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Abstract

Background—Although genome-wide association studies (GWAS) have identified many 

genomic regions associated with idiopathic pulmonary fibrosis (IPF), the causal genes and 
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functions remain largely unknown. Many single-cell expression data have become available for 

IPF, and there is increasing evidence suggesting a shared genetic basis between IPF and other 

diseases.

Methods—We conducted integrative analyses to improve the power of GWAS. First, we 

calculated global and local genetic correlations to identify IPF genetically associated traits and 

local regions. Then, we prioritised candidate genes contributing to local genetic correlation. 

Second, we performed transcriptome-wide association analysis (TWAS) of 44 tissues to identify 

candidate genes whose genetically predicted expression level is associated with IPF. To replicate 

our findings and investigate the regulatory role of the transcription factors (TF) in identified 

candidate genes, we first conducted the heritability enrichment analysis in TF binding sites. Then, 

we examined the enrichment of the TF target genes in cell-type-specific differentially expressed 

genes (DEGs) identified from single-cell expression data of IPF and healthy lung samples.

Findings—We identified 12 candidate genes across 13 genomic regions using local genetic 

correlation, including the POT1 locus (p value=0.00041), which contained variants with protective 

effects on lung cancer but increasing IPF risk. We identified another 13 novel genes using TWAS. 

Two TFs, MAFK and SMAD2, showed significant enrichment in both partitioned heritability and 

cell-type-specific DEGs.

Interpretation—Our integrative analysis identified new genes for IPF susceptibility and 

expanded the understanding of the complex genetic architecture and disease mechanism of IPF.

INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a rare and fatal disease. In recent years, several 

common and rare genetic variants, implicating genes involved in alveolar stability, telomere 

biology, host defence and cellular barrier function,1 2 have been associated with IPF. The 

identification and interpretation of genetic risk factors will facilitate the understanding of 

molecular mechanisms involved in the pathogenesis of IPF, which could potentially lead 

to new treatments. However, due to limited sample size, genome-wide association studies 

(GWAS) have only identified tens of risk loci for IPF,2–4 and the biological interpretations 

behind GWAS signals remain largely unknown.

Increasing evidence suggests that pleiotropy exists in complex traits, and most trait-

associated loci can influence multiple traits.5 Genes such as TERT, DSP and FAM13A have 

been consistently identified for IPF, chronic obstructive pulmonary disease (COPD) and lung 

cancer.6 Some transcriptomic pathways and metabolite regulations are also shared between 

COPD and IPF.7 8 These findings suggest that the novel IPF genetic risk factors could be 

identified by leveraging shared genetics between traits. Recent developments in multitrait 

analysis have led to the emergence of new methods that study the shared genetic basis 

across multiple phenotypes.9–14 In particular, global genetic correlation10 and local genetic 

correlation13 14 measure genetic similarity from different angles to understand the shared 

genetic architecture between traits. Multitrait association analysis,11 15–17 such as multitrait 

association mapping (MTAG),11 can substantially improve GWAS power by leveraging 

genetic correlation.
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Transcriptomic studies provide abundant resources to identify novel biomarkers and 

biological interpretations for IPF risk loci. Data generated from large consortium efforts 

such as the genotype-tissue expression (GTEx) project have provided comprehensive 

functional annotations for single nucleotide polymorphisms (SNPs). Integrating these data 

help biological interpretation of IPF GWAS results and prioritise potential effector genes. 

For example, transcriptome-wide association studies (TWAS)18 map genetic effects to gene 

expression and test for the association between predicted gene expression and trait. Methods 

like UTMOST (Unified Test for MOlecular Signa-Tures)19 jointly impute gene expression 

from multiple tissues to improve power and accuracy.

This manuscript aims to identify novel genetic risk factors for IPF through multitrait 

modelling and TWAS to improve statistical power (figure 1). First, we investigated the 

genetic correlation between IPF and other traits.20 Then, we estimated local genetic 

correlation14 of IPF top-correlated traits to further identify correlated local regions and 

prioritised 12 candidate genes from the identified regions. Second, we applied UTMOST19 

using expression quantitative trait loci (eQTL) data from GTEx to identify 13 additional 

candidate risk genes. To replicate our findings, we investigated the expression patterns of 

candidate genes in single-cell RNA sequencing data (scRNA-Seq). 21 22 We demonstrated 

the regulatory role of two transcription factors (TFs), MAFK and SMAD2, in IPF through 

heritability enrichment analysis and cell-type-specific differential expression analysis on 

their target genes.

METHODS

Analytic strategies

Figure 1 shows the overall workflow of our study. We employed two integrative frameworks 

to improve the power of the original IPF GWAS.2 For the first framework, we integrated IPF 

and another trait’s GWAS data to leverage the shared genetic effect. First, we investigated 

the global genetic correlation between IPF and traits from the UK Biobank (UKBB) (figure 

2A). Then, we selected top correlated traits to identify genomic regions having significant 

local genetic correlations (figure 2B; online supplemental figures 1–9). Finally, we identified 

genes harbouring the leading SNPs in the correlated local regions as IPF candidate genes 

(online supplemental table 3). For the second framework, we integrated GWAS and eQTL 

data of 44 tissues from the GTEx database. We used UTMOST joint test to identify genes 

whose genetically regulated expressions showed associations with IPF (online supplemental 

table 5). To replicate our findings and understand the biological implications of the newly 

identified genes, we investigated the differential expression pattern of candidate genes using 

scRNA-Seq data from IPF and healthy distal lung parenchyma samples (figure 3). For two 

TFs, MAFK and SMAD2, among our identified genes, we validated their regulatory role in 

the pathogenesis of IPF through heritability enrichment analysis and target gene enrichment 

analysis. For heritability enrichment analysis, we applied multitrait analysis to improve the 

power of IPF GWAS and tested for disease heritability enrichment in the binding site of 

the TF. For target gene enrichment analysis, we hypothesise that if the TF is related to IPF, 

their target genes should likely exhibit differential expression patterns in IPF versus control 
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samples. We showed that target genes were significant enriched in differentially expressed 

genes (DEGs) in most cell types of scRNA-Seq data (figure 4).

Genetic correlation

Global genetic correlation calculates the correlation of genetic effects of SNP on two traits. 

We estimated the genetic correlation between IPF and other phenotypes using the software 

GNOVA.20 GWAS summary statistics were from (1) UKBB and (2) non-UKBB. For 

UKBB, we obtained the second-round GWAS results. For non-UKBB data, we downloaded 

summary statistics for 31 traits from publicly available GWAS results. These 31 traits 

included GWAS well-studied traits with large sample sizes from different disease types 

(neuropsychiatric, immune, cancer, metabolic). Details of the non-UKBB GWASs are 

summarised in online supplemental table 9. All the GWASs were performed on samples 

majorly from European ancestry. We removed traits whose estimated heritability is less than 

0.01 to reduce the uncertainty of correlation estimation. Together we calculated the genetic 

correlation between IPF and 216 phenotypes.

Local genetic correlation and prioritisation of candidate genes

Local genetic correlation provided additional information besides global genetic correlation 

as local regions can have heterogeneous correlation patterns. To ensure that the 

approximation was valid, we used the region partition provided by SUPERGNOVA 

and prefiltered regions with <250 SNPs shared between traits. To ensure the power 

and robustness of estimation, we selected 14 IPF genetically correlated traits with 

absolute genetic covariance>0.01 and FDR-adjusted p-value<0.05. We used FDR instead 

of Bonferroni correction to select more candidate traits. We applied SUPERGNOVA 14 to 

estimate and test the local genetic correlation for each candidate trait. We quantified the 

degree of local correlation and prioritised genes using the R package ashr23 and PLINK 

software. Details for gene prioritisation and sensitivity analyses can be found in online 

supplemental notes.

Transcriptome-wide association study

We used a joint-tissue TWAS method called UTMOST (URLs)19 to identify IPF-associated 

genes with its built-in gene expression imputation model. UTMOST provided imputation 

models of 44 tissues from the GTEx24 database and a cross-tissue joint test to improve the 

power. Details of UTMOST are found in online supplemental notes. Details of the tissue 

source are found in the GTEx portal. We used the joint test results to identify the associated 

genes. P value cut-off is 0.05/390625 using Bonferroni correction. We applied conditional 

analysis to prioritise candidate genes located in the same genomic region within 1Mb pairs.

Multitrait analysis and partitioned heritability

To explore TFs among candidate genes, we applied LDSC 25 to test the enrichment of 

the partitioned IPF heritability in each TF’s binding site.2 Annotations of TF binding sites 

were cell line-specific and were obtained from the IMPACT26 study. We conditioned the 

analysis on the 52 baseline annotations in LDSC. To improve the power of IPF GWAS, 

the above procedure was also performed on the IPF GWAS summary statistics adjusted by 
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MTAG.11 MTAG is a multitrait framework leveraging the correlation of genetic effects to 

boost the power of the original GWAS. To ensure the accuracy and robustness of estimation, 

in addition to the criteria, we used to select candidate traits for local genetic correlation 

analysis, we selected traits that had estimated heritability >0.2 for MTAG adjustment. As the 

results, four traits, including whole-body fat mass, body fat percentage, arm fat percentage 

and hip circumference, were used for pairwise MTAG with IPF. As the result, we obtained 

updated IPF GWAS adjusted by MTAG with each of the four traits and conducted the same 

heritability enrichment analyses as above.

Single-cell expression analysis

We used the scRNA-Seq data of 2 39 707 cells and 38 cell types from 32 patients with IPF 

and 28 healthy distal lung parenchyma samples for single-cell expression analysis. Tissue 

procurement, sample processing and data quality control were performed.21 We obtained 

cell-type-specific DEGs using the R package Seurat 27 and the MAST28 hurdle test in the R 

package. To test the enrichment of TF target genes in DEGs for each cell type, we applied 

the hypergeometric test using cell-type-specific DEGs and cell-line-specific TF target gene 

sets (online supplemental table 6) predicted from the ChIP-Atlas (URLs).29 30 We also 

evaluated the difference in the proportions of cells that express candidate genes in IPF and 

healthy samples using the two-proportions z-test. Bonferroni correction is applied to obtain 

the p value cut-off (0.05/25). Details are found in the online supplemental notes.

RESULTS

Genetic correlation between IPF and UKBB traits

The workflow of our study is found in figure 1. To understand the genetic similarities 

between IPF and other traits, we identified six traits having significant genetic correlations 

with IPF (figure 2A; online supplemental table 1). Top correlated traits are fibroblastic 

disorders (ρ=0.027, p value=1.50E-6), ischaemic stroke (ρ=0.051, p value=1.09E-5) and 

body fat-related traits, for example, body mass index (ρ=0.024, p value=6.14E-5).

To further locate genomic regions contributing to genetic similarities, we calculated the 

local genetic correlation between IPF and top correlated traits (the Methods section). 

Among these traits, 10 showed significant local region correlations across 13 local regions 

(online supplemental table 2). Based on local genetic correlation analysis, we estimated the 

proportion of correlated regions over whole-genome regions for each trait pair (figure 2B). 

Although the global genetic correlation between IPF and lung cancer only ranks middle in 

terms of both the correlation strength and significance level (ρ=−0.028, p value=0.0085), it 

has the largest proportion (26%) of correlated regions. In addition, we found that similar 

phenotypes were more likely to be correlated with IPF at the same genomic regions (online 

supplemental table 2). For example, there was significant local genetic correlation at a 

region (chr8:108,646,968–110,761,074) between IPF and fibroblastic disorders (ρ=0.0015, p 
value=3.55E-8) and palmar fascial fibromatosis (ρ=0.0014, p value=2.77E-8).
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Local genetic correlation and TWAS-identified candidate IPF risk factors

Local genetic correlation analysis helps to identify local genomic regions that contribute 

to both traits. We plotted Manhattan plots for both traits on each local region (online 

supplemental figures 1–9). Both IPF and the other trait had at least one nominal signal (p 
value <0.001) standing out from the local region’s background. These findings motivated 

us to further locate pleiotropic genes. Thus, we investigated the overlapped signals in the 

local regions from both GWASs and identified 12 candidate genes. Many of these genes 

have been reported to be either directly related to IPF or related pathogenic functions. For 

example, POT1 and RTEL1 are related to telomere maintenance. Many are related to fibrosis 

signalling pathways, such as RSPO2 is related to Wnt/β-catenin signalling, and EIF3E and 

SMAD2 are related to TGF-β signalling. The detailed information for these 12 genes is 

found in online supplemental table 3.

TWAS incorporates eQTL information to improve the statistical power and biological 

interpretability of GWAS results. Thirty-seven genes were identified as significant for IPF 

through the UTMOST TWAS test using 44 GTEx tissues, and 36 of these genes remained 

significant after conditional analysis (online supplemental table 4). Of these genes, 23 of 

them have been reported in IPF GWAS, TWAS or found to be differentially expressed 

in patients with IPF versus healthy individuals.4 8 31–35 For the 13 novel genes, 6 are 

in different risk loci from the other 23 genes (online supplemental figures 10–12). Many 

of these genes are related to human carcinogenesis such as HRAS or the metabolic 

reprogramming for the formation of fibroblast in IPF such as SLC25A22. The detailed 

information for these 13 genes is found in online supplemental table 5.

Altogether, we have 25 new candidate genes, 12 were from local genetic correlation and 13 

were from TWAS. Next, we investigated their expression patterns using scRNA-Seq data 

from IPF and control lungs. Three genes, EIF3E, HHIP and ZBTB7C (figure 3A), were 

found to be differentially expressed in patients with IPF versus healthy controls (adjusted p 
value <5.63E-5) in alveolar epithelial type II (ATII), classic monocyte, non-classic monocyte 

and basal cell type. Seventeen out of 25 genes have a significantly higher proportion of cells 

expressing them in IPF than control individuals (figure 3B).

The regulatory role of candidate TFs in IPF

There are seven TFs among the 25 identified candidate genes, including BAHD1, EIF3E, 

HELZ2, MAFK, SMAD2, ZBTB7C and ZBTB46. MAFK was identified using TWAS, and 

the rest TFs were identified by local genetic correlation. Their regulatory roles in IPF are 

of particular interest. We screened their target genes using available genomic annotations. 

MAFK is the only gene that has predicted TFBSs in four cell lines in the IMPACT data set. 

For ChIP-Atlas, MAFK has 13 predicted target gene sets across eight cell lines, and SMAD2 
has 39 predicted target gene sets across 12 cell lines. The regulatory information of the other 

TFs is unavailable. Therefore, we conducted partitioned heritability analysis for MAFK and 

enrichment analysis for MAFK and SMAD2 target genes.

The partitioned IPF heritability showed strong enrichment in the TFBSs of MAFK but failed 

to reach a significant level after adjusting multiple tests. We applied MTAG1 on IPF GWAS 
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summary statistics with four top genetically correlated traits (the Methods section) to boost 

the statistical power. The partitioned heritability of MAFK TFBSs after MTAG joint analysis 

had significant enrichment on all four cell lines, including the stem cell, fibroblasts cell from 

lung, myeloid and B cell from the blood (online supplemental table 7A). It showed similar 

results regardless of the trait used for MTAG. Partitioned heritability of MAFK TFBS in 

the lung consistently has the most significant enrichments, indicating that the regulatory 

effect of MAFK is most significant in IPF disease-relevant tissue. For example, arm fat 

percentage, which has the highest heritability and genetic covariance with IPF, showed the 

most significant enrichment in the lung (enrichment=1.73, p value=2.59E-7). To ensure the 

change of the enrichment analysis, results were not artefacts because of the auxiliary traits 

used in MTAG, we conducted the same partitioned heritability analysis on the original 

GWAS summary data of the correlated traits used in MTAG (ie, whole-body fat mass, 

body fat percentage, arm fat percentage and hip circumference). None showed significant 

enrichment for the TFBSs of MAFK in any cell type (online supplemental table 7B).

We then evaluated the enrichment of MAFK and SMAD2 target genes in the cell-type-

specific DEGs between patients with IPF and healthy individuals using single-cell data. For 

MAFK, all its target gene sets across eight cell lines showed significant enrichment in cell-

type-specific DEGs (figure 4A; online supplemental table 8A). The top enrichments were in 

the differential expressed genes in myofibroblast, macrophage and alveolar macrophage for 

the target genes in the IMR-90 cell line from the lung. For SMAD2, target gene sets from 6 

out of 12 cell lines had significant enrichment in cell-type-specific DEGs (figure 4B; online 

supplemental table 8B). The top enrichments were in the DEGs in cell types of vascular 

endothelial capillary B cell, myofibroblast and alveolar macrophage cell for target genes in 

the human umbilical vein endothelial cells (HUVEC) cell line, a cardiovascular cell type 

obtained from the umbilical cord.

DISCUSSION

This is a comprehensive study to understand the genetic similarities between IPF and other 

traits and use integrative analysis to improve the power of GWAS. Using the large-scale 

biobank data, transcriptome data and genomic regulatory information, we have conducted 

detailed analyses on the between-trait relationship of IPF to understand the degree of 

pleiotropy. We employed local genetic correlation and TWAS to identify novel IPF risk 

genes. TWAS connects the phenotype of interest to the predicted expression level of the 

genes by combining GWAS and eQTL signals. Genetic correlation combines the results 

of two GWASs and then connects the identified SNPs to their closest genes. Finally, we 

investigated the biological implications of identified genes to help with future disease 

mechanisms and drug development research.

First, the correlation analyses deepened our understanding of the relationship between IPF 

and other phenotypes. Especially, we found significant genetic correlations between IPF 

and many body fat-related traits. Different studies have found that obesity is a common 

comorbidity of IPF.31 32 Lower body mass index and body weight loss seemed to be related 

to poor outcomes.33 Altogether, the results suggested that metabolic dysregulation is a 

critical contributor to the pathogenesis of IPF on a genetic basis.34
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We used the latest and largest IPF GWAS study and successfully identified 25 novel genes 

not identified in previous GWASs. We improved the power of GWAS by leveraging local 

genetic correlation and mapping genetic information to gene expression. First, applying 

local genetic correlation provided a new angle to find disease genes. For example, 

malignant neoplasm of the prostate was identified to be correlated with IPF in region 

chr18:45,314,528–46,208,355 harbouring ZBTB7C and SMAD2. ZBTB7C is related to cell 

proliferation through glutamine metabolism.35 Glutamate is required for TGF-β-induced 

collagen protein production in lung fibroblasts,36 and increased glutamate abundance was 

observed in IPF lung tissue in the previous study.37 It was also found to differ in prostate 

cancer.38 These findings suggested that glutamine metabolism involving ZBTB7C is a 

shared mechanism between prostate cancer and IPF.

SMAD2 plays an important role in TGF-β-induced apoptosis of prostate epithelial cells and 

tumour suppression.39 40 We found that SMAD2 targets have significant enrichment in IPF 

cell-type-specific DEGs. There are no significant differential expression results for SMAD2, 

indicating that SMAD2 is more likely to influence the phenotype by regulating other genes 

other than changing its expression. Previous research reported that the phosphorylation 

of SMAD2 is closely related to IPF through TGF-β and SMAD signalling to promote 

extracellular matrix gene expression and fibrosis.41 42 It will be interesting to study the 
role of SMAD2 in the TGF-β signalling to understand the shared mechanisms of IPF and 

cancers.

Furthermore, RSPO2 and EIFE3E were shared between IPF, palmar fascial fibromatosis and 

fibroblastic disorders. Both genes are related to fibrosis, suggesting basic fibrosis signalling 

pathways like Wnt/β-catenin signalling and TGF-β signalling shared by IPF and other 

fibrosis-related diseases. HHIP was found to be shared between IPF and hip circumference. 

A recent paper reported HHIP as the newly identified putative myofibroblast markers using 

single-cell data in mouse pulmonary fibrosis.43 As a gene closely related to COPD and 

lung function, HHIP suggests the important role of lung development or homeostasis in the 

developing lung diseases.

We investigated the regulatory role of the identified TFs. MAFK was identified through 
the TWAS joint test of 44 tissues. The GWAS p value of the leading SNP in MAFK is 

only 0.0048. However, another gene, MAD1L1, is only 0.3 Mb away from MAFK (online 

supplemental figure 10), harbouring a strong signal with the lead SNP rs12699415 (p 

value=7.15E-13). Despite that the signals from standard GWAS did not identify MAFK, 

with the help of eQTL, TWAS identified MAFK as the associated gene at this locus mainly 

through the eQTL effect of SNPs located in MAD1L1 on MAFK. For TWAS single-tissue-
based results, MAFK did not show significant association in the lung (p value=0.5). MAFK 
expressed significantly in a higher proportion of cells in patients with IPF but was not 

found to be differentially expressed between IPF and health samples. We found significant 

heritability enrichment on MAFK TFBSs of multiple tissues, especially in the lung. There 

are significant enrichments of MAFK target genes, especially the target genes of the lung 

cell line, in IPF cell-type-specific DEGs among most cell types. We believe MAFK has a 

regulatory effect on IPF but is less likely to change its expression from the above results. 

MAFK can form a heterodimer to regulate antioxidant and xenobiotic-metabolising enzyme 
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genes.44 Studies have identified that MAFK can modulate NF-kB activity45 and can be 

induced by TGF-β to regulate downstream genes.46 HMOX1, regulated by MAFK, was 

found to play a central role in the defence against oxidative and inflammatory insults in 

the lung47 and is related to many pulmonary diseases. Another downstream gene, GPNMB, 
is related to fibrosis by inducing epithelial-mesenchymal transition. 48 49 These findings 

suggest that MAFK may participate in the pathogenesis of IPF through its relationship with 

both fibrosis and inflammatory-related processes.

Despite the above findings, our study has several limitations. First, for genetic correlation 

analysis, we mainly used processed GWAS summary statistics from the UKBB. 

Furthermore, we did not manually select the phenotype to avoid potential selection bias. 

However, the definition of many phenotypes was vague or general, posing challenges to 

interpreting the results and comparisons with other studies. For example, some of the top 

correlated phenotypes are ‘diseases of the nervous system’ and ‘self-reported: rheumatoid 

arthritis’. Their definitions are vague and heterogeneous. Nevertheless, this is also an 

advantage of our analysis as biobank data simultaneously enable the investigation of a 

wide range of phenotypes. Second, although our results suggest that local regions may 

contain disease risk genes that failed to be identified in GWAS, these regions might be 

false positives because it is difficult to locate the right-correlated genes in the local genomic 

regions. Although we prefiltered regions with a small number of SNPs, the best practice is to 

replicate the results on an independent data set. Currently, no study meets the requirements. 

In the future, additional studies are needed to investigate whether these candidate genes 

are genuinely related to IPF. Third, due to the lack of the target gene database, we only 

verified two TFs, and our approaches were limited to computational verification. In the 

future, biological experiments, such as knocking out MAFK in mice, are needed to further 

explore and verify the mechanism of the identified TFs in IPF. In addition, we also noticed 

that some well-known IPF genes like MUC5B were not identified in TWAS. This is because 

the UTMOST joint test needs prediction models from 44 tissues. However, take MUC5B 
as an example. It had available prediction models in only 11 out of the 44 tissues due 

to the relatively low expression in the GTEx data. In lung tissue, its association is not 

significant (effect size=0.036, p value=0.27). Utilising other eQTL data may help to mitigate 

this problem in the future.

Taken together, through the investigation of the plethora of data sets, we identified 

seven traits with significant genetic correlation with IPF. By integrating GWAS data 

with pleiotropy information and transcriptome data, we discovered 25 novel genes from 

local multitrait and TWAS studies. Functional analyses showed the differential expression 

and gene expression regulatory function among these novel genes. These findings will 

provide new avenues for understanding the underlying biology and investigating potential 

therapeutics in this deadly disease.
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Refer to Web version on PubMed Central for supplementary material.
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WHAT IS ALREADY KNOWN ON THIS TOPIC

• Although genome-wide association studies have identified some genomic 

regions associated with IPF, the causal genes and functions remain largely 

unknown.

WHAT THIS STUDY ADDS

• We identified 25 novel genes associated with IPF and discussed their 

biological implications through integrated analysis of multiple phenotypes 

and gene expression data. We found evidence of the regulatory functions of 

two transcription factors, MAFK and SMAD2, in lung tissue and major cell 

types in the lung.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY

• Our study indicated shared genetic factors between IPF and other traits. The 

identified gene provided new insights into the disease mechanism.
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Figure 1. 
A schematic illustration of the integrated workflow. GTEx is a public database for genotype 

and tissue expression data. IMPACT is a genomic annotation tool of cell-state-specific 

regulatory elements inferred from the epigenome of bound transcription factors. ChIP-Atlas 

is a public database for ChIP-seq data. GTEx, The Genotype-Tissue Expression project; 

GWAS, genome-wide association study; TF, transcription factor; UKBB, UK Biobank.
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Figure 2. 
(A) Volcano plot of global genetic correlation between IPF and UK Biobank phenotypes. 

The red dashed line corresponds to the Bonferroni cut-off (0.05/216). Significantly 

associated traits were highlighted. (B) Bar plot of the proportions of correlated local regions 

between IPF and its genetically correlated phenotypes. IPF, idiopathic pulmonary fibrosis.
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Figure 3. 
Single-cell expression patterns of 25 IPF candidate genes. (A) Dot plot of cell-type-specific 

differential expression. Genes with absolute logFC>0.2 and passed Bonferroni p-value cut-

off (0.05/360) are labelled. (B) Proportions of cells expressing candidate genes in IPF and 

healthy lung samples. Genes with significantly different proportions are highlighted in blue 

(two-proportions z-test with Bonferroni cut-off as 0.05/25). The grey dashed line represents 

y=x. The panel in the left upper corner zooms in the axis between 0 to 8. IPF, idiopathic 

pulmonary fibrosis.
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Figure 4. 
Bar plot for the enrichment analysis of MAFK and SMAD2 regulated genes among cell-

type-specific DEGs between IPF and healthy lung samples. (A) Each panel represents 

results using MAFK target gene datasets from one cell line. For each panel, the bar plot 

represents hypergeometric test p-values after Bonferroni correction (0.05/448). (B) Each 

panel represents results using SMAD2 target gene datasets from one cell line. For each 

panel, the bar plot represents hypergeometric test p-values after Bonferroni correction 

(0.05/1209). The error bar for p-values is plotted in red. The dashed line corresponds to 

y=0.05. Only cell lines with at least one significant result were plotted. DEGs, differentially 

expressed genes.
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