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Abstract

Despite the existence of numerous studies supporting a pathological link between 
fructose consumption and the development of the metabolic syndrome and its sequelae, 
such as non-alcoholic fatty liver disease (NAFLD), this link remains a contentious issue. 
With this article, we shed a light on the impact of sugar/fructose intake on hepatic de 
novo lipogenesis (DNL), an outcome parameter known to be dysregulated in subjects 
with type 2 diabetes and/or NAFLD. In this review, we present findings from human 
intervention studies using physiological doses of sugar as well as mechanistic animal 
studies. There is evidence from both human and animal studies that fructose is a more 
potent inducer of hepatic lipogenesis than glucose. This is most likely due to the liver’s 
prominent physiological role in fructose metabolism, which may be disrupted under 
pathological conditions by increased hepatic expression of fructolytic and lipogenic 
enzymes. Increased DNL may not only contribute to ectopic fat deposition (i.e. in the 
liver), but it may also impair several metabolic processes through DNL-related fatty acids 
(e.g. beta-cell function, insulin secretion, or insulin sensitivity).

Introduction

Metabolic health is at risk in societies with an excess 
supply of energy-dense palatable food and drinks and 
an everyday life with low physical activity. There is a 
global epidemic of metabolic syndrome (Saklayen 2018), 
which includes obesity (particularly visceral adipose 
tissue accumulation), dyslipidemia, impaired glucose 
tolerance, and hypertension. Importantly, this syndrome 
not only affects adults but also children and adolescents, 
in particular in developing countries (Noubiap et  al. 
2022). Similarly, the prevalence of non-alcoholic fatty 
liver disease (NAFLD), the hepatic manifestation of the 
metabolic syndrome, is increasing (Moore 2010, Sahota 
et  al. 2020, Riazi et  al. 2022). The metabolic syndrome, 
with all of its associated comorbidities, not only burdens 

the affected individual but also the public health care 
system (Boudreau et al. 2009).

It is commonly acknowledged that an increased 
body weight, associated with a positive energy balance, 
is a major trigger for the development of metabolic 
diseases. It is assumed, however, that factors other than an 
imbalanced energy intake and expenditure can influence 
metabolic health. A well-balanced macronutrient intake, 
characterized by a moderate fat and carbohydrate intake, 
with a focus on sugar restriction, is regarded as an 
important component of a healthy diet. A high intake 
of added sugars, and in particular of fructose – which is 
often present in a typical western diet – is considered to 
be a principal factor promoting metabolic derangements 
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(Lim et  al. 2010, Jensen et  al. 2018). Despite numerous 
studies, it is still debated whether the metabolic effects of 
added sugars are mediated by excess energy intake/weight 
gain or whether fructose and glucose affect metabolism 
differently and independently of excess caloric intake. 
This review aims to shed a light on the current literature 
regarding this question.

Sugar consumption and its effects

Current recommendations

To reduce the risk of developing obesity and metabolic 
diseases, the World Health Organization recommends 
that adults and children consume less than 10% 
(preferably less than 5%) of their energy needs from 
free sugar (WHO 2015). Importantly, free sugars include 
monosaccharides and disaccharides added to food and 
beverages as well as sugars naturally present in honey, 
syrups, fruit juices, and fruit juice concentrates. Recent 
studies on sugar intake in Europe, Latin America, and 
the USA found that mean sugar intakes in most countries 
were higher than the recommended intake (Fisberg 
et  al. 2018, Löwik 2021, DiFrancesco et  al. 2022). As a 
consequence, measures to reduce sugar intakes such 
as better food labeling or taxes on sweetened food are 
discussed or already implemented in many countries.

Dietary glucose and fructose

Glucose and fructose are stereoisomers. Fructose 
displays a higher sweetening power compared to 
glucose (Moskowitz 1970). Fructose and glucose occur 
naturally as monosaccharides in fruits and honey but 
also as sucrose (a disaccharide consisting of glucose 
and fructose). Other sugar sources include table sugar 
(sucrose) or high-fructose corn syrup (HFCS) (a mixture 
of fructose and glucose), concentrated fruit juices, 
agave or maple syrup, and so on. Sugar added to food 
and beverages as sweeteners are termed ‘added sugars’. 
Importantly, the digestion/absorption of sugar from 
fruits is much slower than that of beverages and thus 
is unlikely to be associated with any negative effects. 
Unfavorable metabolic effects are particularly induced 
by beverages containing high amounts of free sugar 
that are rapidly absorbed, as detailed below. HFCS is 
manufactured industrially from corn starch through 
the isomerization of glucose to fructose. The proportion 
of fructose varies between 42 and 90% in HFCS  

(Serna-Saldivar 2016). HFCS with 42% fructose is 
widely used as a sweetener in processed foods, whereas 
HFCS with 55% fructose is commonly used in beverage 
production (Kay Parker 2010). HFCS was first introduced 
to the market in the USA in the 1970s, and it is now a 
significant US export product, particularly to developing 
countries. The average fructose intake increased since 
the 1970s in the USA (Tappy & Lê 2010). HFCS is a cheap 
sweetener used in the food and beverage industries, and 
its consumption is linked to the occurrence of type 2 
diabetes (Kmietowicz 2012) and other metabolic diseases, 
as described below.

Sugar-sweetened beverage consumption is a risk 
factor for cardiometabolic diseases

A major source of added sugars are sugar-sweetened 
beverages (SSBs) (Johnson et  al. 2009, Malik & Hu 2022). 
Their consumption has been linked not only to the 
development of obesity but also to its complications such as 
type 2 diabetes, NAFLD, and cardiovascular disease (Malik & 
Hu 2022). Prospective cohort studies from the USA and the 
UK found an association between high SSB consumption 
and an increased risk of type 2 diabetes independently of 
obesity (Imamura et al. 2015). Similarly, studies confirmed 
that habitual SSB consumption is associated with a 
dose-dependent increase in the risk of dyslipidemia and 
coronary heart disease (Te Morenga et  al. 2014, Yin et  al. 
2021). Importantly, studies showed that habitual SSB 
consumption has a dose-dependent effect on the risk of 
NAFLD (Ouyang et  al. 2008, Chen et  al. 2019) and that 
SSB intake in early childhood is associated with the later 
development of hepatic steatosis in adulthood (Sekkarie 
et al. 2021). In addition to metabolic abnormalities, there 
is evidence of a link between SSB consumption and breast 
cancer, pancreatic and prostate cancer, and colorectal 
cancer (Malik & Hu 2022).

Worldwide, SSB intake is still rising (Singh et al. 2015, 
Malik & Hu 2022). However, regional differences regarding 
SSB consumption are striking. Overall, SSB intake is highest 
in men and women in Latin America and the Caribbean 
(average SSB intake about 325 g/day), where it has been 
rising for decades. In contrast, SSB intake in western high-
income countries has stabilized since the 1990s at around 
150–200 g/day (Malik & Hu 2022). In Asian countries, 
SSB consumption is remarkably low (the average intake 
of SSB is about 30 g/day). Given these data on global SSB 
consumption, the global burden of obesity and chronic 
diseases for societies is likely to rise further, particularly in 
developing countries.
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A specific role for fructose in the etiology of 
cardiometabolic diseases?

Differences between fructose and glucose 
metabolism

Although high sugar consumption is recognized as a 
risk factor for cardiometabolic diseases, the debate over 
whether the fructose component of consumed sugar 
plays a specific role in the etiology of such diseases is 
still ongoing. This question cannot be easily assessed by 
epidemiologic studies as fructose is rarely ingested in a 
pure form but mostly co-ingested with glucose.

There are important differences regarding the cellular 
absorption and distribution of glucose and fructose 
(Maruhama & Macdonald 1973). Fructose is primarily 
absorbed via facilitated diffusion via glucose transporter 5  

(GLUT5) (Burant et  al. 1992), which is expressed on 
epithelial intestinal cells, whereas glucose is absorbed via 
sodium-glucose-cotransporter 1, an active transporter 
(Gorboulev et  al. 2012). A proportion of fructose is 
directly metabolized into glucose in enterocytes. 
However, when large amounts of fructose are consumed 
(e.g. when consuming SSB), fructose spills over to the 
liver and large intestine (Jang et al. 2018) (Fig. 1). Fructose 
and glucose enter the circulation via GLUT5 and GLUT2, 
respectively (Koepsell 2020). Following that, the liver, 
which is the primary site of fructose metabolism, extracts 
a large portion of it (Mendeloff & Weichselbaum 1953). 
However, it can also be metabolized by the kidney, skeletal 
muscle, and adipose tissue. Hesley et al. (2020) provided 
a thorough review of tissue-specific fructose metabolism. 
In contrast, glucose is taken up and metabolized by most 

Figure 1
A comparison of the hepatic fructose (left) and glucose (right) metabolism after consumption of high loads of sugar in the form of SSB. It is hypothesized 
that an increased de novo lipogenesis after fructose intake in parallel with a decreased fatty acid oxidation leads to hepatic fat deposition. ACC, 
acetyl-CoA-carboxylase; ATP, adenosine triphosphate; CPT1a, carnitine palmitoyltransferase 1A; FA, fatty acid; GLUT, glucose transporter; KHK-C, 
ketohexokinase-C; Ox, oxidation; P, phosphate; SSB, sugar-sweetened beverage; TCA, tricarboxylic acid cycle.
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mammalian tissues (Thorens & Mueckler 2010). The 
majority of glucose is taken up by the liver and muscle 
and stored as glycogen – processes that require insulin. 
Further amounts of glucose are metabolized by the brain, 
adipose tissue, and the kidney (Gerich 2000). Following 
cellular uptake, fructose and glucose are phosphorylated 
at different rates by specific kinases. Fructokinase is 
expressed as the two isoforms ketohexokinase-A (KHK-A)  
and KHK-C. KHK-C is primarily expressed in the 
liver, but it is also found in the kidney and intestines, 
whereas KHK-A is more widely expressed (Diggle 
et  al. 2009). KHK-C drives hepatic fructose uptake by 
phosphorylating fructose at a very high rate without 
feedback inhibition, resulting in a flux of fructose 
toward the liver (Ishimoto et al. 2012) (Fig. 1). Glucose is 
phosphorylated by glucokinase (GK). Importantly, the 
phosphorylation rate of KHK is 10 times higher than that 
of GK. Phosphorylated fructose is cleaved into trioses 
and enters the glycolytic pathway. Fructose is mainly 
metabolized into lactic acid and converted to glucose or 
hepatic glycogen and lipids (Chong et al. 2007, Parks et al. 
2008). Notably, fructose absorption is increased when 
it is co-ingested with glucose (Rumessen & Gudmand-
Høyer 1986). Furthermore, animal studies have shown 
that consuming high amounts of fructose increases the 
expression of fructolytic and gluconeogenic enzymes 
and expands the intestinal cell surface, which improves 
nutrient absorption (Patel et al. 2015a, Taylor et al. 2021).

Metabolic effects of regular sugar/fructose intake

Traditionally, easily measurable outcome parameters of 
known clinical significance (cardiovascular risk markers), 
such as fasting glucose, insulin, c-peptide, insulin 
sensitivity/resistance, or serum lipids, are measured for the 
risk assessment of dietary products regarding metabolic 
health. However, when metabolic health is defined just as 
the presence of ideal levels of these markers, fine metabolic 
changes may be missed. As a result, studies used more subtle 
outcome parameters to investigate how moderate sugar 
intake affects the metabolism of healthy men. Indeed, 
they provide evidence that consumption of SSB containing 
fructose in moderate amounts leads to metabolic 
derangements such as decreased hepatic insulin sensitivity 
(reflected by impaired suppression of glucose production 
during euglycemic–hyperinsulinemic clamps) (Aeberli 
et al. 2013), induces a shift toward a more atherogenic low-
density lipoprotein (LDL) subclass distribution (Aeberli 
et al. 2011) in healthy men, or increases hepatic lipogenic 
activity (Geidl-Flueck et al. 2021).

The latter, an increased de novo lipogenesis (DNL), is 
supposed to be linked to various metabolic complications/
perturbations. As a result, the following section focuses on 
metabolic interactions between dietary sugars, specifically 
fructose and DNL.

De novo lipogenesis in health and disease

De novo lipogenesis (DNL) converts excess dietary 
carbohydrates (CHO) into fatty acids (FAs). FAs are 
formed during this process from acetyl-CoA molecules 
generated directly from CHO catabolism (i.e. glycolysis 
or fructolysis) or acetate generated by microbiota fructose 
fermentation (Zhao et  al. 2020). DNL necessitates the 
expression of lipogenic pathway enzymes by various cell 
types, particularly white adipocytes and hepatocytes. DNL 
contributes to the maintenance of glucose homeostasis. 
A healthy balance of hepatocyte and adipocyte DNL is 
essential for maintaining systemic insulin sensitivity 
(Song et al. 2018). The master transcription factors sterol-
responsive element-binding protein-1 (SREBP-1) induced 
by CHO intake/insulin signaling and carbohydrate 
responsive element-binding protein (ChREBP) stimulated 
by CHO intake regulate the expression of lipogenic 
enzymes. DNL provides FA for the structural maintenance 
of the cells, allows storage of energy from CHO beyond the 
glycogen store (thus contributing to glucose homeostasis), 
and regulates FA oxidation.

The process of FA synthesis in the liver has been 
identified as being of particular interest in the etiology 
of the metabolic syndrome as well as a specific feature of 
NAFLD (Donnelly et al. 2005, Lambert et al. 2014, Imamura 
et al. 2020). Clinical studies showed that DNL is increased 
in subjects with increased hepatic fat content (isotope 
approaches) (Diraison et  al. 2003, Lambert et  al. 2014). 
Furthermore, DNL was found to be positively related to 
intrahepatic triglyceride (TAG) levels (Diraison et al. 2003, 
Lambert et al. 2014) and negatively related to hepatic and 
whole-body insulin sensitivity (Smith et al. 2020). DNL is 
supposed to increase intrahepatic fat both by providing 
FA for TAG synthesis and by inhibiting FA oxidation 
promoting the re-esterification process. Importantly, 
accumulating intermediates (i.e. malonyl-CoA) inhibit 
FA import into the mitochondria and thus FA oxidation 
(McGarry et  al. 1977, Cox et  al. 2012). Furthermore, a 
clinical study (crossover) showed that an increase in DNL 
induced by a diet high in simple sugars correlates with 
triglyceridemia both in lean and in obese subjects (Hudgins 
et al. 2000). In addition, increased concentrations of DNL-
related FAs (i.e. palmitate 16:0) have been linked to the 
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metabolic syndrome in observational and interventional 
studies (Vessby 2003). Mechanistic in vitro studies suggest 
that palmitate impairs beta-cell function via ceramide 
formation, causing endoplasmic reticulum stress, and 
induces the apoptotic mitochondrial pathway (Maedler 
et al. 2001, Maedler et al. 2003, Cunha et al. 2008). Other 
studies revealed that palmitate stimulates interleukin-6 
expression, a mechanism involved in the pathogenesis of 
insulin resistance and vascular inflammation (Rotter et al. 
2003, Staiger et  al. 2004, Weigert et  al. 2004, Testa et  al. 
2006, Korbecki & Bajdak-Rusinek 2019). Therefore, from 
a clinical perspective, DNL may serve as a valuable marker 
for the development of cardiometabolic disease beyond 
hepatic lipid accumulation/NAFLD.

The impact of macronutrients on DNL – insights from 
human intervention studies

Regarding the question of how different macronutrients 
impact metabolic health, early human studies compared 
the effects of diets with different carbohydrate and fat 
intake on metabolic outcomes. Later, the effects of different 
forms of carbohydrates were compared (e.g. simple sugars 
vs complex carbohydrates or different types of sugar) in 
studies with children or adults, with or without obesity/
metabolic disease. Interventions aimed at increasing 
sugar/fructose consumption, e.g. by SSB intake or 
decreasing sugar/fructose intake by prescription of sugar/
fructose restriction (Donnelly et  al. 2005, Lambert et  al. 
2014). Finally, they all contribute to the understanding 
of the relationship between CHO intake and metabolic 
complications in general as well as the relative importance 
of fructose and glucose. Importantly, studies on the effects 
of sugar consumption on DNL are rarely comparable 
due to significant differences in the study populations, 
interventions, and/or methods used. (Studies discussed 
below are summarized in Table 1).

Of note, the process of hepatic DNL is assessed by 
applying different methods that all analyze FA bound 
to very low-density lipoproteins (VLDL). They range 
from calculating FA desaturation indices to calculating 
the percentage of surrogate FA for newly formed FA (i.e. 
palmitate) in total FA to labeling newly formed FA with 
isotopes to calculate fractional DNL or fractional secretion 
rates of de novo synthesized FAs (Hellerstein et  al. 1991). 
Measurement of DNL by isotope labeling methodology is 
considered the gold standard. However, it is costly and thus 
only appropriate for studies with small sample sizes.

Initially, it was assessed by Hudgins et  al. how the 
fat and CHO content of a diet impacts hepatic DNL in 

healthy men. Subjects were randomly assigned to either 
an eucaloric liquid high-fat diet (40% of calories as fat and 
45% as glucose polymers, n = 3) or a high-CHO diet (10% 
of calories as fat and 75% as glucose polymers, n = 7) for 
25 days. DNL was increased in men on a high-CHO diet 
after 10 days, reflected as palmitate-enriched, linoleate-
deficient VLDL triglycerides, and palmitate synthesis (mass 
isotopomer distribution analysis (MIDA) of palmitate 
labeled with 13C-acetate) was increased after 25 days 
compared to the high-fat diet (Hudgins et al. 1996).

In a later study, Schwarz et  al. (2015) compared 
the effects of a high-fructose (25% energy content), 
weight-maintenance diet to those of an isocaloric diet 
with the same macronutrient distribution but complex 
carbohydrates (CCHO) substituted for fructose (crossover 
design, n = 8). Importantly, fructose was provided as 
beverages, whereas complex carbohydrates were provided 
as solid food. After 9 days of intervention, high-fructose 
intake was associated with higher fractional hepatic DNL 
(MIDA of palmitate labeled with 13C-acetate) compared to 
the diet in which fructose was replaced by CCHO (Schwarz 
et al. 2015). Stanhope et al. (2009) investigated the effects 
of glucose and fructose consumption on hepatic DNL in 
obese subjects after 10 weeks of consumption of glucose- 
or fructose-sweetened beverages providing 25% of energy 
requirements. Postprandial DNL was increased after 
fructose consumption (MIDA of palmitate labeled with 
13C-acetate) (Stanhope et al. 2009).

The effects of different hexoses on hepatic DNL were 
investigated by Parks et al. (2008). Healthy subjects (n = 6) 
were challenged with sweetened beverages (85 g sugar) 
containing pure glucose (100:0) or mixtures of fructose 
and glucose (50:50 or 75:25) on three separate occasions 
in a random and blinded order. The beverages containing 
fructose stimulated DNL more potently compared with 
the beverages containing pure glucose (MIDA of palmitate 
labeled with 13C-acetate) (Parks et al. 2008).

Aside from the postprandial effect of fructose 
consumption on DNL which has been studied extensively, 
the effect of regular fructose consumption on basal hepatic 
lipogenic activity is of interest. Formation of new FAs 
requires both the expression of lipogenic enzymes and 
the availability of substrate (acetyl-CoA). FA synthesis, as 
measured by a constant infusion of glucose (as a substrate 
for FA synthesis) and 13C-acetate, reflects hepatic lipogenic 
activity, which is determined by lipogenic enzyme 
expression. Thus, in such a setting, differences regarding 
absorption rates of different sugar types do not influence 
the measurement. The effect of daily SSB consumption on 
liver lipogenic activity was studied in 94 healthy men by 
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providing daily glucose, fructose, or sucrose-containing 
drinks (3×0.2 L SSB/day resulting in a sugar intake of 80g/
day) in a randomized way during 6 weeks. The study with 
SSB consumption in a close to real-life setting showed that 
fructose and sucrose, but not glucose, increased the basal 
lipogenic activity of the liver (MIDA of palmitate labeled 
with 13C-acetate) (n = 94, randomized controlled trial 
(RCT)) as compared to a control group. This is most likely 
due to fructose-containing beverages causing an increase 
in the expression of lipogenic genes in the liver (Geidl-
Flueck et al. 2021).

Further studies assessed and clarified the role of DNL 
in fructose-induced hypertriglyceridemia and whether 
physical activity prevents hypertriglyceridemia. Egli 
et  al. examined healthy subjects (n = 8) after 4 days of 
either a weight-maintaining low-fructose diet (control), 
a high-fructose diet with low physical activity, or a high-
fructose diet with high physical activity. Fasting and 
postprandial TAG and 13C-palmitate in triglyceride-
rich lipoproteins were increased after a high-fructose 
diet compared to control after an oral challenge with 
13C-fructose. Those  parameters remained unchanged 
after the high-fructose/high physical activity 
intervention, indicating that sport protects against 
fructose-induced triglyceridemia. The underlying 
mechanism induced by physical activity (i.e. reduced 
DNL from fructose or improved TAG clearance) was not 
resolved by this study. The same authors also tested the 
hypothesis that exercise prevents a fructose-induced 
rise in VLDL triglycerides (VLDL-TGs) by decreasing 
fructose conversion into glucose and VLDL-TGs and 
fructose carbon storage into hepatic glycogen and lipids 
(Egli et  al. 2016). Eight healthy men were placed on a 
weight-maintenance high-fructose diet (SSB) for 4 days 
before the metabolic fate of 13C-labeled fructose with 
or without physical activity was investigated. Exercise 
increased fructose oxidation. However, it did not abolish 
fructose conversion into glucose or did not prevent DNL 
(AUC of VLDL-13C palmitate). These findings imply that 
fructose-induced DNL occurs regardless of the degree of 
saturation of other fructose metabolism pathways.

So far, studies that assessed the effect of increased 
CHO/sugar/fructose consumption on DNL were discussed. 
Overall, findings from various clinical studies indicate 
that carbohydrates, particularly when consumed as simple 
sugars and in liquid form, promote hepatic lipogenesis 
even when maintenance dietary interventions are 
used. Furthermore, studies using fructose and glucose 
interventions revealed that fructose is a more potent 
inducer of hepatic lipogenesis than glucose.

In addition to these findings, some studies deal with 
the question of how a reduction/restriction of sugar/
fructose consumption impacts DNL.

There is evidence that a general dietary sugar 
restriction (which also leads to a reduction in fructose 
intake) results in lower DNL. A link between free sugar 
consumption and DNL was confirmed by Cohen et  al. 
(2021) who conducted a trial with adolescent boys 
suffering from NAFLD. A low-sugar diet for 8 weeks 
reduced DNL (and hepatic fat content) compared to 
their usual diet, as measured by a lower percentage of 
newly synthesized palmitate in plasma TAG (labeled 
with deuterated 2H2O) (Cohen et al. 2021) (n = 29, RCT). 
Similarly, Schwarz et  al. (2017) demonstrated in a study 
with obese children that restricting sugar/fructose intake 
for 9 days reduced hepatic DNL (fractional DNL after a 
test meal containing 13C-acetate) (n = 41). In this study, 
dietary sugars were substituted by complex carbohydrates.

Both intervention studies that increased sugar/
fructose intake and those that reduced fructose intake 
provide evidence that sugar/fructose intake influences 
hepatic DNL. Importantly, the few studies that specifically 
assessed the effects of different hexoses (i.e. glucose and 
fructose) support the hypothesis that fructose is a more 
potent inducer of lipogenesis than glucose (Parks et  al. 
2008, Geidl-Flueck et al. 2021).

Fructose vs glucose metabolism – mechanistic 
insights from animal studies

Insights into mechanisms underlying the differences in 
glucose and fructose metabolism were gained from animal 
studies (Maruhama & Macdonald 1973, Geidl-Flueck & 
Gerber 2017). Several important transcription factors 
control carbohydrate metabolism. We focus on the role 
of ChREBP (Yamashita et  al. 2001) and SREBP-1 (Wang 
et  al. 1994) in the regulation of CHO flux. They regulate 
glycolytic and fructolytic gene expression, as well as the 
expression of lipogenic genes. Glucose and fructose, to 
varying degrees, stimulate their expression and activity. 
Importantly, the expression of both transcription factors 
is increased in the livers of NAFLD patients (Kohjima et al. 
2007, Benhamed et al. 2012).

ChREBP is most strongly expressed in the liver, white 
and brown adipose tissue, and also the small intestine 
and muscle (Iizuka et  al. 2004). Lipogenic enzyme 
expression is reduced in mice with a genetic deletion of 
the ChREBP transcription factor (Iizuka et al. 2004). They 
display an impaired glucose tolerance as a consequence 
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of reduced glucose disposal. ChREBP deletion shifts the 
flux from excess CHO to glycogen storage. It increases 
glycogen content in the liver and reduces the hepatic 
fat content. ChREBP-knockout animals are fructose 
intolerant due to decreased expression of fructolytic 
and lipogenic enzymes, resulting in death when fed 
high-sugar diets. Liver-specific knockout of ChREBP in 
mice (L-ChREBP–/–) results in reduced SREBP1c at RNA 
and protein levels, suggesting that both transcription 
factors coordinately regulate lipogenic gene expression 
(Linden et al. 2018).

Feeding studies revealed that fructose induces hepatic 
ChREBP and its targets more potently than glucose 
(Koo et  al. 2009, Kim et  al. 2016, Softic et  al. 2016, Softic 
et al. 2017). Further, it is also activated by glycerol that is 
generated during fructolysis. As a result, ChREBP activation 
is thought to be related to hexose- and triose-phosphate 
levels (Kim et al. 2016).

SREBP is expressed in different isoforms. SREBP-1c 
induces lipogenic gene expression in response to 
carbohydrate feeding. SREBP1c mRNA expression is 
regulated by the TOR signaling pathway and the insulin 
signaling pathway. For full induction of SREBP-1c 
expression as well as for its translocation to the nucleus, 
hepatic insulin signaling is required (Haas et al. 2012). In 
mice, a high-fructose diet induces SREBP-1c expression 
more potently than a standard chow diet.

Furthermore, mechanistic studies provided evidence 
that fructose reduces hepatic FA oxidation by different 
mechanisms. One early in vitro study found that fructose, 
as a competing substrate for oxidation, inhibits long-
chain FA oxidation (Prager & Ontko 1976). A further 
study showed that fructose feeding reduces the expression 
of peroxisome proliferator-activated receptor and FA 
oxidation enzymes (Nagai et  al. 2002). Furthermore, 
fructose feeding raises malonyl-CoA levels (which inhibits 
transport of FA by CPT1a into the mitochondria), causes 
mitochondrial dysfunction (reduced mitochondrial 
size and protein mass, specifically FA oxidation pathway 
proteins and CPT1a levels), and increases acetylation of 
mitochondrial proteins in mice (Softic et al. 2019).

The levels of expression of fructolytic pathway 
enzymes determine the relative contribution of tissues 
to fructose metabolism. KHK-C is considered to be a key 
enzyme in fructose metabolism phosphorylating fructose 
at a high rate as described above. KHK-C is highly expressed 
in hepatocytes (Diggle et al. 2009), but it is also found in the 
intestine, adipose tissue, kidney, and pancreas (Ishimoto 
et  al. 2012). KHK-C knockout mice fail to metabolize 

fructose, leading to high-fructose concentrations in the 
blood and urine (Patel et al. 2015b). Both KHK-C deletion 
and KHK-C blockade protect against fructose-induced 
metabolic perturbations (Patel et  al. 2015b, Lanaspa et  al. 
2018, Softic et  al. 2019). Deletion of the KHK-A isoform 
exacerbates fructose-induced metabolic syndrome 
probably due to an increased fructose supply to the liver 
(Ishimoto et al. 2012).

Clinical studies show that patients with NAFLD have 
increased expression of KHK-C in the liver (Ouyang et al. 
2008) and that inhibiting KHK-C reduces liver fat in NAFLD 
(Kazierad et al. 2021).

Possible mechanisms by which sugar/fructose 
consumption impacts 
fat distribution/deposition

Ectopic fat deposition is linked to metabolic syndrome 
and NAFLD and is thought to be exacerbated by a high 
sugar intake (Ma et  al. 2016). It is suggested that lipid 
deposition is promoted by CHO-induced DNL that 
reduces FA oxidation and by alterations of FA flux. A meta-
analysis of randomized controlled trials demonstrated 
that high-sugar (fructose or sucrose) hypercaloric 
diets increased liver and muscle fat in comparison to 
eucaloric control diets (Ma et  al. 2016). Of course, data 
from studies that used ‘close to real-life interventions’ 
with high but not excessive sugar intake would provide 
the most relevant information about the effects of sugar 
consumption on fat distribution in individuals. A study 
by Maerks et  al. compared the effects of SSB containing 
sucrose to those of isocaloric milk and a non-caloric soft 
drink (one liter of drink/day for 6 months) on ectopic 
fat deposition. Consumption of sucrose-containing SSB 
for 6 months increases not only hepatic fat content but 
also muscle and visceral fat in obese subjects, whereas no 
such effects were observed in the other groups (Maersk 
et  al. 2012). However, studies that specifically compare 
the impact of different types of sugars on fat distribution 
are scarce (Lecoultre et al. 2013). Stanhope et al. compared 
the effects of fructose and glucose-sweetened beverages 
on body fat distribution in subjects with obesity by 
quantification of subcutaneous, visceral, and abdominal 
fat. Consumption of fructose- but not glucose-sweetened 
beverages (providing 25% of energy requirements) for 
10 weeks significantly increased visceral abdominal fat 
(Stanhope et al. 2009). In contrast, glucose consumption 
increased subcutaneous fat. Data about a fat deposition in 
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the liver and muscle were not collected. In a later study, 
Schwarz et  al. used magnetic resonance spectroscopy 
to investigate the effects of a high-fructose weight-
maintenance diet on liver fat. They discovered that 9 days 
of a high-fructose diet (25% energy content) increased 
both liver fat and DNL (Schwarz et  al. 2015). Different 
mechanisms underlying fat deposition have been 
suggested that implicate fructose. It is hypothesized that 
fructose consumption reduces FA oxidation more than 
glucose consumption and that fructose consumption 
raises cortisol levels, promoting visceral adiposity and/
or lipid deposition in the liver. Cox et  al. investigated 
the effects of SSB consumption on substrate utilization 
and energy expenditure in subjects with obesity. They 
found that the intake of fructose, but not glucose, 
reduced resting energy expenditure and postprandial fat 
oxidation while increasing postprandial carbohydrate 
oxidation. This finding suggests that lipid deposition may 
result from sparing FA from oxidation. DiNicolantonio 
et al. proposed that fructose plays a specific role in visceral 
fat deposition via glucocorticoid-mediated mechanisms 
(DiNicolantonio et  al. 2018). Visceral fat is known 
to accumulate under pathological conditions where 
cortisol levels are increased, such as Cushing’s syndrome. 
Fructose consumption is thought to raise cortisol levels by 
promoting inflammatory processes in adipose tissue and 
stimulating the hypothalamus, resulting in the release 
of corticotropin-releasing factor. Cortisol increases the 
flux of FA from subcutaneous adipose tissue to visceral 
fat depots, impairing organ function (DiNicolantonio 
et al. 2018) and leading to an unfavorable fat distribution 
in lean individuals, i.e. a body shape described as thin 
outside, fat inside, which is associated with an increased 
risk for the metabolic syndrome (DiNicolantonio et  al. 
2018). Taken together, studies provide evidence that 
fructose and sucrose consumption promote ectopic fat 
deposition associated with an increased risk for metabolic 
disease and cardiovascular events (Gruzdeva et al. 2018). 
This is most likely due to a simultaneous increase in DNL 
and decrease in FA oxidation, but it could also be due to 
increased FA flux from subcutaneous adipose tissue to 
other tissues (visceral fat and the liver).

Conclusions

A high intake of free sugar as SSB increases the risk of 
obesity, cardiometabolic diseases, and NAFLD. A central 
role must be attributed to fructose in the development 
of these diseases. It is not only a strong inducer of DNL, 

but it is also a known cause of ectopic fat deposition by 
reducing fat oxidation and increasing FA flux to visceral 
fat and the liver. Most importantly, fructose-specific effects 
occur independently from overfeeding in healthy subjects. 
There are several mechanisms by which high-fructose 
consumers increase fructose absorption and catabolism in 
the liver, exacerbating the metabolic effects. Sugar/fructose 
consumption should be reduced to avoid these unfavorable 
metabolic adaptations.
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