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Abstract

In recent years, the development and implementation of animal-free approaches to chemical 

and pharmaceutical hazard and risk assessment has taken off. Alternative approaches are being 

developed starting from the perspective of human biology and physiology.

Neural tube closure is a vital step that occurs early in human development. Correct closure 

of the neural tube depends on a complex interplay between proteins along a number of 

protein concentration gradients. The sensitivity of neural tube closure to chemical disturbance of 

signalling pathways such as the retinoid pathway, is well known. To map the pathways underlying 

neural tube closure, literature data on the molecular regulation of neural tube closure were 

collected. As the process of neural tube closure is highly conserved in vertebrates, the extensive 

literature available for the mouse was used whilst considering its relevance for humans. Thus, 

important cell compartments, regulatory pathways, and protein interactions essential for neural 

tube closure under physiological circumstances were identified and mapped. An understanding 

of aberrant processes leading to neural tube defects (NTDs) requires detailed maps of neural 

tube embryology, including the complex genetic signals and responses underlying critical cellular 

dynamical and biomechanical processes. The retinoid signaling pathway serves as a case study for 

this ontology because of well-defined crosstalk with the genetic control of neural tube patterning 

and morphogenesis. It is a known target for mechanistically-diverse chemical structures that 

disrupt neural tube closure
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The data presented in this manuscript will set the stage for constructing mathematical models and 

computer simulation of neural tube closure for human-relevant AOPs and predictive toxicology.
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1. Introduction

The development and implementation of animal-free approaches to chemical and 

pharmaceutical hazard and risk assessment has reached a critical crossroad. The realization 

grows that the approach of implementing individual animal-free alternative methods is 

limited by the complexity of toxicities at the level of the intact organism [1,2]. A 

novel paradigm emerges that takes a fundamentally different starting point in contrast to 

the approach that replaces individual animal studies with reductionistic in vitro assays 

[3]. Alternatively, an approach from the perspective of human biology, physiology and 

toxicology takes an open view towards what knowledge is needed to sufficiently cover all 

aspects necessary for an inclusive human hazard and risk assessment [4,5]. Briefly, the 

general idea is that a map of human biology will allow one to identify comprehensive 

networks of quantitative Adverse Outcome Pathways (qAOP) in the future. The human 

biology map, when captured in an in silico model, has been referred to as the virtual 

human [6]. The molecular network underlying human biology responding to toxic insults 

has been named the toxicological ontology [7,8]. The quantitative aspect of this ontology 

will allow the selection of a limited number of steps in the network that need to be 

monitored to reliably calculate the response of the network as a whole and hence to 

predict the adverse outcome. Based on these selected steps, which are comparable to 

key events in an AOP, dedicated animal-free, preferably human-based, assays can be 

selected with which quantitative concentration-responses to chemical exposures can be 

measured. The integration of individual quantitative key event responses requires an 

intelligent computational tool that calculates dose-dependent compound-induced changes in 

the ontology leading to the adverse outcome prediction [9]. For application in integrated risk 

assessments, this dynamic model calculating quantitative concentration-dependent adverse 

outcomes needs to be appended with kinetic models and exposure estimates [4].

This open view approach allows a fresh perspective on what toxicities and diseases need to 

be considered, which can be significantly broader than currently required under existing 

legislation. Given that the integral human biology is the starting point, this approach 

includes all possible adverse outcomes, and therefore is in principle more inclusive than 

current practice which is limited by the spectrum of end points addressed in current 

regulatory guideline animal studies.

The current paradigm is considered to be adequately health protective, but it does not 

scale to the problem of testing 80 K chemicals in the human exposure landscape. The 

computational models can provide a tier 1 screen to inform targeted testing for, in this case, 

developmental toxicity. Virtual embryo simulations such as those developed in US EPA’s 
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‘Virtual Embryo’ program can work to translate data-driven machine learning models into 

mechanistic simulations for critical developmental transitions. These models can feed into 

Integrated Approaches to Testing and Assessment (IATA) in which the dynamics of those 

key events that represent tipping points in the qAOP network are combined with exposure 

and dosimetry to predict adversity and to achieve an integrated risk assessment.

The human biology map, when captured in an in silico model, has been referred to as the 

virtual human [10]. This concept provides an integral model of human physiology, which 

increasingly finds applications in clinical medicine as well as toxicological approaches 

[11]. In toxicology, it facilitates the integration of a wide variety of data types relevant for 

toxicity assessment, including kinetics and dynamics of chemicals in biological systems 

such as the wealth in vitro assays compiled in the Tox Cast library [12,13]. Thus, the virtual 

human concept aims at data integration towards computational modelling of the causation 

of adverse health effects, and consequently of chemical hazard and risk assessment [14]. 

Although it should be acknowledged that building the virtual human and the toxicological 

ontology require significant effort and time, its principal point of departure, together with the 

slow progress of implementing animal-free alternatives in current human safety assessment, 

merit strong investments in this innovative approach. Ongoing efforts in the realm of 

computational models for human physiology and disease, diagnostics and therapy, coupled 

with big data analysis through artificial intelligence and machine learning, indicate that in 

other areas of human health these virtual approaches are rapidly becoming mainstream 

[15–19]. Toxicological risk assessment need such innovations to move away from the 

scientifically and ethically challenged animal experimentation.

This manuscript follows the concept of the virtual human, focusing on one specific area 

in developmental toxicology that is highly relevant to human risk [20,21]. It describes the 

biology of neural tube closure from a molecular and cellular perspective. Neural tube defects 

are among the most prevalent human congenital malformations, which warrants specific 

attention in chemical safety assessment [22]. We took advantage of the highly conserved 

nature of the molecular mechanisms underlying neural tube closure throughout vertebrate 

biology, which leads to the pharyngula stage embryo that all vertebrates pass through during 

development before species-specific developmental differences become morphologically 

apparent [23]. It allowed us to mine the extensive literature of the molecular regulation of 

vertebrate neural tube closure, considering the relevance for humans where possible, starting 

from the literature available for the mouse. This approach has of course been performed 

with a critical eye towards species specificity. This description of the molecular and cellular 

developmental biology underlying neural tube closure follows up on our earlier studies 

focused on the morphogenetic role of mesoderm-derived all-trans-retinoic acid (ATRA) in 

neural tube development [24,25].

ATRA provides a small but well-known and important fraction of the essential molecular 

regulators of neural tube formation. The current manuscript explores in more detail 

the developmental biology of neural tube closure, focusing on ATRA-related molecular 

pathways linked to the various cell types in which they occur, and their role in driving 

intercellular interaction and its morphogenetic consequences, ultimately leading to closure 

of the neural tube. ATRA gradients play critical roles in early embryonic cell differentiation, 
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and are regulated in time and space throughout embryo development. Retinoic acid response 

has also emerged from an extensive ToxCast library multi-assay response analysis as the 

most prominent developmental toxicant response [26]. It is the local balance between 

ATRA-producing retinol dehydrogenase families and ATRA-metabolizing cytochrome P450 

family 26 (CYP26) enzyme families that determines local ATRA concentrations. In the 

neural tube ATRA as a differentiation inducer counteracts the activity of fibroblast growth 

factor (FGF) which stimulates cell proliferation. Opposite gradients of ATRA and FGF 

direct development along the rostro-caudal axis of the vertebrate embryo. In the ventro-

dorsal direction a host of different factors such as chorda-derived sonic hedgehog (SHH) and 

neuroectoderm-derived WNT3 co-determine specific morphogenetic differentiation avenues. 

The resulting molecular neural tube closure map was collected in CellDesigner® software 

[27]. In follow-up research, based on existing data on the perturbation of gene expression 

by chemicals in cellular assays, from this map a qAOP network representing a toxicological 

ontology can be derived and represented in an in silico model. This ontology can inform the 

assays that need to be applied and combined to build the in silico model to calculate the 

adverse outcome at the level of the intact embryo.

The present manuscript compiles and integrates existing information on the molecular, 

cellular and spatial regulation of mammalian (mouse and/or human) neural tube closure 

in a systems biology network, representing the first step towards the generation of an 

in silico model for spinal/caudal neural tube closure. The construction of the biological 

regulation map underlying the in silico model is dependent on existing knowledge of the 

molecular regulation on embryogenesis. Although our systems model is presented as a 

two-dimensional map, morphogenesis is critically three-dimensional. This allows anterior-

posterior, and dorsoventral gradients to interact in driving morphogenesis and generate 

left-right symmetry. While mammalian development at the early stages of embryogenesis up 

to the pharyngula stage is highly conserved [28], it should be kept in mind that building a 

virtual human embryo based on animal (mouse) data comes with unknown limitations.

2. Methods

The morphology of neural tube closure was used to define cell compartments playing a 

role in neural tube closure. Data were collected on changes in these cell compartments 

required for normal neural tube closure. Underlying genetic processes and interactions, 

and establishment of gradients of key molecular factors were identified based on literature 

search using the Abstract Sifter tool [29]. Publications from the PubMed database (until 

2016) were selected if they were annotated with the following terms: Cauda Equina, 

Meningocele, Meningomyelocele, Neural Crest, Neural Plate, Neural Stem Cells, Neural 

Tube, Neural Tube Defects, Neuroepithelial Cells, Neuroglia, Neurons, Primitive Streak, 

Sacral defect and anterior sacral meningocele, Sacrococcygeal Region, Spina Bifida Cystica, 

Spina Bifida Occulta, Spinal Dysraphism, Spine. The database was manually curated for 

relevance to development. This set of publications was searched for the role of ATRA in 

development based on the schematic representation by Tonk and coworkers [30] which 

resulted in selection of the spinal section of the neural tube for further elucidation 

of molecular processes playing a role. Specific searches on genes and cell types were 

conducted from the selected publications or, for more recent publications, in PubMed 
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to elucidate direct or indirect interactions between genes or between cells and genes or 

to confirm interactions with other research. When available, data from genetic mouse 

models (including (conditional) knock-out models) was used to substantiate relationships 

between regulatory molecules and pathways. As the data should be applicable for human 

toxicological responses, processes obtained from human data were preferred. However, since 

human data are limited, the abundant mouse data were also used as the biological process 

of neural tube closure is highly conserved between vertebrates. Interactions that play a role 

in other species or results from in vitro assays were only used as an indicator and required 

confirmation by human or mouse data.

Cell designer software was used to qualitatively visualize the molecular processes of 

neural tube closure. All required signaling pathways, regulatory loops and underlying 

gene networks leading to phenotypical changes necessary for normal development were 

described integrally using a dedicated graphical software package (CellDesigner v4.4.2) 

(www.celldesigner.org). This software package is designed to capture systems biology 

networks while using a unified systems biology markup language (SBML). An SBML-

compliant language is needed to enable the incorporation of signaling approaches as 

it relates to the novel contribution of the Cell Designer. This will ultimately enable 

incorporation of signaling networks in modelling approaches. Kinetic and dynamic 

parameters were therefore not included since this will be part of future computational 

modelling of the neural tube closure process.

3. Results

To develop a systems biology network that is ready for integration in a computer model, 

we focused on five tissue compartments or cell populations for their roles in autonomous 

signalling in the developing neural tube. These are the (non-neural or surface) ectoderm, 

the (future) neural crest cells (ectodermal of origin), the neuroectoderm, the paraxial 

mesoderm and the notochord. Within the neuroectoderm, two populations of cells were 

operationally discriminated based on their behavior at the extreme ventral and dorsal ends 

of the neural folds, induced by dorsoventral gradients of inducing factors. These contain 

the cell populations that during the development will form the median hinge point and the 

dorsolateral hinge points. The sequence of events that starts with the formation of the neural 

groove and ultimately leads to a fully closed neural tube has been captured in 2D in a series 

of six diagrams (Fig. 1) to visualize the whole process and thus to facilitate understanding of 

the chronology of the different processes. Below we describe the biomechanical processes, 

their origin in regulatory networks and their dependence on the different molecular gradients 

of the spinal part of the neural tube (summarized in Tables 1 and 2).

Neural tube closure starts with a flat ectoderm with a bone morphogenetic protein (BMP) 

gradient originating from the non-neural or surface ectoderm [31,32], an SHH gradient 

originating from the notochord [33,34] and all-trans retinoic acid (ATRA) being produced 

by the paraxial mesoderm (future somites) [35,36] (Fig. 1.1). At this stage, ATRA levels 

are relatively low and FGF levels are high, resulting in cell division and caudal body axis 

extension while at the same time inhibiting neural crest specification as well as neuronal 

differentiation [36]. At the level of the mesoderm, ATRA regulates somitogenesis through 
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direct transcriptional repression of FGF8. With body axis elongation, the boundary between 

the area under control of the FGF8 gradient coming from the caudal epiblast and the area 

under control of the ATRA gradient from the presomitic mesoderm shifts caudally with 

ATRA restricting the anterior extent of FGF8 expression [35,37].

SHH is induced by the relatively high levels of FGF [36,38,39] and is produced in the 

notochord, which causes a ventro-dorsal gradient of SHH [40,41]. Following stimulation of 

SHH production by FGF10, SHH expression is self-sustained via binding of SHH to its own 

receptor [40, 42]. BMP is produced in the cells of the surface ectoderm and is stimulated 

by FGF [43,44]. BMP function can be inhibited through expression of one of the many 

BMP inhibitors like noggin (NOG), chordin (CHRD) and follistatin (FST), which block the 

binding of BMP to its receptor [31,32,44,45]. Since BMP plays an important role in late 

processes such as differentiation and migration, the effect of BMP is repressed at this early 

stage, to avoid premature differentiation [46].

Like FGF, ATRA is also produced in the paraxial mesoderm. The first step of ATRA 

formation is uptake of Vitamin A by the cells via the signaling receptor and transporter 

of retinol (STRA6 receptor) and subsequent metabolization to retinaldehyde by retinol 

dehydrogenase 10 (RHD10) [30,47,48]. Retinaldehyde is further metabolized to ATRA 

by aldehyde dehydrogenase 1 family member A2 (RALDH2) [30,49,50]. RA inhibits the 

expression of both RDH10 and RALDH2, and upregulates the expression of dehydrogenase/

reductase 3 (DHRS3) that converts all-trans retinal back to Vitamin A thus ensuring a 

tight feedback loop on its formation [30,47]. RA is metabolized to inactive metabolites 

by CYP26-enzymes, specifically cytochrome P450, family 26, subfamily a, polypeptide 1 

(CYP26A1) [51]. Comparable to RDH10 and RALDH, expression of CYP26-enzymes for 

RA inactivation is regulated by intracellular RA levels [50]. Both the inhibition of RA 

forming enzymes and the induction of RA metabolizing enzymes are crucial in keeping the 

RA levels well controlled in the developing embryo. The balance between FGF and RA 

determines whether cells proliferate or differentiate [35,52]. This interaction is controlled 

in the somites through direct transcriptional repression of FGF by ATRA and FGF-induced 

expression of zinc finger proteins 1 and 3 (ZIC1 and ZIC3 respectively), which induce 

the expression of CYP26 enzymes [35,52–54]. In addition, ZIC1 and ZIC3 induce the 

expression of RALDH2, but FGF inhibits RALDH2 expression [52,55]. Both routes are 

important in controlling the balance between FGF and RA [38].

SHH, originating from the notochord is relatively high at the site of the neuroectoderm 

closest to the notochord. In these cells, which will become the floor plate, SHH binds to 

its receptor and inhibits the expression of ZIC [33,34,56], either directly or by inhibiting 

glioma-associated oncogene family zinc finger 2 (GLI2) which also inhibits ZIC [31]. 

This results in cytoskeletal reorganization and the formation of the Median Hinge Point 

(MHP; Fig. 2) [57,58]. Cells of the MHP start to contract on the apical side (inside of 

the developing tube) in response to Wnt signaling pathway / planar cell polarity pathway 

(WNT-PCP signaling) [59]. The resulting bend of the MHP is the start of the process of 

invagination of the neural groove. This process is facilitated by the growth of the paraxial 

mesoderm providing upward forces [60]. ATRA plays a role in this process by inhibiting 
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the expression of GLI2 [38]. Median hinge point cells will eventually start producing SHH 

themselves [61] strengthening the sustained SHH gradient along the ventro-dorsal axis.

Upon further growth of the mesoderm and the paraxial mesoderm, and facilitated by the 

bending of the MHP, two ridges will start to form on either side of the neural groove 

(Fig. 1.3). With the upward movement of the neuroectoderm forming the neural folds, the 

BMP gradient changes direction relative to the SHH gradient which becomes increasingly 

dorsoventral [40,41]. This change in the BMP gradient implies a reduced repression of BMP 

on ATRA formation resulting in increasing ATRA levels. At this stage the surface ectoderm 

starts to provide an additional driving force via cell division, stiffening and flattening of the 

cells pushing the ridges of the neural folds to the central line [60]. This results in further 

bending of the MHP and formation of the neural groove and a further shift in the BMP-SHH 

gradient.

In the neuroectoderm ZIC induces NOG expression [41]. NOG inhibits BMP binding to 

its receptor, which results in a positive feedback loop on the expression of NOG [62,63]. 

ATRA plays a role in the inhibition of GLI2 in the neuroectoderm [38]. Ensuring relatively 

low levels of RA at this stage, and high levels of FGF is required to maintain high NOG 

levels. This upregulated NOG expression is required for the subsequent formation and 

bending of the dorsal lateral hinge points (DLHPs) [31,33,41,63]. This further facilitates 

bending of the neural tube on the lateral sides and will eventually bring the ridges of the 

neural folds in juxtaposition in the dorsal midline [59,60] (Fig. 1.4). DLHP formation 

comprises cell proliferation, a dorsal movement of cells in the neuroepithelium and 

cytoskeletal rearrangement via apical movement of nuclei creating wedge-shaped cells, 

effectively bending the neural folds [64]. The anatomical localization of the DLHPs is 

related to the balance between various signal molecules/gradients including opposing BMP 

and SHH gradients and the local (FGF-mediated) expression of the BMP inhibitors such 

as NOG [41,65,66]. Conditional knock-out data show that ZIC plays a crucial role in 

this process [41]. Driving the cytoskeletal reorganization involved in DLHP formation is 

ATRA-and FGF-mediated expression of WNT [52]. WNT binds to the Frizzled receptor on 

the neuroectoderm and induces the expression of ras homolog family member A (RHOA), 

which induces the expression of Rho associated coiled-coil (ROCK). ROCK expression 

on its turn, results in a positive feedback loop by induction of RHOA [67,68]. Increased 

expression of ROCK then results in the apical actin turnover required for bending of the 

apical side of the DLHP cells [67].

With progressing neural tube closure come increasing levels of RA and decreasing levels of 

FGF leading to an inhibition of NOG [69]. This inhibition of the BMP inhibitor effectively 

stimulates BMP signalling and enhances further development and differentiation of the 

neuroectoderm and preparation for closure.

Once the neural ridges are in juxtaposition, the final act of closure of the neural tube 

involves the fusion of the respective surface ectoderm and neuroectodermal layers and 

remodeling of the tissue layers (Fig. 1.5). Two types of cellular protrusions play a role in 

the fusion act, Rac family small GTPase 1 (RAC-1) mediated ruffles (lamellopodia-like) 

and cell division cycle 42 (CDC42)-mediated protrusions (filopodia) [70]. CDC42 and 
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RAC1 are both upregulated by the non-canonical WNT-PCP pathway and balanced through 

RHOA-mediated stabilization of the actin network [71,72]. In parallel, WNT-signalling 

activating Rho GTPase (RHO) signalling results in the assembly of an actin cable that will 

form a purse string narrowing the dorsal opening of the NT as closure progresses [73].

Expression of E-cadherin (CDH1), required for fusion of the surface ectoderm, is induced 

by grainyhead-like transcription factor 2 (GHRL2) [56]. GHRL2 expression is negatively 

regulated by FGF leading to increased expression of GHRL2 and thus E-cadherin once 

closure progresses and the FGF gradient fades [71,74]. In the neuroectoderm, a switch 

is made from E-cadherin to N-cadherin (CDH2) which is absent in the surface ectoderm 

[74,75].

Upon closure of the neural tube and fusion of the ectodermal layers, the former neural 

crest cells undergo epithelial-to-mesenchymal transition (EMT), delaminate from the layers 

of neural and non-neural ectoderm and migrate to their final destination (Fig. 1.6). To 

delaminate, the cells need to loosen intercellular connections, including the intercellular E- 

and N-cadherin connections between the neural crest cells and the non-neural ectoderm and 

neuroectoderm respectively [76]. On the border with the non-neural ectoderm a transforming 

growth factor beta (TGFbeta) regulated increase in SNAIL results in the disruption of 

E-Cadherin [77,78]. This process is supported by an increased BMP-mediated stimulation 

of snail family transcriptional repressor 1 (SNAI1) expression through MSX1 [65,79]. On 

the border with the neuroectoderm, increased expression of snail family transcriptional 

repressor 1 (SNAI2) downstream of MSX1 results in a suppression of N-cadherin in the 

neural crest cells, and an increase in Cadherin 7 and 11 (CDH7 and CDH11 respectively) 

expression required for migration [76,79]. Premature differentiation of neural crest cells 

prior to migration is inhibited through an FGF8-induced stimulation of paired box 3 (PAX3) 

expression [77,78].

4. Conclusion/ discussion

The molecular network underlying neural tube closure presented here is a work in progress 

and does not visualize all genes and intermediate steps that may play a role in this process. 

Specifically, those genes that have an intermediate role are not always included for reasons 

of simplification. Relations between genes are suggested to be direct in the network, 

but may actually be missing intermediate steps. Whether these steps serve a functional 

“gate-keeper” role remains to be elucidated. However, the network presented visualizes all 

important biological processes involved in neural tube closure based on current knowledge. 

Quantitative aspects will need to be included, either based on scarce literature information or 

as relative gradients in the computational model. As indicated in general terms above, from 

this network the major rate-limiting regulating aspects need to be identified that can be used 

as biomarkers to monitor compound-induced effects in in vitro assays. The next step in this 

process therefore entails an extensive analysis of the abundant and still growing literature on 

compound-induced gene expression changes and their consequences for cell behavior in in 

vitro cell models. In developmental neurotoxicity a wealth of assays have been developed 

for monitoring cell proliferation, migration, differentiation, neural network formation, and 

development of electrical activity [80,81]. Molecular pathways that respond to compound 
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exposure in these assays, as well as data from genetic models such as (conditional) knock-

outs, may provide candidates for biomarkers of developmental toxicity to be prioritized 

for monitoring to feed the in silico model. As an example, the enzyme system regulating 

retinoic acid homeostasis has been shown to provide a sensitive biomarker set for the 

(neuro) developmental toxicity of triazole antifungal compounds [82]. Retinoic acid being a 

morphogen suggests that its dysregulation may provide a more broadly applicable biomarker 

set for developmental toxicity. Its prominent role in neural tube closure as shown in this 

review underpins this notion.

Building the in silico model can be done using dedicated software packages. As an example, 

the Virtual Embryo® program of US-EPA published in silico 2D models for other elements 

of embryogenesis, such as for blood vessel formation, palatal closure, and urogenital 

development in recent years [42,83,84]. The current model development effort for NTD 

is focusing on a 3D model. Although building the model in 3D implicates an increase in 

complexity, 2D models are not able to capture the crucial dynamics of protein gradients and 

their interplay throughout development. This will not be a mere reconstruction of anatomy 

but provide a model that captures the dynamics of development and can be perturbed for 

sensitivity analysis of imputing data while looking for quantitative relationships between 

genetic and toxicological effects on key cellular processes. The resulting in silico model will 

be instrumental in predicting the developmental effects in the intact embryo of changes in 

gene expression and cell behavior that are observed in cell-based assays as a consequence 

of compound exposure. Thus, results from a battery of underlying cell assays can be fed 

into the in silico model for prediction of toxicity in the intact embryo. In order to define 

the test battery, the rate-limiting components in the gene- and cell-interactions need to be 

identified and represented in relevant assays. At a higher level of integration, the neural 

tube closure model should ultimately be combined with other models representing additional 

morphogenetic pathways. Given the abundance of rodent data, a substantial fraction of 

these models will still be (partially) based on rodent data. However, with the extensive 

knowledge of human homologs of rodent genes and proteins, it will be possible to draw 

a human overlay of the network and followed by targeted verification using e.g. genomics 

and proteomics technologies in well-defined (human) in vitro assays. These efforts provide 

proof of principle for the concept of the virtual embryo, which may in the future replace 

animal testing and allow fine-tuning the developmental toxicity assessment of chemicals and 

pharmaceuticals in humans.

It should be noted that in vitro assays, the main anticipated data providers for feeding the in 
silico model, will not be able to cover every aspect of embryogenesis. Particularly when it 

comes to pattern formation and morphogenesis at the level of the intact embryo, the virtual 

embryo is needed to provide the necessary level of integration. Therefore, the in silico model 

needs to be sufficiently reliable, as evidenced by sufficient coverage of the biology and 

by in depth case studies on data-rich compounds. The ToxCast and ToxRefDB databases 

provide ample examples of extensive in vitro and in vivo information available for such case 

studies [85,86]. This is a significant challenge that requires a critical appraisal throughout 

[87,88]. The ultimate aim of replacing animal studies and the high need for extending the 

rapidly progressing innovation in biomedical and clinical research into human chemical and 

pharmaceutical safety assessment makes this effort worthwhile.
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Fig. 1. 
Two-dimensional description of the series of events leading to neural tube closure starting 

with the formation of the neural groove and ultimately leading to a fully closed neural tube 

(1-6). The centrally placed overview of a developing embryo can be considered a snapshot 

of the progressive closing neural tube. Color coding in the transverse sections: orange: 

paraxial mesoderm, primary source of ATRA; dark blue: BMP gradient originating from the 

surface ectoderm; pink: neural crest; green: notochord and the related SHH gradient; purple: 

neuroectoderm; dark purple: median hinge point cells. Colored arrows indicate directionality 

of the respective gradients; line arrows indicate physical movement of tissue or cell layer. 

The schematic representation of the (static) mutually antagonistic ATRA (orange) - FGF8 

(grey) gradient illustrates a general concept and it should be noted that in the developing 

embryo this is a dynamic gradient that changes as the embryo grows and elongates.
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Fig. 2. 
Systems biology network (CellDesigner® format) describing the cellular and molecular 

interactions in the most important cell populations/compartments underlying neural tube 

closure. Compartments: Green circle: notochord; Red rectangle: paraxial mesoderm; Blue 

rectangle: surface ectoderm; Pink rectangle: Neural crest; Purple rectangle: Neuroectoderm 

divided in DLHP (top) and MHP (bottom). Blue lines and arrows are stimulating, red lines 

and arrows and blocked lines are inhibitory, black lines and arrows indicate an interaction. 

Interactions indicated with a dashed line (irrespective of color) are subject to uncertainty 

which is defined as the interaction being presented in or deductible from literature but 

without experimental substantiation. Light-yellow v-shaped boxes are receptors. Yellow 

boxes are genes if expressed resulting in proteins in green boxes. Blue boxes indicate the 

main source of that protein. Olive green boxes indicate the gradients excreted from different 

cell types and interacting with other compartments. Purple hexagons indicate morphological 

changes. Pink circle with a diagonal line represent ‘inactive metabolites’.
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Table 1

Summary of important protein concentration gradients and their origin.

Gradient maintained by (cell type)

BMP Surface Ectoderm

SHH Notochord and MHP

ATRA Paraxial Mesoderm

FGF Paraxial Mesoderm

WNT Surface Ectoderm
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Table 2

Summary table of key molecules in mammalian neural tube closure.

Cell Type Behavior Signal molecule Reference

Surface Ectoderm Differentiation and migration BMP, FGF, NOG, CHRD, FST 31, 32, 43–45

Fusion of SE WNT-PCP signalling, RAC-1, CDC42, RHOA, CDH1, 
GHRL2

56, 70–74

Neural Crest Inhibition of differentiation FGF8, PAX3 77, 78

EMT BMP, MSX1, TGFbeta, SNAI1, SNAI2, CDH7, 
CDH11

65, 76–79

Neuro Ectoderm (DLHP) Cytoskeletal reorganization ATRA, FGF, WNT, RHOA, ROCK 52, 67, 68

Bending NOG, ZIC, BMP, ATRA, GLI2, FGF, MSX1 31, 33, 38, 41, 62, 63

Neuro Ectoderm (MHP) Cytoskeletal reorganization ZIC, GLI2 31, 33, 34, 56–58

Apical constriction/bending WNT-PCP signalling, ATRA, BMP, SHH 40, 41, 59

Fusion of NE FGF8, GHRL2, CDH2 74, 75

Notochord SHH gradient shift SHH 61

Stable SHH gradient FGF 36, 38, 39, 40, 41, 42

Paraxial Mesoderm Growth and body axis extension FGF, ZIC1, ZIC3 35, 36, 38, 52–55, 60

Differentiation ATRA, RHD10, RALDH2, CYP26, DHRS3 30, 36, 47–52
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