
RESEARCH ARTICLE NEUROSCIENCE

Pattern dynamics and stochasticity of the brain rhythms
Clarissa Hoffmana ID , Jingheng Chengb , Daoyun Jib,c ID , and Yuri Dabaghiana,1 ID

Edited by Nancy Kopell, Boston University College of Arts and Sciences, Boston, MA; received October 29, 2022; accepted February 7, 2023

Our current understanding of brain rhythms is based on quantifying their instantaneous
or time-averaged characteristics. What remains unexplored is the actual structure of
the waves—their shapes and patterns over finite timescales. Here, we study brain wave
patterning in different physiological contexts using two independent approaches: The
first is based on quantifying stochasticity relative to the underlying mean behavior, and
the second assesses “orderliness” of the waves’ features. The corresponding measures
capture the waves’ characteristics and abnormal behaviors, such as atypical periodicity
or excessive clustering, and demonstrate coupling between the patterns’ dynamics
and the animal’s location, speed, and acceleration. Specifically, we studied patterns of
�, , and ripple waves recorded in mice hippocampi and observed speed-modulated
changes of the wave’s cadence, an antiphase relationship between orderliness and
acceleration, as well as spatial selectiveness of patterns. Taken together, our results
offer a complementary—mesoscale—perspective on brain wave structure, dynamics,
and functionality.
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Oscillations of the extracellular fields—the brain waves—are produced by synchronized
activity of large neuronal ensembles (1). These waves are key sources of neurophysiological
information about brain activity at various spatiotemporal scales: spiking of individual
neurons, synchronized circuit-level computations, high-level cognitive processes, etc.
Common approaches to studying brain waves can be broadly divided in two categories.
The first is based on correlating instantaneous phases, amplitudes, and frequencies with
parameters of cognitive, behavioral, or neuronal processes. For example, instantaneous
phases of the θ -wave (4 to 12 Hz) modulate neuronal spikings (2, 3), while the γ -waves’
(30 to 80 Hz) amplitudes and frequencies link the synaptic and circuit dynamics (4–8).
The second category of analyses is based on quantifying the brain waves’ time-averaged
characteristics, e.g., establishing dependencies between the mean θ -frequency and the
animal’s speed (9, 10) or acceleration (11), linking rising mean θ - and γ -power to
heightened attention states (12–14), and so forth.

However, little work has been done to examine the waves’ overall structure, e.g.,
the temporal arrangement of peaks and troughs or sequences of sharp wave ripples or
spindles generated over finite periods. Yet, the physiological relevance of a brain wave’s
shape, or morphology* (15), is well-recognized: Rigidly periodic or excessively irregular
rhythms that contravene a certain “natural” level of statistical variability are suggestive of
circuit pathologies (16–25) or may indicate external driving (26, 27). For example, the
nearly periodic sequences of peaks shown on Fig. 1 A and B are common for θ -waves
but are perhaps too regular for the γ -waves. Conversely, the intermittent patterns on
Fig. 1 C and D are unlikely to appear among θ -waves but may occur among γ -waves
or ripples. The series of clumping peaks shown on Fig. 1 D and E are usual for ripples
and may highlight underlying neuronal events. On the other hand, the waveform on
Fig. 1F may represent an episode of θ -arhythmicity or mundane temporal disorder of
higher-frequency waves.

It remains unclear, however, how to characterize these patterns impartially and quan-
tify the intuitive notions of “regularity,” “typicality,” “orderliness,” etc. Furthermore,
since all brain waves exhibit a certain level of erraticness, it is unclear how justified the
experiential, visceral classifications of the waveforms as “mundane” or “irregular” are.
For example, might the patterns assessed as “not-θ” on Fig. 1 actually be short-time
fluctuations of otherwise regular θ -waves? Would that be a structural peculiarity or an
impossibility?

In the following, we address these questions by studying patterns of waves recorded
in the CA1 region of mouse hippocampus, using two independent mathematical

*Throughout the text, terminological definitions and highlights are given in italics.
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Fig. 1. Waveform morphologies. (A and B) Waves exhibiting nearly periodic
sequences of peaks are commonly found among �-oscillations (4 to 12 Hz),
but rarely among high frequency waves. The intermittent patterns shown
on panels (C) or (D) may be exhibited by -waves (30 to 80 Hz), but for the
�-waves, they would be atypical. The temporal clustering shown on panels
(D) and (E) are all in all ordinary for - or ripples (150 to 250 Hz) but too
irregular for the �-waves. F -pattern could potentially be a �-wave, a -wave,
or a ripple. Shown are the peaks exceeding 1/2 of standard deviation from
the mean (dashed red line), to exclude the spurious low-amplitude peaks. In
actuality, panels A and B are experimental �-waveforms recorded from the
mouse hippocampal CA1 (45, 46), panels C and D are the recorded -waves,
and panels E and F show ripples.

frameworks, two cognate quantifications, which allow under-
standing the brain rhythms’ structure at intermediate timescales
and linking the wave patterns to the animal’s behavior.

1. Approach

1. Kolmogorov stochasticity, λ, describes deviation of an ordered
sequence,X , from the overall trend—in the following,X will refer
to the series of the brain waves’ peaks, whose trend is defined by
the expected mean rate of the peaks’ appearance. A remarkable
observation made in ref. 28 is that the λ-values are universally
distributed. As it turns out, deviations, λ(X ), that are too high
or too low are rare: sequences with λ(X ) ≤ 0.4 or λ(X ) ≥ 1.8
appear with probability less than 0.3%, Fig. 2 A and B, (29–34).
In other words, typical patterns are consistent with the underlying
mean behavior and produce a limited range of λ-values, with
mean λ∗ ≈ 0.87. Thus, the λ-score can serve as a universal

measure of stochasticity and be used for identifying statistical
biases (or lack of thereof) in various patterns (35–40).

2. Arnold stochasticity, β, is alternative measure that quantifies
whether the elements of a pattern (e.g., the aforementioned
peaks) “repel” or “attract” each other. Repelling elements seek
to maximize separations and hence produce orderly, more
equispaced arrangements, for which β-stochasticity score is close
to its minimum, β(X ) ≈ 1. On the other hand, attracting
entities tend to cluster together, yielding patterns with higher
stochasticity—their β(X ) can be as high as there are components
in the sequence. Since both attraction and repulsion (any
interaction, for that matter) contravene randomness, β-scores
of sequences with independent elements are neither small nor
large. As shown in ref. 41–44, β-scores of the sequences with
independent elements are universally close to β∗ ≈ 2 (Fig. 2C
and Methods). Thus, the β-score can be used to characterize
orderliness of brain rhythms, complementing the λ-score.

3. Time-dependence. The recurrent nature of brain rhythms
suggests a dynamic view on pattern stochasticity. Given a time
window, L, containing a sequence of events, Xt , such as θ -peaks
or ripples, evaluate their scores λ(Xt) and β(Xt), then shift the
window over a time step 1t, evaluate the next set λ(Xt+1t) and
β(Xt+1t), and so on. The consecutive wave segments, obtained
by small window shifts, Xt , Xt+1t , Xt+21t , . . ., differ only
slightly from one another. Correspondingly, their stochasticity
scores produce semicontinuous time dependencies λ(t) andβ(t),
which describe the dynamics of the waveforms over the signal’s
entire span (Fig. 2D).

For a visualization, one can imagine the elements of a given
sample sequence, Xt+k1t , as “beads” scattered over a necklace
of length L. As the sliding window shifts forward in time, new
beads may appear toward the front, as the beads in the back
of the window disappear, while a majority of the beads retain
their relative positions. The corresponding λ- and β-values will
then produce semicontinuous dependencies λ(t) and β(t) that
quantify the “necklace dynamics”—gradual pattern changes in
time, with β describing the orderliness of the beads’ distribution
and λ measuring statistical typicality of the beads’ ongoing
arrangement (Fig. 2D).

As an illustration of the methods, consider simulated data
series with random spacings between the adjacent values—
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Fig. 2. Stochasticity parameters. (A) The elements of an ordered sequence X = {x1 , x2 , . . . , xn} following a linear trend N̄(x) = f̄ x + b (solid black line). The
sequence’s maximal deviation from the mean, �(X), exhibits statistical universality and can hence impartially characterize the stochasticity of the individual
data sequence X (Section 3). (B) The probability distribution of �-scores is unimodal, with mean �∗ ≈ 0.87 (red dot). About 99.7% of all sequences produce
�-scores in the interval 0.4 ≤ �(X) ≤ 1.8 (pink stripe); these sequences are typical and consistent with the underlying mean behavior. In contrast, sequences
with smaller or larger �-scores are statistically uncommon. (C) A sequence X arranged on a circle of length L produces a set of n arcs. The normalized quadratic
sum of the arc lengths is small for orderly sequences, � ≈ 1 (Left), as high as � ≈ n for the “clustering” sequences (Right), and intermediate, � ≈ 2 (Middle), for
generic sequences. (D) Top row: the “beads” of peaks illustrated on Fig. 1 A, C , and E. The black boxes represent time windows with widths scaled proportionally
to the periods of �-waves, -waves and ripples. The gray dots represent the upcoming and the past peaks. Bottom row: time windows slide to the right (red
arrows), causing pattern changes.
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Fig. 3. Pattern dynamics for three kinds of random sequences in which the intervals between consecutive points are distributed 1) exponentially with the rate
� = 2; 2) uniformly with constant density � = 1; or 3) with Poisson rate � = 5. Sample intervals are selected proportionally to the distribution scales (Lu = 25�,
Le = 25�, and Lp = 25�, so that each sample sequence contains about n = 25 elements) and are shifted by a single data point at a time. (A) The Kolmogorov
parameter of the exponential sequence (red trace, �e), uniform sequence (blue trace, �u), and Poisson sequence (orange trace, �p) remains mostly within the
“pink zone” of stochastic typicality (pink stripe is the same as on Fig. 2B, but stretched horizontally—note the illustration in the right corner). �u is the most
volatile and often escapes the expected range, whereas �p is more compliant, lingering below the expected mean �p . �∗ ≈ 0.87 (black dashed line). (B) The
corresponding Arnold stochasticity parameters show similar behavior: �u = 1.93± 0.2 fluctuates around the expected mean �∗(25) = 1.92 (black dotted line).
The exponential sequence has smaller �-variations and a slightly higher mean, �e = 2 ± 0.04. The Poisson sequence is the least stochastic (nearly periodic),
with �p = 1.22 ± 0.004, due to statistical suppression of small and large gaps. (C) The mean stochasticity scores, 〈�〉 and 〈�〉 computed for about 104 random
patterns of each type. For sample patterns, (SI Appendix, Fig. 1A).

intervals drawn from the familiar exponential, uniform, and
Poisson distributions, with sample patterns containing about 25
consecutive elements. As shown on Fig. 3 A and C , the λ(t)-
dependence of the exponential sequences remains, for the most
part, constrained within the “typicality band” (pink stripe on
Figs. 2B and 3A), while the uniformly distributed patterns are
more variable, and the Poisson patterns follow the mean most
closely. The β-scores of exponentially and uniformly distributed
patterns are overall mundane, while the Poisson patterns exhibit
periodic-like orderliness.

The mean λ- and β-scores in the uniform and exponential
sequences are close to the universal means, λ∗ and β∗, which
shows that, on average, they are statistically unbiased. In contrast,
the Poisson-distributed patterns are atypically orderly, due to
statistically suppressed small and large gaps between neighboring
elements (Fig. 3B). Also, note that the fluctuations of stochasticity
scores—the rises and drops of λ(t) and β(t) on Fig. 3—
are chancy, since random sequences vary sporadically from
instantiation to instantiation. In contrast, brain wave patterns
carry physiological information, and therefore, the dynamics of
their stochasticity is coupled with behavior and with physiological
states, as discussed below.

2. Results

A. Stochasticity in Time. We analyzed Local Field Potentials
(LFP) recorded in the hippocampal CA1 area of wild-type
male mice for experimental details see refs. 45 and 46 and
studied patterns of their θ -waves, γ -waves, and ripples (47). The
recurring nature of brain rhythms implies that their key features
distribute uniformly over sufficiently long periods. The expected
mean used for evaluating the Kolmogorov λ-parameter is hence
linear,

N̄ (t) = f̄ t + b, [1]

with the specific coefficients f̄ (the mean frequency) and
b obtained via linear regression. The lengths of the sample

sequences were selected to highlight a particular wave’s structure
and functions, as described below.

1. �-Waves 4 to 12 Hz, (48, 49) are known to correlate
with the animal’s motion state, which suggests that the sample
sequences should be selected at a behavioral scale (9–11). In
the analyzed experiments (45, 46), the mice shuttled between
two food wells on a U-shaped track, spending about 22 secs
per lap (average for 5 mice, for both inbound and outbound
runs) and consumed food reward over 17 s (Fig. 4A). On the
other hand, the intervals between successive θ -peaks distribute
around the characteristic θ -period, T θ ≈ 1/f̄θ ≈ 110 msecs,
which defines the timescale of oscillatory dynamics (Fig. 4B). To
accommodate both timescales, we used time intervals required
to complete 1/6th of the run between the food wells, Lθ ≈ 3.6
s, containing about 20 to 30 peaks—large enough to produce
stable λ- and β-scores (50–52), but short enough to capture the
ongoing dynamics of θ -patterns.
Fast moves. As mentioned above, the experimental design

enforces recurrent behavior, in which speed goes up and down
repeatedly as the animal moves between the food wells. When
the mouse moves methodically (lap time less than 25 s), λθ
rises and falls along with the speed with surprising persistence
(Fig. 4C and SI Appendix, Fig. 1B). Yet, the θ -patterns appearing
in this process are stochastically generic—the entire sequence
of λθ -values remains mostly within the “domain of stochastic
typicality” (pink stripe on Figs. 4 C and D and 2B), below
the universal mean λ∗. However, the patterns become overtly
structured as the animal slows down: the Kolmogorov scores then
drop below λθ ≈ 0.1, exhibiting uncommon compliance of the
θ -wave with the mean behavior. Such values of λθ can occur
by chance with vanishingly small probability 8(0.1) < 10−17

(Section 3), which, together with small βθ ≈ 1, show that limited
motor driving confines θ -wave to a simple, nearly harmonic
oscillation with a base frequency f̄θ ≈ 9 Hz.

Increasing speed drives θ -patterns farther from the mean:
the faster the mouse moves, the higher the λθ . To quantify
the uncanny similarity of the stochasticity to the speed profile,
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Fig. 4. �-wave’s stochasticity. (A) The animal’s lapses (trajectory shown by gray line) between food wells, F1 and F2, take on average 22 s. (B) A histogram
of intervals between subsequent �-peaks concentrates around the characteristic �-period, T� ≈ 110 ms: gaps shorter than T�/2 or wider than 2T� are rare.
�-amplitude, �̃, oscillates with T�̃ ≈ 180 ms period. (C) The dynamics of ��(t) (red trace) correlate with the speed profile (gray line) when the mouse moves
methodically. The ��(t)-stochasticity remains mostly within the “typical” range (pink stripe in the background), falling below it as the mouse slows down. For
rapid moves there is a clear similarity between the �� -score and the speed, e.g., their peaks and troughs roughly match. When the mouse meanders (vertical
gray stripes), the coupling between speed and �� -stochasticity is lost. (D) Due to quasiperiodicity of the �-wave and of its envelope, �̃, the average scores 〈��〉,
〈�̃�〉, 〈��〉, and 〈�̃�〉 are significantly lower than the impartial means �∗ and �∗, with small deviations (data for 5 mice). (E) Locally averaged �̂� -score grows with
speed, whereas �̂� tends to drop down with acceleration. (F ) The Arnold score ��(t) (blue trace) remains close to �min = 1, affirming �-wave’s quasiperiodicity.
Note the antiphasic relationship between the �� -stochasticity and the acceleration a(t) (the latter graph is shifted upward to match the mean level 〈��〉):
�-periodicity loosens as the animal slows down (�� -splashes correlate with animal’s deceleration) and sharpens as he speeds up.

we used the Dynamic Time Warping (DTW) approach. This
technique uses a series of local stretches to match two functions—
in this case, λθ (t) and s(t)—so that the net stretch can be
interpreted as a measure of separation, or distance† between
functions in “feature space” (54, 55). In our case, the DTW-
distance between the speed and the λθ (t)-score during active
moves is small, D(λθ , s) = 19.6%, indicating that θ -patterns are
strongly coupled to the animals’ motor mobility (SI Appendix,
Fig. 2).

Note that DTW-affinity between λθ (t) and speed does not
necessarily imply a direct functional dependence. Indeed, plotting
points with coordinates (s, λθ ) yields scattered clouds, suggesting
a broad trend, rather than a strict relationship (Fig. 4E). However,
if the λ-scores and the speeds are locally averaged, i.e., if each
individual s- and λ-value is replaced by the mean of itself and
its adjacents, then the pairs of such local means (ŝi, λ̂i) reveal the
underlying dependence: Increasing speed of the animal entails
higher variability of the θ -patterns.

In the meantime, the Arnold stochasticity score, βθ (t), is
closely correlated with the mouse’s acceleration, a(t). As shown
on Fig. 4F , the βθ -score rises as the mouse decelerates (θ -wave
clumps) and falls when he accelerates (θ -wave becomes more
orderly), producing a curious antiphasic βθ -a relationship, which
is also captured by the local averages (âi, β̂i) (Fig. 4E). The
distance between βθ (t) and −a(t) (the minus sign accounts

†DTW separation typically satisfies the triangle inequality,D(a, b)+D(b, c) ≥ D(a, c), which
permits interpreting it geometrically, as a distance between signals (53).

for the antiphase) is D(βθ ,−a) = 33.6%, which means that
speed influences the θ -wave’s statistical typicality more than
acceleration impacts its orderliness.

Slow moves. When the mouse meanders and slows down (lapse
time over 25 s), θ -patterns change: the λθ -score increases in
magnitude and uncouples from speed (DTW distance is twice
that of the fast moves case, D(λθ , s) = 38.8%), suggesting that,
without active motor driving, θ -rhythmicity is less controlled by
the mean oscillatory rate, i.e., is more randomized. The Arnold
parameter βθ also slightly increases, D(βθ ,−a) = 36.1%,
indicating concomitant θ -disorder.

Overall, the Kolmogorov scores of θ -patterns are low, with
mean 〈λθ 〉 = 0.54 ± 0.12, indicating that, on average, θ -
cycles closely follow the prescribed trend [1]. The low mean
Arnold score 〈βθ 〉 = 1.1 ± 0.03 ≈ βmin also points at a near-
periodic behavior of the θ -wave (Fig. 4C ). One may wonder,
therefore, whether such structural rigidity should be viewed as
a mere background that modulates the “true” θ -stochasticity—
the deviations of the θ -wave from periodicity. In other words,
one can view the times of the θ -peaks’ occurrences, tθ ,k, as a
periodic series disturbed by arrhythmic inputs, tθ ,k = kT̄θ + ξθ ,k,
and inquire about the stochasticity of the latter. Expectedly, the
“bare noise” patterns are more variegated: the λξ -scores cover
the full range of stochastic typicality, reflecting generic nature of
the θ -flickery (SI Appendix, Fig. 3A). The orderliness, βξ (t),
also grows significantly above the impartial mean β∗ ≈ 2,
exposing cluttering of the θ -fluctuations (SI Appendix, Fig. 3B).
What is surprising however, it is that the ξθ -patterns show no
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coupling to the speed, acceleration, or the physiological state, in
contrast to the original θ -wave. This observation is essential: It
demonstrates that the semiperiodicity of the θ -waveforms is, in
fact, instrumental for linking θ -patterns to movement activity.

The overall conclusion is that, during active behavior, θ -
waveforms are strongly controlled by the mouse’s moves. Highly
ordered, nearly periodic θ -peaks appear when the animal starts
running, i.e., the θ -frequency range narrows, while deviating
from the expected value. Decreasing speed stirs up the θ -
patterns; the disorder grows and reaches its maximum when the
animal moves slowest and begins to accelerate. During periods of
inactivity, the coupling between θ -patterns and speed is weakened
but then reinforced again as the mouse reengages into the
task.

We emphasize that these dependencies should not be viewed as
naive manifestations of known couplings between the waves’ in-
stantaneous or time-averaged parameters and the animals’ activity
(10, 11). Indeed, the momentary frequencies or amplitudes are
agnostic of the wave’s protracted behaviors and alter many times
over the span of each extended peak series (56, 57). In contrast,
the stochasticity scores describe the waveform as a single entity,
without averaging, i.e., sensitive to the individual elements and
features.

To further illustrate this point, we evaluated cross-correlation
R between the λθ -score and the animal’s speed during the active
moving periods, which show that the similarity is highest when
speed just barely lags behind λθ , on average by δtθ ≈ 0.6 s
(Rθ = 0.6± 0.02). Getting ahead of the upcoming discussions,
the highest correlation with the λγ (stochasticity of the γ -wave)
is also achieved when the speed lags by about δtγ = 0.45 s

(Rγ = 0.51 ± 0.15). In contrast, the strongest correlation with
λre (stochasticity of the ripple waves, Rre = 0.69 ± 0.03) may
occur for leading speeds. The βθ -score shows similar range of
maximal correlations with acceleration (R∗ ≈ 0.5), but with
a wider spread of time shifts (0 . δt∗ . 1.5 s), also with
positive or negative lags. A similar variety of lagging and leading
correlations are observed between the stochasticity scores and
the waves’ amplitudes and frequencies. Taken together, these
observations suggest that the waveforms are neither spontaneous
field deflections nor immediate reactions to ongoing idiothetic
inputs but rather integrative processes that unfold at the behav-
ioral timescale. The λ- and β-scores describe these waveforms
integrally and put each pattern, as a whole, into a statistical
perspective. It hence becomes possible to approach the questions
addressed in the Introduction: identify typical and atypical wave
patterns, quantify levels of their orderliness, detect deviations
from natural behavior, and so forth.

2. -waves 30 to 80 Hz, (6) exhibit a wider variety of patterns
than θ -waves. The interpeak intervals between consecutive γ -
peaks, Tγ , are nearly exponentially distributed, which implies
that both smaller and wider γ -intervals are statistically more
common, leading to higher pattern variability (Fig. 5A).
Fast moves. For consistency, the sample sequences, Xγ , were

drawn from the same time windows, Lγ = Lθ ≈ 3.6 s, which
contained, on average, about 100 elements that yield a mean
Kolmogorov score 〈λγ 〉 = 1.84 ± 1.03—more than twice
higher than the impartial mean λ∗ and three times above the
〈λθ 〉 score. Such means can occur randomly with probability
1−8(1.84) . 2 · 10−3, which suggests that generic γ -patterns
are statistically atypical and may hence reflect organized network

0.5

1

1.5

2

2.5

3

0.5

1

1.5

2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1

2

3

4

0 0.41.0 2.0 3.0
0
1
2
3
4
5
6
7

1

1.5

2

2.5

1

2

3

4

5

yticitsahcots
yticitsahcots

spag
#

01
3

A B D

C

.

time, .

002 003 004 005 006 007001 03- 02- 01- 0 01 02 0304-

0 100 200 300 400 500 600 700 800

Fig. 5. -wave stochasticity. (A) A histogram of -interpeak intervals exhibits an exponential-like distribution with mean characteristic -period, T  = 18.6 ±
1.9 ms, about six times smaller than T� . (B) The average scores 〈� 〉 and 〈� 〉 are higher than for the �-wave, indicating that -patterns are more diverse than
�-patterns. (C) The dynamics of the � -score (Top panel) correlate with changes in the speed when the animal moves actively. Note that � often exceeds
the upper bound of the “pink stripe,” i.e., -waves often produce statistically uncommon patterns, especially during rapid moves. The � -score (Bottom panel)
correlates with the animal’s acceleration, which is lost when lap times increase (gray stripes). (D) Locally averaged �-score, �̂ , grows with speed, while �̂
switches from higher to lower value with increasing acceleration (pink arrow).
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dynamics, rather than random extracellular field fluctuations
(Fig. 5B). The average Arnold parameter also grows compared
to the θ -case, but remains lower than the impartial mean,
〈βγ 〉 = 1.61± 0.53 < β∗, implying that, although γ -waves are
more disordered than the θ -waves, they remain overall oscillatory.

On average (for all five mice), the λγ -score escapes the domain
of “stochastic typicality” approximately half of time through
transitions that closely follow speed dynamics. A wider γ -
diversity (larger range of λγ -values) is accompanied by a weaker
coupling to speed: The average DTW distance to the latter,
D(λγ , s) ≈ 23.4%, is slightly bigger than in the case of λθ
dynamics, which illustrates that γ -patterns are less sensitive to
speed than θ -patterns (Fig. 5C ).

From a structural perspective, the γ -wave becomes closer
to periodic when the animal is actively moving: during these
periods, βγ -score reduces close to minimum, βγ ≈ 1, and
the Kolmogorov score grows to the improbable λγ ≈ 3.5
(cumulative probability of that is8(3.5) . 10−10). In contrast,
the lowest deviations of γ -patterns from the mean (λγ & 0.2),
accompanied by high βγ -scores, happen as the mice slow
down, implying that circuit activity is least structured during
these periods (Fig. 5 C and D). The relation between γ -
orderliness, βγ (t), and acceleration is similar to the one observed
in the θ -waves: Acceleration induces stricter γ -rhythmicity and
deceleration randomizes γ -patterns, with about the same overall
DTW distance, D(βγ ,−a) ≈ 34.4%.
During slowermovements, the γ -dynamics change qualitatively:

the magnitudes of both λγ (t) and βγ (t) grow higher, indicating
that decoupling from motor activity enforces statistically atypical
γ -rhythmicity in the hippocampal network, as in the θ -waves.

In particular, the uncommonly high βγ -scores point at frequent
γ -bursting during quiescence.

Once again, we emphasize that these results do not represent
known correlations between instantaneous or time-averaged γ -
characteristics and motion parameters (58, 59) but reflect the
dynamics of γ -waves at pattern-changing timescale. Note in this
connection that the amplitude of γ -waves, (γ -envelope, γ̃ ), has
low stochasticity scores, comparable to the ones produced by the
Poisson process, 〈βγ̃ 〉 = 1.15 ± 0.08 and 〈λγ̃ 〉 = 0.52 ± 0.26
(Figs. 3 and 5B). In other words, instantaneous amplitudes
and frequencies exhibit restrained, quasiperiodic behavior, and
yet allow a rich morphological variety of the underlying γ -
oscillations.

3. Ripple events (RE) High-amplitude (over 2.5 standard
deviations above the mean) splashes of high-frequency waves
150 to 250 Hz (47), exhibit the richest pattern dynamics.

During fast moves, RE appears at an exponential rate T re ≈
0.5 s. Approximately, 20–30 RE occur in each 3.6-s window,
which is comparable with the number of θ -peaks over the same
period, but RE have significantly higher λ-scores, 〈λre〉 = 2.40±
1.57 (Fig. 6 A and B). The low probability of these patterns
(1 − 8(2.4) ≈ 10−4) and the relatively high mean β-score,
〈βre〉 = 1.71 ± 0.64, indicate that RE tends to exhibit clustering
that reflect time-specific, targeted circuit activity.

Interestingly, RE-patterns also correlate with the animal’s
speed profile about as much as γ -patterns, D(λre, s) ≈ 23.8%
(60). The βre(t)-dependence displays the familiar antiphasic
relationship with the animal’s acceleration—RE tends to cluster
more when the animal slows down (Fig. 6 C and D). However,
orderliness of RE is driven by acceleration even stronger than

0

1

2
3

0

5

10

15

.
0

1

2

3

4

5

0 8642 10

yticitsahcots
yticitsahcots

spag
#

01
3

A B

C
1.2

1.6

2.0

2.4

2.8

1

2

3

4

D

0.5

1

1.5

2

1

2

3

4

5

6

03- 02- 01- 0 01 02 0304-002 003 004 005 006 007001

time, .0 100 200 300 400 500 600 700 800

4
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Fig. 7. Spatial stochasticity maps were obtained by plotting � and � parameters along the trajectory. Note that the inbound and the outbound trajectories are
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patterns. Note that, at the food wells, the waves exhibit highly improbable (high-�), disordered (high-�) patterns.

orderliness of γ -patterns: the range of βre-scores is twice as wide
as the range of βγ -scores (broader pattern variety), with a similar
DTW distance D(βre,−a) ≈ 39.7%.

During quiescent periods, RE are known to mark instances
of endogenous network activity—sequential reactivations of
hippocampal neurons that represent previous or future behavioral
experiences—awake replays and preplays (60–66) no sleep peri-
ods involved, Section 3 and (45, 46). As shown on Fig. 6C , these
RE patterns are highly uncommon: the extremely high λre-scores
and above-average βre-values indicate statistically improbable,
clustered RE sequences.

Overall, the temporal clumping comes forth as a characteristic
feature of the RE, suggesting that these phenomena are mani-
festations of fast network dynamics that brusquely “ripple” the
extracellular field, unlike the rhythmic θ and γ undulations (47).

Note that although stochasticity scores of different waves
exhibit similar qualitative behaviors, e.g., all λs grow with
speed and all βs increase with acceleration, they remain largely
independent from each other, e.g.,λθ is independent fromλγ ,βγ
does not depend on βre, etc. (SI Appendix, Fig. 4). In other words,
the results illustrated on Figs. 4, 5, and 6, are not redundant—
they each provide a standalone description of the oscillatory
dynamics in the corresponding frequency band.

B. Stochasticity in Space. Distributing the λ- and β-scores along
the animal’s trajectory yields spatial maps of stochasticity for each
brain rhythm and reveals a curious spatial organization of LFP
patterns with similar morphology. As shown on Fig. 7, higher
λ-values for all waves are attracted to segments where the mouse
is actively running with maximal speed, furthest away from the
food wells. Patterns that are close to the expected average (low-
λ) concentrate in the vicinity of food wells where the animal
moves slowly. These regions also tend to host high β-scores that
appear as the animal slows down to eat, as well as the lowest
βs, which appear as the animal accelerates away (65). In other

words, the LFP waves become more “trendy” and, at the same
time, more structured (either more periodic or more clustered)
over the behaviorally important places (e.g., food wells) that
require higher cognitive activity. On the other hand, the outer
parts of the track, where the brain waves are less controlled by the
mean and remain moderately disordered, are marked by irregular
patterns.

Intriguingly, the same map structure is reproduced during
slow lapses, when the motor control of the patterns weakens,
suggesting that speed and acceleration are not the only deter-
minants of the LFP patterns. As shown on Fig. 7, even when
the mouse dawdles, the waves tend to deviate from the mean
around the outer corners and follow the mean in the vicinity
of the food wells. Similarly, the patterns start clumping as the
mouse approaches the food wells and distribute more evenly as
he moves away.

These results suggest that spatial context may, by itself,
influence hippocampal brain rhythm structure, in a way that
is reminiscent of the place-specific activity of spatially tuned
neurons in sectioned environments, e.g., place cells (67) or
parietal neurons (68), which highlight geometrically similar
domains (see also linearized maps, SI Appendix, Fig. 5). Specifi-
cally, the “bursting fields” (high-β) and “domains of regularity”
(small λ) surround food wells; the “quasiperiodicity fields”
(small βs) as well as “wobbling fields” (large λs) stretch over
the outer segments, notably corners (Fig. 7). Physiologically,
spatiality of stochasticity may reflect a coupling between the
hippocampal place-specific spiking activity and extracellular field
oscillations.

3. Discussion

Recorded LFP signals are superpositions of locally induced
extracellular fields and inputs transmitted from anatomically
remote networks. The undulatory appearance of the LFP is often
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interpreted as a sign of structural regularity‡, but the dynamics
of these rhythms is actually highly complex. Understanding
the balance between deterministic and stochastic perspectives
on LFPs pose significant conceptual challenges, as it happened
previously in other disciplines (70).

Structurally, LFP rhythms may be described through discrete
sequences of wave features (heights of peaks, specific phases,
interpeak intervals, etc.) or viewed as transient series—bursts—
of events, as in the case of REs (71). It is well-recognized that
such sequences are hard to forecast, e.g., a recent discussion of a
possible role of bursts in brain waves’ genesis posits: “An important
feature that sets the burst scenario apart is the lack of continuous
phase-progression between successive time points—and therefore the
ability to predict the future phase of the signal—at least beyond the
borders of individual bursts” (71). In other words, the nonlinearity
of LFP dynamics, as well as its transience and sporadic external
driving, result in effective stochasticity of LFP patterns—an
observation that opens a new round of inquiries (71, 72). For
example, how exactly should one interpret the “unpredictability”
of a temporal sequence? Does it mean that its pattern cannot
be resolved by a particular physiological mechanism or that it
is unpredictable in principle, “genuinely random,” as, e.g., a
gambling sequence? What is the difference between the two?
Are the actual network computations based on “overcoming
randomness” and somehow deriving the upcoming phases or
amplitudes from the preceding ones or may there be alternative
ways of extracting information? Does the result depend on
the “degree of randomness” and if so, how to distinguish
between “more random” and “less random” patterns? These
questions are not technical, pertaining to a specific mechanism,
nor specifically physiological; rather, these are fundamental
problems that transcend the field of neuroscience. Historically,
similar questions have motivated mathematical definitions of
randomness that are still debated to this day (73–75).

The approach suggested by Kolmogorov in 1933 the year
when brain waves were discovered (76) is based on the statistical
universality of deviations from the expected behavior (28, 29).
From Kolmogorov’s perspective, randomness is contextual: if a
sequence X deviates from an expected mean behavior within
bounds established by the distribution [3], then X is effectively
random. In other words, an individual sequence may be viewed
as random if it could be randomly drawn from a large pool of
similarly trending sequences, with sufficiently high probability.
This view permits an important conceptual relativism: Even if
a sequence is produced by a specific mechanism or algorithm,
it can still be viewed as random as long as its λ-score is
“typical” according to the statistics [3]. For example, it can be
argued that geometric sequences are typically more random than
arithmetic ones, although both are defined by explicit formulae
(30–34). By analogy, individual brain rhythms may be generated
by specific synchronization mechanisms at a precise timescale,
and yet they may be empirically classified and quantified as
stochastic.

A practical advantage of Kolmogorov’s approach is that mean
trends, such as [1], can often be reliably established, interpreted,
and then used for putting the stochasticity of the underlying
sample patterns into a statistical perspective. Correspondingly,
assessments based on λ-scores were previously applied in a variety
of disciplines from genetics (35–37) to astronomy (38) and
from economics (39) to number theory (30–34, 40–44, 77).
Some work has also been done in brain wave analyses, e.g., for

‡A succinct expression of this view is provided in 69: “rhythmicity is the extent to which future
phases can be predicted from the present one.”

testing normality of electroencephalograms’ long-term statistics
(78–81). Arnold β-score provides an independent assessment of
orderliness (whether elements of an arrangement tend to attract,
repel, or be independent of each other) and it has not been, to
our knowledge, previously used in applications.

Importantly, Kolmogorov and Arnold scores are impartial
and independent from physiological specifics or contexts, thus
providing self-contained semantics for describing the LFP data
and a novel venue for analyzing the underlying neuronal
mechanisms. It becomes possible to distinguish “statistically
mundane” LFP patterns from exceptional ones and to capture
the transitions between them, as well as to link pattern dynamics
to changes in the underlying network’s dynamics. For example,
since θ -bursts are physiologically linked to long-term synaptic
potentiation (82, 83), θ -patterns with high β-scores may serve as
markers of plasticity processes taking place in the hippocampal
network at specific times and places (84–86). Furthermore,
high-βθ regions near food wells indicate that reward proximity
may also trigger hippocampal plasticity and, since hippocampal
neurons’ spiking is coupled to θ -cycles (2), have a particular effect
on memory processing. On the other hand, low-βθ indicates
limit cycles in the network’s phase space that uphold simple
periodicity. γ -bursts (high βγ ) mark heightened attention and
learning periods (5, 87). In our observations, they appear during
the mouse’s approach to the reward locations and disappear as it
ventures away from them. Clustering ripples during quiescence
reflect dense replay activity (61, 62), indicative of periods
of memory encoding, retrieval, and network restructurings
(63, 88).

Overall, the proposed approach allows studying brain rhythms
from a new perspective that complements existing methodology,
which may lead to a deeper understanding of the synchronized
neuronal dynamics and its physiological functions.

Materials and Methods
Experimental Procedures. The LFP data used in this study were previously
analyzed via the conventional Fourier transformation method and published
in refs. 45 and 46. Data were recorded from the CA1 pyramidal cell layer of
hippocampus. The animals were trained in a familiar room to run back and
forth on about∼2-m long rectangular track (Fig. 4B) for food reward. The daily
recording procedure consisted of two sessions on the track, lasting about 15 min
each, followed by one to two 15-min break in the sleeping box. The recording
was repeated 3–10 d. The LFP data were sampled at 2 kHz rate. Two color diodes
(red, green) were mounted over the animal’s head to track its positions, sampled
at 33 Hz with a resolution approximately 0.2 cm. Further details on surgery,
tetrode recordings, and other procedures can be found in (45, 46).

Computational Algorithms. The following outline of mathematical methods
is based on refs. 28–34, 41–44

1. Kolmogorov score. Let X = x1 ≤ x2 ≤ . . . ≤ xn, be an ordered sequence
and let N(X, L) be the number of elements smaller than L,

N(X, L) = {number of 0 ≤ xk < L}.

Let N̄(X, L) be the expected number of elements that interval; in case of the
brain rhythms, this number will grow proportionally to the length of the interval,
with the slope defined by the rhythm’s frequency (Fig. 8).

The closer X follows the prescribed behavior, the smaller the normalized
deviation§

λ(X) = sup
L
|N(X, L)− N̄(X, L)|/

√
n. [2]

§The supremum, rather than maximum, is required in formula [2] due to discontinuity of
the counting function N(X, L) at the stepping points.
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evaluated for one entire running session, for one mouse. The black lines
show the estimated (95% prediction interval) linear trends.

A remarkable observation made in ref. 28 is that the cumulative probability of
having λ(X) smaller than a given λ converges to the function

8(λ) =

∞∑
k=−∞

(−1)ke−2k2λ2
, [3]

that starts at 8(0) = 0 and grows to 8(∞) = 1. The derivative of the
cumulative density [3] defines the probability distribution for λ, P(λ) =
∂λ8(λ) illustrated on Fig. 2B Even though the range of P(λ) includes arbitrarily
small or large λs, the shape of the distribution implies that excessively high or
low λ-values are rare, e.g., sequences with λ(X) ≤ 0.4 or λ(X) ≥ 1.8 appear
with probability less than 0.3%, 8(0.4) ≈ 0.003, and 8(1.8) ≈ 0.997.
Since these statistics are universal, i.e., apply to any sequence X, theλ-score can
serve as a universal measure of “stochastic typicality” of a pattern (29–34). This
is akin to the familiar use of normally distributed z-scores: “typical” zs (99.7%
of them) lay in the range−3 ≤ z ≤ 3, while small (z < −3) or large (z > 3)
scores appear with probability 0.3%. Just as the z-scores are used to detect
outliers in a normal distribution, λ-scores measure typicality of patterns: if a
pattern X deviates from the expected mean within limits established by the
“hump” of the P(λ)-distribution (pink stripe on Fig. 2B), then X is typical. If,
however, these limits are surpassed, then the pattern is “atypical,” “uncommon,”
“not chancy,” and may be viewed as a sign of a severe trend violation, or a “trend
change.”

2. Corrections to Kolmogorov score up to the order n−3/2,

λ(X)→ λ(X)

(
1 +

1
4n

)
+

1
6n
−

1

4n3/2
, [4]

allow increasing the accuracy of the finite-sample estimates to over 0.01% for
sequences containing as little as 10 to 20 elements (50–52). In this study, all

λ-evaluations are based on the expression [4] and use data sequences that
contain more than 25 elements.

3. Mean Kolmogorov stochasticity score. The mean λ can then be computed
as

λ∗ =

∫
∞

0
λP(λ)dλ =

∫
∞

0
8(λ)dλ,

where we used integration by parts and the fact that the distribution P(λ) starts
at 0, P(0) = 0, and approaches 0 at infinity, P(∞) = 0 (Fig. 2B). Integrating
the Gaussian terms in expansion [3] yields Mercator series

λ∗ =

√
π

2

∞∑
k=1

(−1)k+1 1
k

=

√
π

2
ln 2 ≈ 0.8687.

4. 8(λ) estimates. For small λs, the Kolmogorov 8-function [3] can be
approximated by

8(λ) ≈

√
2π
λ

e−π
2/8λ2

, [5]

and for large λs, it is approximated by the two lowest-order terms in [3],
8(λ) ≈ 1− 2e−2λ2

(28, 29). These formulae allow quick evaluations of the
λ-scores’ cumulative probabilities outside of the “stochastic typicality band,”
λ < 0.4 or λ > 1.8.

5. Arnold score. Let us arrange the points of the sequence X on a circle of
length L and consider the arcs between pairs of consecutive elements, xi and
xi+1 (Fig. 2C). If the lengths of these arcs are l1, l2, . . . , ln, then the sum

B = l21 + l22 + . . .+ l2n , [6]

grows monotonically from its smallest value Bmin = n(L/n)2 = L2/n,
produced when the points xk lay equidistantly from each other, to its largest
value, Bmax = L2, attained when all elements share the same location, with the
mean B∗ = Bmin2n/(n + 1) ≈ 2Bmin (41–44).

Intuitively, orderly arrangements appear if the elements “repel” each other,
“clumping” is a sign of attraction, while independent elements are placed
randomly. Hence, the ratio β = B/Bmin can be used to capture the orderliness
of patterns:
β(X) ≈ 1, indicates atypically ordered, nearly equidistant sequences;
β(X) ≈ β∗ ≈ 2 marks statistically typical, commonly scattered sequences;
β(X)� β∗ corresponds to clustering sequences.

[7]

6. The length L of the circle accommodating a random sample sequence X in
Arnold’s method was selected so that the distance between the end points, x0
and xn, became equal to the mean arc length between the remaining pairs of
neighboring points,

ln = |xn − x0| mod L =
1

n− 1

n−1∑
i=1

li.

A B C

Fig. 9. Averaging over a simplex. (A) If two coordinates l1 and l2 of a two-element sequence could independently vary between 0 and L, then the pair (l1 , l2)
would cover a 2D square. However, if the elements (x1 , x2) remain on a circle (orange dots below) then the Eq. 8 restricts (l1 , l2)-values to the cube’s diagonal
(orange cross on the Top panel), i.e., to a 1-dimensional simplex. (B) A configuration of three points on a circle corresponds to a point on the diagonal section of a
L-cube. (C) Tetrahedron—a section of a 4D cube—is the highest dimensional (3D) depictable simplex �(3), which is used to schematically represent n-dimensional
simplexes, �(n). Averaging over l2i in [9] involves integrating over it the (n− 1)-dimensional layers of �(n).
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7. Mean Arnold stochasticity score. A short derivation ofβ∗ is provided below
for completeness, following the exposition given in ref. 44.

• The n arcs lengths l1, l2, . . . , ln produced by n points, X = {x1, x2, . . . , xn},
can be viewed as the “coordinates” of X in a n-dimensional sequence space.
If these coordinates could vary independently on a circle of length L, then
the sequences would be in one-to-one correspondence with the points of a
n-dimensional hypercube with the side L. However, since the sum of lis must
remain fixed,

l1 + l2 + ...+ ln = L, [8]

the admissible l-values occupy a hyperplane that cuts between the vertices
(0, 0, . . . , 0) and (L, L, . . . , L). For example, two values l1 and l2 = L− l1
define a point on the diagonal of a L-square (Fig. 9A), three values define
points of a “diagonal” equilateral triangle in the L-cube (Fig. 9B), four values
represent points of a regular tetrahedron (Fig. 9C), and so forth. A generic n-
sequence is hence represented by a point in a polytope spanned by n vertices
in (n− 1)-dimensional Euclidean space—a (n− 1)-simplex, σ (n−1) (89).

• The defining property of a simplex is that any subcollection of its vertices
spans a subsimplex: a tetrahedron, σ (3), is spanned by four vertices, any
three of which span a triangle σ (2)—a “face” of σ (3); any two vertices span
an edge, σ (1), between them, etc. (89). Correspondingly, a generic section
of the σ (n−1)-simplex by a hyperplane is also a σ (n−2)-simplex (Fig. 9C).

• Averaging the sum [6] requires evaluating the mean of each l2i ,

〈l2i 〉 =
1

Vn−1

∫
σ (n−1)

l2i dV, [9]

for i = 1, 2, . . . , n. Here, Vn−1 refers to the volume of σ (n−1) and “dV”
refers to the volume of a thin layer positioned at a distance li away from the
ith face (Fig. 9C). By the defining property of simplexes mentioned above,
the base of this layer is a (n− 2)-simplex specified by the equation

n∑
j 6=i

lj = L− li,

which implies that the sides of this base have length L − li just as the sides
of σ (n−1) defined by [8] have length L. The volume of the thin layer is
dV = C(L− li)n−2dli, so that

〈l2i 〉 =
C

Vn−1

∫ L

0
l2i (L− li)

n−2dli =
CLn+1

Vn−1

∫ 1

0
u2(1− u)n−2du,

where u = li/L. Using the variable v = 1− u, the latter integral yields:

〈l2i 〉 =
CLn+1

Vn−1

∫ 1

0
(1− v)2vn−2dv = C

(
1

n− 1
−

2
n

+
1

n + 1

)
.

The volume of the σ (n−1)-simplex is

Vn−1 =

∫ L

0
dV =

CLn−1

n− 1
;

hence the sum [6] divided by Bmin = L2/n yields

〈βn〉 = n2
(

1− 2
n− 1

n
+

n− 1
n + 1

)
= 2

n
n + 1

≈ β∗ = 2. [10]

8. Probability distributions of β -values form a family parameterized by the
number of elements in the sequence. As shown on Fig. 10, these distributions
have a well-defined peak at βn ≈ 2 n

n+1 (see below) and rapidly decay as β
approaches 1 or for β > 3.5, which illustrates that typical β -values, for all n,
remain near the impartial mean β∗ ≈ 2.

A B

Fig. 10. �-distributions. (A) Histograms of �-values obtained for 106 se-
quences containing n = 17, 25, 50, 125, and 250 elements peak in a vicinity
of the impartial mean �∗ and rapidly decay for � . 1.2 and � & 3.5. (B) The
distribution of �′ = � − 1 for sequences containing about n = 25 points is
close to the universal Kolmogorov distribution P(�) (red line, Fig. 2A).

9. The sliding window algorithm can be implemented in two ways:

• using a fixed window that may capture different numbers of events at each
step, i.e., Lt = L, but nt and nt+1 may differ;

• using a fixed number of events per window, i.e., nt = n, but Lt and Lt+1 may
differ.

In both cases, the mean window width L̄ is proportional to the mean
separation between nearest events,

l̄ ≡ 〈li〉 = 〈xi+1 − xi〉, [11]

and the mean number n̄ of the data points in the sample sequence, L̄ = l̄n̄. The
resulting estimates for λ(t) and β(t) are nearly identical and, for qualitative
assessments, can be used interchangeably.

10. Local averaging. To build the dependencies between local averages, we
ordered the values assumed by the independent variable, e.g., the speeds, from
smallest to largest,

{s1, s2, . . .} → {s′1 ≤ s′2 ≤ . . .},

subdivided the resulting sequence into consecutive groups containing 100
elements and averaged each set,

ŝi =
1

100

50∑
k=−50

s′i+k.

Since each sik is associated with a particular moment of time tik , we computed
the averages of the corresponding dependent variable, e.g., λik ,

λ̂i =
1

100

100∑
k=1

λik .

Similarly, ordering the β -scores and evaluating their local means produces
the β̂i-values, along with the means of their λik -counterparts that occur at the
corresponding moments tik .

Data, Materials, and Software Availability. Previously published data were
used for this work (45). Data files uploaded, sharing URL: https://datadryad.org/
stash/share/zchXWoaNFMQhI1b2Qlt3mGgpr3Da09cHJse5ACYwhcU (90).
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