzymes as catalysts for routine 

chemical synthesis. This typically leaves a contemporary synthetic chemist believing 

that enzymes are only used for precise chemical transformations. Exposure to enzymatic 

chemistry should be included in routine undergraduate organic chemistry courses to expose 

potential future scientists to the use of biocatalytic methods for chemical synthesis.12 In 

parallel to the exposure of biocatalytic methods to undergraduate students, it is also crucial 

for biocatalytic methods to be broadly integrated with chemical platforms and databases 

routinely used for synthetic planning. An excellent example of this can be seen in the 

creation of RetroBioCat, an online database and synthetic planning tool focused on the 

implementation of biocatalytic cascades into retrosynthetic analysis.110 The inclusion of 

enzymatic methods in scientific solutions also necessitates the need to study and understand 

the factors contributing to the advantages and limitations of carrying out biocatalysis versus 

chemocatalysis for specific chemical transformations.
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Figure 1. 
Biocatalysis in convergent synthesis. (a) Comparison of target product yields in hypothetical 

linear versus convergent synthetic routes. (b) Representative retrosynthesis of alkaloid 

natural product core 1 using chemical methods compared to enzymatic convergence with 

a cytochrome P450 enzyme shows transformative power of biocatalysis in convergent 

synthesis.
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Figure 2. 
Biocatalytic synthesis of chiral fragments employed in convergent syntheses toward active 

pharmaceutical ingredients. The stereocenter set by an enzyme is highlighted in blue.
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Figure 3. 
Convergent synthesis of antiviral drugs using reversible phosphorylases from nucleotide 

salvage pathways. DERA: deoxyribose 5-phosphate aldolase; PPM: phosphopentomutase; 

PNP: purine nucleotide phosphorylase; MTR kinase: 5-S-methylthioribose kinase; 

UP: uridine phosphorylase; PO: pyruvate oxidase; AcK: acetate kinase; HMDS: 

hexamethyldisilazane.
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Figure 4. 
Convergent amide bond formation with ligases. (a) Amide bonds in natural products formed 

by ligases called amide bond synthetases. (b) Amide bond synthetases utilize ATP to activate 

a carboxylic acid fragment for nucleophilic attack by an amine fragment, as is demonstrated 

in the biocatalytic synthesis of moclobemide (30). (c) Several amide bond synthetases have 

demonstrated the ability to accept a wide range of carboxylic acid and amine fragments in 

biocatalytic amidation reactions.
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Figure 5. 
Biocatalytic strategies for convergent amination reactions. (a) The condensation of 

fragments bearing an amine and an aldehyde forms electrophilic imine intermediates poised 

for stereoselective functionalization by an enzyme. (b) Imine reductases utilize NADPH to 

stereoselectively delivery a hydride to an imine intermediate in the biocatalytic synthesis 

of chiral amines. (c) Pictet-Spenglerases harness imine intermediates in the biosynthesis of 

alkaloid metabolites, allowing for the intramolecular formation of a C-C bond through an 

electrophilic aromatic substitution reaction.
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Figure 6. 
Biocatalytic strategies for intermolecular alkylation reactions. (a) In a photoenzymatic 

approach, ene-reductases can mediate a stereoselective hydrogen atom transfer from their 

flavin cofactor upon initiation of a radical hydroalkylation by visible light. (b) Alternatively, 

a Friedel-Crafts alkylase in the biosynthesis of dimeric cylindrocyclophane F (49) can 

alkylate resorcinol derivatives with aliphatic alkyl chains.
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Figure 7. 
Biocatalytic strategies for intermolecular Diels–Alder reactions. (a) Artificial Diels–

Alderases can be engineered by anchoring a metal cofactors into an enzyme cavity, training 

catalytic antibodies against a target transition state mimic, or computation design. (b) A 

bifunctional Diels–Alderase in the biosynthesis of neosetophomone B (54) catalyzes both 

the dehydration to form diene 53 and a [4+2] cycloaddition. (c) A stand-alone natural Diels–

Alderase that catalyzes a concerted, intermolecular [4+2] cycloaddition was first discovered 

in the biosynthesis of chalcomoracin (57).
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Figure 8. 
Biocatalytic C–C fragment coupling through oxidative coupling reactions. (a) Oxidative 

enzymes such as laccases and P450s can abstract a hydrogen from a phenolic substrate 

(58) to generate radical intermediate 59 for C–C bond formation. (b) Many biaryl and 

heterodimeric alkaloid natural products are formed through selective oxidative coupling 

reactions in fungal and bacterial biosynthetic pathways. (c) Biosynthetic P450s are highly 

tunable catalysts that can be harnessed for diverse biaryl coupling reactions.
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